1
|
López M, Gualillo O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 2024; 20:783-794. [PMID: 39478099 DOI: 10.1038/s41584-024-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/26/2024]
Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain.
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS)-Instituto de Investigación Sanitaria de Santiago (IDIS), the Neuroendocrine Interactions in Rheumatology and Inflammatory Disease (NEIRID) Lab, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Nowak-Ciołek M, Ciołek M, Tomaszewska A, Hildebrandt F, Kitzler T, Deutsch K, Lemberg K, Shril S, Szczepańska M, Zachurzok A. Collaborative effort: managing Bardet-Biedl syndrome in pediatric patients. Case series and a literature review. Front Endocrinol (Lausanne) 2024; 15:1424819. [PMID: 39092285 PMCID: PMC11291331 DOI: 10.3389/fendo.2024.1424819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Bardet-Biedl Syndrome (BBS) is an autosomal recessive non-motile ciliopathy, caused by mutations in more than twenty genes. Their expression leads to the production of BBSome-building proteins or chaperon-like proteins supporting its structure. The prevalence of the disease is estimated at 1: 140,000 - 160,000 of life births. Its main clinical features are retinal dystrophy, polydactyly, obesity, cognitive impairment, hypogonadism, genitourinary malformations, and kidney disease. BBS is characterized by heterogeneous clinical manifestation and the variable onset of signs and symptoms. We present a case series of eight pediatric patients with BBS (6 boys and 2 girls) observed in one clinical center including two pairs of siblings. The patients' age varies between 2 to 13 years (average age of diagnosis: 22 months). At presentation kidney disorders were observed in seven patients, polydactyly in six patients' obesity, and psychomotor development delay in two patients. In two patients with kidney disorders, the genetic tests were ordered at the age of 1 and 6 months due to the presence of symptoms suggesting BBS and having an older sibling with the diagnosis of the syndrome. The mutations in the following genes were confirmed: BBS10, MKKS, BBS7/BBS10, BBS7, BBS9. All described patients developed symptoms related to the urinary system and kidney-function impairment. Other most common symptoms are polydactyly and obesity. In one patient the obesity class 3 was diagnosed with multiple metabolic disorders. In six patients the developmental delay was diagnosed. The retinopathy was observed only in one, the oldest patient. Despite having the same mutations (siblings) or having mutations in the same gene, the phenotypes of the patients are different. We aimed to addresses gaps in understanding BBS by comparing our data and existing literature through a narrative review. This research includes longitudinal data and explores genotype-phenotype correlations of children with BBS. BBS exhibits diverse clinical features and genetic mutations, making diagnosis challenging despite defined criteria. Same mutations can result in different phenotypes. Children with constellations of polydactyly and/or kidney disorders and/or early-onset obesity should be managed towards BBS. Early diagnosis is crucial for effective monitoring and intervention to manage the multisystemic dysfunctions associated with BBS.
Collapse
Affiliation(s)
- Maria Nowak-Ciołek
- Students’ Scientific Association at the Department of Pediatrics, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Michał Ciołek
- Students’ Scientific Association at the Department of Psychiatry and Psychotherapy of Developmental Age, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Kitzler
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Katharina Lemberg
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shirlee Shril
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
3
|
Tomlinson JW. Bardet-Biedl syndrome: A focus on genetics, mechanisms and metabolic dysfunction. Diabetes Obes Metab 2024; 26 Suppl 2:13-24. [PMID: 38302651 DOI: 10.1111/dom.15480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a rare, monogenic, multisystem disorder characterized by retinal dystrophy, renal abnormalities, polydactyly, learning disabilities, as well as metabolic dysfunction, including obesity and an increased risk of type 2 diabetes. It is a primary ciliopathy, and causative mutations in more than 25 different genes have been described. Multiple cellular mechanisms contribute to the development of the metabolic phenotype associated with BBS, including hyperphagia as a consequence of altered hypothalamic appetite signalling as well as alterations in adipocyte biology promoting adipocyte proliferation and adipogenesis. Within this review, we describe in detail the metabolic phenotype associated with BBS and discuss the mechanisms that drive its evolution. In addition, we review current approaches to the metabolic management of patients with BBS, including the use of weight loss medications and bariatric surgery. Finally, we evaluate the potential of targeting hypothalamic appetite signalling to limit hyperphagia and induce clinically significant weight loss.
Collapse
Affiliation(s)
- Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
4
|
Dragano NRV, Milbank E, Haddad-Tóvolli R, Garrido-Gil P, Nóvoa E, Fondevilla MF, Capelli V, Zanesco AM, Solon C, Morari J, Pires L, Estevez-Salguero Á, Beiroa D, González-García I, Barca-Mayo O, Diéguez C, Nogueiras R, Labandeira-García JL, Rexen Ulven E, Ulven T, Claret M, Velloso LA, López M. Hypothalamic free fatty acid receptor-1 regulates whole-body energy balance. Mol Metab 2024; 79:101840. [PMID: 38036170 PMCID: PMC10784317 DOI: 10.1016/j.molmet.2023.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVE Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance. METHODS Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of brown adipose tissue (BAT) and molecular analysis of the hypothalamus, BAT, white adipose tissue (WAT) and liver were carried out. RESULTS Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, reduced inflammation, and decreased endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis. CONCLUSIONS FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain; Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil.
| | - Edward Milbank
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Garrido-Gil
- Department of Morphological Sciences, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Enfermedades Neurodegenerativas (CIBERNED), 28029, Santiago de Compostela, Spain
| | - Eva Nóvoa
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Marcos F Fondevilla
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Valentina Capelli
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Ariane Maria Zanesco
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Leticia Pires
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Ánxela Estevez-Salguero
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Daniel Beiroa
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Olga Barca-Mayo
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Ruben Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - José L Labandeira-García
- Department of Morphological Sciences, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Enfermedades Neurodegenerativas (CIBERNED), 28029, Santiago de Compostela, Spain
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBER Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), 08036, Spain; Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Licio A Velloso
- Laboratory of Cell Signaling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
5
|
Rial-Pensado E, Rivas-Limeres V, Grijota-Martínez C, Rodríguez-Díaz A, Capelli V, Barca-Mayo O, Nogueiras R, Mittag J, Diéguez C, López M. Temperature modulates systemic and central actions of thyroid hormones on BAT thermogenesis. Front Physiol 2022; 13:1017381. [PMID: 36467699 PMCID: PMC9716276 DOI: 10.3389/fphys.2022.1017381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 08/07/2023] Open
Abstract
Thyroid hormones (THs) play a major role regulating energy balance and brown adipose tissue (BAT) thermogenesis, as well as body temperature, as shown in hyperthyroid patients. However, the current landscape of preclinical thyroid hormone models is complex. For example, while rats become catabolic after TH administration, mice gain weight; so, these differences in species need to be analyzed in detail and specially whether temperature could be a factor. Here, we aimed to investigate the effect of environmental temperature on those actions. Rats were subcutaneously treated with L-thyroxine (T4) or stereotaxically within the ventromedial nucleus of the hypothalamus (VMH) with triiodothyronine (T3) and housed at 23°C, 4°C or 30°C; energy balance, BAT thermogenesis and AMP-activated protein kinase (AMPK) in the VMH were analyzed. Our data showed that the effect of both systemic T4 of central T3 on energy balance and BAT thermogenesis was dependent upon environmental temperature. This evidence is of interest in the design of experimental settings highlighting the species-specific metabolic actions of THs, and in understanding its physiological role in the adaptation to temperature.
Collapse
Affiliation(s)
- Eva Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Verónica Rivas-Limeres
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Carmen Grijota-Martínez
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Alberto Sols Biomedical Research Institute (CSIC-UAM), Madrid, Spain
| | - Amanda Rodríguez-Díaz
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Valentina Capelli
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Olga Barca-Mayo
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Jens Mittag
- Institute for Endocrinology and Diabetes—Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, Lübeck, Germany
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
6
|
Caba L, Florea L, Braha EE, Lupu VV, Gorduza EV. Monitoring and Management of Bardet-Biedl Syndrome: What the Multi-Disciplinary Team Can Do. J Multidiscip Healthc 2022; 15:2153-2167. [PMID: 36193191 PMCID: PMC9526427 DOI: 10.2147/jmdh.s274739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bardet – Biedl syndrome is a rare autosomal recessive multisystem non-motile ciliopathy. It has heterogeneous clinical manifestations. It is caused by mutations in 26 genes encoding BBSome proteins, chaperonines, and IFT complex. The main clinical features are: retinal cone-rod dystrophy, central obesity, postaxial polydactyly, cognitive impairment, hypogonadism and genitourinary anomalies, and kidney disease. The onset of clinical manifestations is variable which makes the diagnosis difficult in some patients. Because of the multiple system involvement, a multidisciplinary approach is necessary. The purpose of this review is to provide monitoring and management directions for a better approach to these patients.
Collapse
Affiliation(s)
- Lavinia Caba
- Department of Mother and Child Medicine – Medical Genetics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
- Correspondence: Lavinia Caba, Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, Iasi, 700115, Romania, Email
| | - Laura Florea
- Department of Nephrology - Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Valeriu Vasile Lupu
- Department of Mother and Child Medicine – Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Mother and Child Medicine – Medical Genetics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|