1
|
Kashkooli AB, van Dijk ADJ, Bouwmeester H, van der Krol A. Individual lipid transfer proteins from Tanacetum parthenium show different specificity for extracellular accumulation of sesquiterpenes. PLANT MOLECULAR BIOLOGY 2023; 111:153-166. [PMID: 36255594 PMCID: PMC9849177 DOI: 10.1007/s11103-022-01316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A highly specialized function for individual LTPs for different products from the same terpenoid biosynthesis pathway is described and the function of an LTP GPI anchor is studied. Sequiterpenes produced in glandular trichomes of the medicinal plant Tanacetum parthenium (feverfew) accumulate in the subcuticular extracellular space. Transport of these compounds over the plasma membrane is presumably by specialized membrane transporters, but it is still not clear how these hydrophobic compounds are subsequently transported over the hydrophilic cell wall. Here we identified eight so-called non-specific Lipid transfer proteins (nsLTPs) genes that are expressed in feverfew trichomes. A putative function of these eight nsLTPs in transport of the lipophilic sesquiterpene lactones produced in feverfew trichomes, was tested in an in-planta transport assay using transient expression in Nicotiana benthamiana. Of eight feverfew nsLTP candidate genes analyzed, two (TpLTP1 and TpLTP2) can specifically improve extracellular accumulation of the sesquiterpene costunolide, while one nsLTP (TpLTP3) shows high specificity towards export of parthenolide. The specificity of the nsLTPs was also tested in an assay that test for the exclusion capacity of the nsLTP for influx of extracellular substrates. In such assay, TpLTP3 was identified as most effective in blocking influx of both costunolide and parthenolide, when these substrates are infiltrated into the apoplast. The TpLTP3 is special in having a GPI-anchor domain, which is essential for the export activity of TpLTP3. However, addition of the TpLTP3 GPI-anchor domain to TpLTP1 resulted in loss of TpLTP1 export activity. These novel export and exclusion assays thus provide new means to test functionality of plant nsLTPs.
Collapse
Affiliation(s)
- Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Aalt D J van Dijk
- Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Frank L, Wenig M, Ghirardo A, van der Krol A, Vlot AC, Schnitzler JP, Rosenkranz M. Isoprene and β-caryophyllene confer plant resistance via different plant internal signalling pathways. PLANT, CELL & ENVIRONMENT 2021; 44:1151-1164. [PMID: 33522606 DOI: 10.1111/pce.14010] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 05/12/2023]
Abstract
Isoprene and other terpenoids are important biogenic volatile organic compounds in terms of atmospheric chemistry. Isoprene can aid plant performance under abiotic stresses, but the fundamental biological reasons for the high emissions are not completely understood. Here, we provide evidence of a previously unrecognized ecological function for isoprene and for the sesquiterpene, ß-caryophyllene. We show that isoprene and ß-caryophyllene act as core components of plant signalling networks, inducing resistance against microbial pathogens in neighbouring plants. We challenged Arabidopsis thaliana with Pseudomonas syringae, after exposure to pure volatile terpenoids or to volatile emissions of transformed poplar or Arabidopsis plants. The data suggest that isoprene induces a defence response in receiver plants that is similar to that elicited by monoterpenes and depended on salicylic acid (SA) signalling. In contrast, the sesquiterpene, ß-caryophyllene, induced resistance via jasmonic acid (JA)-signalling. The experiments in an open environment show that natural biological emissions are enough to induce resistance in neighbouring Arabidopsis. Our results show that both isoprene and ß-caryophyllene function as allelochemical components in complex plant signalling networks. Knowledge of this system may be used to boost plant immunity against microbial pathogens in various crop management schemes.
Collapse
Affiliation(s)
- Lena Frank
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | | | - A Corina Vlot
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Maaria Rosenkranz
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| |
Collapse
|
3
|
Alquézar B, Volpe HXL, Magnani RF, de Miranda MP, Santos MA, Marques VV, de Almeida MR, Wulff NA, Ting HM, de Vries M, Schuurink R, Bouwmeester H, Peña L. Engineered Orange Ectopically Expressing the Arabidopsis β-Caryophyllene Synthase Is Not Attractive to Diaphorina citri, the Vector of the Bacterial Pathogen Associated to Huanglongbing. FRONTIERS IN PLANT SCIENCE 2021; 12:641457. [PMID: 33763099 PMCID: PMC7982956 DOI: 10.3389/fpls.2021.641457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
Huanglongbing (HLB) is a destructive disease, associated with psyllid-transmitted phloem-restricted pathogenic bacteria, which is seriously endangering citriculture worldwide. It affects all citrus species and cultivars regardless of the rootstock used, and despite intensive research in the last decades, there is no effective cure to control either the bacterial species (Candidatus Liberibacter spp.) or their insect vectors (Diaphorina citri and Trioza erytreae). Currently, the best attempts to manage HLB are based on three approaches: (i) reducing the psyllid population by intensive insecticide treatments; (ii) reducing inoculum sources by removing infected trees, and (iii) using nursery-certified healthy plants for replanting. The economic losses caused by HLB (decreased fruit quality, reduced yield, and tree destruction) and the huge environmental costs of disease management seriously threaten the sustainability of the citrus industry in affected regions. Here, we have generated genetically modified sweet orange lines to constitutively emit (E)-β-caryophyllene, a sesquiterpene repellent to D. citri, the main HLB psyllid vector. We demonstrate that this alteration in volatile emission affects behavioral responses of the psyllid in olfactometric and no-choice assays, making them repellent/less attractant to the HLB vector, opening a new alternative for possible HLB control in the field.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Haroldo Xavier Linhares Volpe
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Rodrigo Facchini Magnani
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Chemistry Department, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Marcelo Pedreira de Miranda
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Mateus Almeida Santos
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Viviani Vieira Marques
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Márcia Rodrigues de Almeida
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
| | - Nelson Arno Wulff
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Hieng-Ming Ting
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Michel de Vries
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Schuurink
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Harro Bouwmeester
- Swammerdam Institute for Life Sciences, Green Life Sciences Cluster, University of Amsterdam, Amsterdam, Netherlands
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| |
Collapse
|
4
|
Muthusamy S, Vetukuri RR, Lundgren A, Ganji S, Zhu LH, Brodelius PE, Kanagarajan S. Transient expression and purification of β-caryophyllene synthase in Nicotiana benthamiana to produce β-caryophyllene in vitro. PeerJ 2020; 8:e8904. [PMID: 32377446 PMCID: PMC7194099 DOI: 10.7717/peerj.8904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
The sesquiterpene β-caryophyllene is an ubiquitous component in many plants that has commercially been used as an aroma in cosmetics and perfumes. Recent studies have shown its potential use as a therapeutic agent and biofuel. Currently, β-caryophyllene is isolated from large amounts of plant material. Molecular farming based on the Nicotiana benthamiana transient expression system may be used for a more sustainable production of β-caryophyllene. In this study, a full-length cDNA of a new duplicated β-caryophyllene synthase from Artemisia annua (AaCPS1) was isolated and functionally characterized. In order to produce β-caryophyllene in vitro, the AaCPS1 was cloned into a plant viral-based vector pEAQ-HT. Subsequently, the plasmid was transferred into the Agrobacterium and agroinfiltrated into N. benthamiana leaves. The AaCPS1 expression was analyzed by quantitative PCR at different time points after agroinfiltration. The highest level of transcripts was observed at 9 days post infiltration (dpi). The AaCPS1 protein was extracted from the leaves at 9 dpi and purified by cobalt–nitrilotriacetate (Co-NTA) affinity chromatography using histidine tag with a yield of 89 mg kg−1 fresh weight of leaves. The protein expression of AaCPS1 was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses. AaCPS1 protein uses farnesyl diphosphate (FPP) as a substrate to produce β-caryophyllene. Product identification and determination of the activity of purified AaCPS1 were done by gas chromatography–mass spectrometry (GC–MS). GC–MS results revealed that the AaCPS1 produced maximum 26.5 ± 1 mg of β-caryophyllene per kilogram fresh weight of leaves after assaying with FPP for 6 h. Using AaCPS1 as a proof of concept, we demonstrate that N. benthamiana can be considered as an expression system for production of plant proteins that catalyze the formation of valuable chemicals for industrial applications.
Collapse
Affiliation(s)
- Saraladevi Muthusamy
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Suresh Ganji
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Selvaraju Kanagarajan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.,Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
5
|
Delatte TL, Scaiola G, Molenaar J, de Sousa Farias K, Alves Gomes Albertti L, Busscher J, Verstappen F, Carollo C, Bouwmeester H, Beekwilder J. Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1997-2006. [PMID: 29682901 PMCID: PMC6230952 DOI: 10.1111/pbi.12933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 05/18/2023]
Abstract
Plants store volatile compounds in specialized organs. The properties of these storage organs prevent precarious evaporation and protect neighbouring tissues from cytotoxicity. Metabolic engineering of plants is often carried out in tissues such as leaf mesophyll cells, which are abundant and easily accessible by engineering tools. However, these tissues are not suitable for the storage of volatile and hydrophobic compound such as sesquiterpenes and engineered volatiles are often lost into the headspace. In this study, we show that the seeds of Arabidopsis thaliana, which naturally contain lipid bodies, accumulate sesquiterpenes upon engineered expression. Subsequently, storage of volatile sesquiterpenes was achieved in Nicotiana benthamiana leaf tissue, by introducing oleosin-coated lipid bodies through metabolic engineering. Hereto, different combinations of genes encoding diacylglycerol acyltransferases (DGATs), transcription factors (WRINKL1) and oleosins (OLE1), from the oil seed-producing species castor bean (Ricinus communis) and Arabidopsis, were assessed for their suitability to promote lipid body formation. Co-expression of α-bisabolol synthase with Arabidopsis DGAT1 and WRINKL1 and OLE1 from castor bean promoted storage of α-bisabolol in N. benthamiana mesophyll tissue more than 17-fold. A clear correlation was found between neutral lipids and storage of sesquiterpenes, using synthases for α-bisabolol, (E)-β-caryophyllene and α-barbatene. The co-localization of neutral lipids and α-bisabolol was shown using microscopy. This work demonstrates that lipid bodies can be used as intracellular storage compartment for hydrophobic sesquiterpenes, also in the vegetative parts of plants, creating the possibility to improve yields of metabolic engineering strategies in plants.
Collapse
Affiliation(s)
| | - Giulia Scaiola
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | - Jamil Molenaar
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
| | | | | | | | | | - Carlos Carollo
- Lab Prod Nat & Espectrometria MassasUniv Fed Mato Grosso do SulCampo GrandeMSBrazil
| | - Harro Bouwmeester
- Lab Plant PhysiolWageningen Univ & ResWageningenThe Netherlands
- Present address:
Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jules Beekwilder
- Wageningen Univ & ResWageningen Plant ResBiosciWageningenThe Netherlands
| |
Collapse
|
6
|
Reed J, Osbourn A. Engineering terpenoid production through transient expression in Nicotiana benthamiana. PLANT CELL REPORTS 2018; 37:1431-1441. [PMID: 29786761 PMCID: PMC6153650 DOI: 10.1007/s00299-018-2296-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/12/2018] [Indexed: 05/20/2023]
Abstract
Terpenoids are the most structurally diverse class of plant natural products with a huge range of commercial and medical applications. Exploiting this enormous potential has historically been hindered due to low levels of these compounds in their natural sources, making isolation difficult, while their structural complexity frequently makes synthetic chemistry approaches uneconomical. Engineering terpenoid biosynthesis in heterologous host production platforms provides a means to overcome these obstacles. In particular, plant-based production systems are attractive as they provide the compartmentalisation and cofactors necessary for the transfer of functional pathways from other plants. Nicotiana benthamiana, a wild relative of tobacco, has become increasingly popular as a heterologous expression platform for reconstituting plant natural product pathways, because it is amenable to Agrobacterium-mediated transient expression, a scalable and highly flexible process that enables rapid expression of genes and enzymes from other plant species. Here, we review recent work describing terpene production in N. benthamiana. We examine various strategies taken to engineer this host for increased production of the target metabolite. We also look at how transient expression can be utilised for rapid generation of molecular diversity, including new-to-nature products. Finally, we highlight current issues surrounding this expression platform and discuss the future directions and developments which will be needed to fully realise the potential of this system.
Collapse
Affiliation(s)
- James Reed
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
7
|
Stephenson MJ, Reed J, Brouwer B, Osbourn A. Transient Expression in Nicotiana Benthamiana Leaves for Triterpene Production at a Preparative Scale. J Vis Exp 2018:58169. [PMID: 30176025 PMCID: PMC6128107 DOI: 10.3791/58169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The triterpenes are one of the largest and most structurally diverse families of plant natural products. Many triterpene derivatives have been shown to possess medicinally relevant biological activity. However, thus far this potential has not translated into a plethora of triterpene-derived drugs in the clinic. This is arguably (at least partially) a consequence of limited practical synthetic access to this class of compound, a problem that can stifle the exploration of structure-activity relationships and development of lead candidates by traditional medicinal chemistry workflows. Despite their immense diversity, triterpenes are all derived from a single linear precursor, 2,3-oxidosqualene. Transient heterologous expression of biosynthetic enzymes in N. benthamiana can divert endogenous supplies of 2,3-oxidosqualene towards the production of new high-value triterpene products that are not naturally produced by this host. Agro-infiltration is an efficient and simple means of achieving transient expression in N. benthamiana. The process involves infiltration of plant leaves with a suspension of Agrobacterium tumefaciens carrying the expression construct(s) of interest. Co-infiltration of an additional A. tumefaciens strain carrying an expression construct encoding an enzyme that boosts precursor supply significantly increases yields. After a period of five days, the infiltrated leaf material can be harvested and processed to extract and isolate the resulting triterpene product(s). This is a process that is linearly and reliably scalable, simply by increasing the number of plants used in the experiment. Herein is described a protocol for rapid preparative-scale production of triterpenes utilizing this plant-based platform. The protocol utilizes an easily replicable vacuum infiltration apparatus, which allows the simultaneous infiltration of up to four plants, enabling batch-wise infiltration of hundreds of plants in a short period of time.
Collapse
|
8
|
Hu H, Li J, Delatte T, Vervoort J, Gao L, Verstappen F, Xiong W, Gan J, Jongsma MA, Wang C. Modification of chrysanthemum odour and taste with chrysanthemol synthase induces strong dual resistance against cotton aphids. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1434-1445. [PMID: 29331089 PMCID: PMC6041446 DOI: 10.1111/pbi.12885] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 05/21/2023]
Abstract
Aphids are pests of chrysanthemum that employ plant volatiles to select host plants and ingest cell contents to probe host quality before engaging in prolonged feeding and reproduction. Changes in volatile and nonvolatile metabolite profiles can disrupt aphid-plant interactions and provide new methods of pest control. Chrysanthemol synthase (CHS) from Tanacetum cinerariifolium represents the first committed step in the biosynthesis of pyrethrin ester insecticides, but no biological role for the chrysanthemol product alone has yet been documented. In this study, the TcCHS gene was over-expressed in Chrysanthemum morifolium and resulted in both the emission of volatile chrysanthemol (ca. 47 pmol/h/gFW) and accumulation of a chrysanthemol glycoside derivative, identified by NMR as chrysanthemyl-6-O-malonyl-β-D-glucopyranoside (ca. 1.1 mM), with no detrimental phenotypic effects. Dual-choice assays separately assaying these compounds in pure form and as part of the headspace and extract demonstrated independent bioactivity of both components against the cotton aphid (Aphis gossypii). Performance assays showed that the TcCHS plants significantly reduced aphid reproduction, consistent with disturbance of aphid probing activities on these plants as revealed by electropenetrogram (EPG) studies. In open-field trials, aphid population development was very strongly impaired demonstrating the robustness and high impact of the trait. The results suggest that expression of the TcCHS gene induces a dual defence system, with both repellence by chrysanthemol odour and deterrence by its nonvolatile glycoside, introducing a promising new option for engineering aphid control into plants.
Collapse
Affiliation(s)
- Hao Hu
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
- BU BioscienceWageningen University and ResearchWageningenThe Netherlands
| | - Jinjin Li
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
| | - Thierry Delatte
- Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Jacques Vervoort
- Laboratory of BiochemistryWageningen University and ResearchWageningenThe Netherlands
| | - Liping Gao
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
- BU BioscienceWageningen University and ResearchWageningenThe Netherlands
| | - Francel Verstappen
- Laboratory of Plant PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Wei Xiong
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
| | - Jianping Gan
- Hubei Collaborative Innovation Center of Dabie MountainsHuanggang Normal UniversityHuanggangChina
| | - Maarten A. Jongsma
- BU BioscienceWageningen University and ResearchWageningenThe Netherlands
| | - Caiyun Wang
- Key Laboratory of Horticultural Plant BiologyMOE Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
9
|
Costantini L, Kappel CD, Trenti M, Battilana J, Emanuelli F, Sordo M, Moretto M, Camps C, Larcher R, Delrot S, Grando MS. Drawing Links from Transcriptome to Metabolites: The Evolution of Aroma in the Ripening Berry of Moscato Bianco ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2017; 8:780. [PMID: 28559906 PMCID: PMC5432621 DOI: 10.3389/fpls.2017.00780] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/25/2017] [Indexed: 05/29/2023]
Abstract
Monoterpenes confer typical floral notes to "Muscat" grapevine varieties and, to a lesser extent, to other aromatic non-Muscat varieties. Previous studies have led to the identification and functional characterization of some enzymes and genes in this pathway. However, the underlying genetic map is still far from being complete. For example, the specific steps of monoterpene metabolism and its regulation are largely unknown. With the aim of identifying new candidates for the missing links, we applied an integrative functional genomics approach based on the targeted metabolic and genome-wide transcript profiling of Moscato Bianco ripening berries. In particular, gas chromatography-mass spectrometry analysis of free and bound terpenoid compounds was combined with microarray analysis in the skins of berries collected at five developmental stages from pre-veraison to over-ripening. Differentially expressed metabolites and probes were identified in the pairwise comparison between time points by using the early stage as a reference. Metabolic and transcriptomic data were integrated through pairwise correlation and clustering approaches to discover genes linked with particular metabolites or groups of metabolites. These candidate transcripts were further checked for co-localization with quantitative trait loci (QTLs) affecting aromatic compounds. Our findings provide insights into the biological networks of grapevine secondary metabolism, both at the catalytic and regulatory levels. Examples include a nudix hydrolase as component of a terpene synthase-independent pathway for monoterpene biosynthesis, genes potentially involved in monoterpene metabolism (cytochrome P450 hydroxylases, epoxide hydrolases, glucosyltransferases), transport (vesicle-associated proteins, ABCG transporters, glutathione S-transferases, amino acid permeases), and transcriptional control (transcription factors of the ERF, MYB and NAC families, intermediates in light- and circadian cycle-mediated regulation with supporting evidence from the literature and additional regulatory genes with a previously unreported association to monoterpene accumulation).
Collapse
Affiliation(s)
- Laura Costantini
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Christian D. Kappel
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of BordeauxVillenave d'Ornon, France
| | - Massimiliano Trenti
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Juri Battilana
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Francesco Emanuelli
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Maddalena Sordo
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Marco Moretto
- Computational Biology Platform, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Céline Camps
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of BordeauxVillenave d'Ornon, France
| | - Roberto Larcher
- Experiment and Technological Services Department, Technology Transfer Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Serge Delrot
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of BordeauxVillenave d'Ornon, France
| | - Maria S. Grando
- Grapevine Genetics and Breeding Unit, Genomics and Biology of Fruit Crop Department, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy
- Center Agriculture Food Environment, University of TrentoSan Michele all'Adige, Italy
| |
Collapse
|
10
|
Borghi M, Fernie AR, Schiestl FP, Bouwmeester HJ. The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. TRENDS IN PLANT SCIENCE 2017; 22:338-350. [PMID: 28111171 DOI: 10.1016/j.tplants.2016.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 05/08/2023]
Abstract
A striking feature of the angiosperms that use animals as pollen carriers to sexually reproduce is the great diversity of their flowers with regard to morphology and traits such as color, odor, and nectar. These traits are underpinned by the synthesis of secondary metabolites such as pigments and volatiles, as well as carbohydrates and amino acids, which are used by plants to lure and reward animal pollinators. We review here the knowledge of the metabolic network that supports the biosynthesis of these compounds and the behavioral responses that these molecules elicit in the animal pollinators. Such knowledge provides us with a deeper insight into the ecology and evolution of plant-pollinator interactions, and should help us to better manage these ecologically essential interactions in agricultural ecosystems.
Collapse
Affiliation(s)
- Monica Borghi
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Present address: Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|