1
|
Hamzelou S, Belobrajdic D, Broadbent JA, Juhász A, Lee Chang K, Jameson I, Ralph P, Colgrave ML. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. Crit Rev Biotechnol 2024; 44:1280-1295. [PMID: 38035669 DOI: 10.1080/07388551.2023.2283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.
Collapse
Affiliation(s)
| | | | | | - Angéla Juhász
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| | | | - Ian Jameson
- CSIRO Ocean and Atmosphere, Hobart, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, St Lucia, Australia
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
2
|
Auverlot J, Dard A, Sáez-Vásquez J, Reichheld JP. Redox regulation of epigenetic and epitranscriptomic gene regulatory pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4459-4475. [PMID: 38642408 DOI: 10.1093/jxb/erae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Developmental and environmental constraints influence genome expression through complex networks of regulatory mechanisms. Epigenetic modifications and remodelling of chromatin are some of the major actors regulating the dynamic of gene expression. Unravelling the factors relaying environmental signals that induce gene expression reprogramming under stress conditions is an important and fundamental question. Indeed, many enzymes involved in epigenetic and chromatin modifications are regulated by redox pathways, through post-translational modifications of proteins or by modifications of the flux of metabolic intermediates. Such modifications are potential hubs to relay developmental and environmental changes for gene expression reprogramming. In this review, we provide an update on the interaction between major redox mediators, such as reactive oxygen and nitrogen species and antioxidants, and epigenetic changes in plants. We detail how redox status alters post-translational modifications of proteins, intracellular epigenetic and epitranscriptional modifications, and how redox regulation interplays with DNA methylation, histone acetylation and methylation, miRNA biogenesis, and chromatin structure and remodelling to reprogram genome expression under environmental constraints.
Collapse
Affiliation(s)
- Juline Auverlot
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
- Centre for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
3
|
Dard A, Van Breusegem F, Mhamdi A. Redox regulation of gene expression: proteomics reveals multiple previously undescribed redox-sensitive cysteines in transcription complexes and chromatin modifiers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4476-4493. [PMID: 38642390 DOI: 10.1093/jxb/erae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Redox signalling is crucial for regulating plant development and adaptation to environmental changes. Proteins with redox-sensitive cysteines can sense oxidative stress and modulate their functions. Recent proteomics efforts have comprehensively mapped the proteins targeted by oxidative modifications. The nucleus, the epicentre of transcriptional reprogramming, contains a large number of proteins that control gene expression. Specific redox-sensitive transcription factors have long been recognized as key players in decoding redox signals in the nucleus and thus in regulating transcriptional responses. Consequently, the redox regulation of the nuclear transcription machinery and its cofactors has received less attention. In this review, we screened proteomic datasets for redox-sensitive cysteines on proteins of the core transcription complexes and chromatin modifiers in Arabidopsis thaliana. Our analysis indicates that redox regulation affects every step of gene transcription, from initiation to elongation and termination. We report previously undescribed redox-sensitive subunits in transcription complexes and discuss the emerging challenges in unravelling the landscape of redox-regulated processes involved in nuclear gene transcription.
Collapse
Affiliation(s)
- Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
4
|
Scholtysek L, Poetsch A, Hofmann E, Hemschemeier A. The activation of Chlamydomonas reinhardtii alpha amylase 2 by glutamine requires its N-terminal aspartate kinase-chorismate mutase-tyrA (ACT) domain. PLANT DIRECT 2024; 8:e609. [PMID: 38911017 PMCID: PMC11190351 DOI: 10.1002/pld3.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The coordination of assimilation pathways for all the elements that make up cellular components is a vital task for every organism. Integrating the assimilation and use of carbon (C) and nitrogen (N) is of particular importance because of the high cellular abundance of these elements. Starch is one of the most important storage polymers of photosynthetic organisms, and a complex regulatory network ensures that biosynthesis and degradation of starch are coordinated with photosynthetic activity and growth. Here, we analyzed three starch metabolism enzymes of Chlamydomonas reinhardtii that we captured by a cyclic guanosine monophosphate (cGMP) affinity chromatography approach, namely, soluble starch synthase STA3, starch-branching enzyme SBE1, and α-amylase AMA2. While none of the recombinant enzymes was directly affected by the presence of cGMP or other nucleotides, suggesting an indirect binding to cGMP, AMA2 activity was stimulated in the presence of L-glutamine (Gln). This activating effect required the enzyme's N-terminal aspartate kinase-chorismate mutase-tyrA domain. Gln is the first N assimilation product and not only a central compound for the biosynthesis of N-containing molecules but also a recognized signaling molecule for the N status. Our observation suggests that AMA2 might be a means to coordinate N and C metabolism at the enzymatic level, increasing the liberation of C skeletons from starch when high Gln levels signal an abundance of assimilated N.
Collapse
Affiliation(s)
- Lisa Scholtysek
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Ansgar Poetsch
- Faculty of Biology and Biotechnology, Department for Plant BiochemistryRuhr University BochumBochumGermany
- School of Basic Medical SciencesNanchang UniversityNanchangChina
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, Protein CrystallographyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
5
|
Hou LY, Sommer F, Poeker L, Dziubek D, Schroda M, Geigenberger P. The impact of light and thioredoxins on the plant thiol-disulfide proteome. PLANT PHYSIOLOGY 2024; 195:1536-1560. [PMID: 38214043 PMCID: PMC11142374 DOI: 10.1093/plphys/kiad669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Thiol-based redox regulation is a crucial posttranslational mechanism to acclimate plants to changing light availability. Here, we conducted a biotin switch-based redox proteomics study in Arabidopsis (Arabidopsis thaliana) to systematically investigate dynamics of thiol-redox networks in response to temporal changes in light availability and across genotypes lacking parts of the thioredoxin (Trx) or NADPH-Trx-reductase C (NTRC) systems in the chloroplast. Time-resolved dynamics revealed light led to marked decreases in the oxidation states of many chloroplast proteins with photosynthetic functions during the first 10 min, followed by their partial reoxidation after 2 to 6 h into the photoperiod. This involved f, m, and x-type Trx proteins showing similar light-induced reduction-oxidation dynamics, while NTRC, 2-Cys peroxiredoxins, and Trx y2 showed an opposing pattern, being more oxidized in light than dark. In Arabidopsis trxf1f2, trxm1m2, or ntrc mutants, most proteins showed increased oxidation states in the light compared to wild type, suggesting their light-dependent dynamics were related to NTRC/Trx networks. While NTRC deficiency had a strong influence in all light conditions, deficiencies in f- or m-type Trxs showed differential impacts on the thiol-redox proteome depending on the light environment, being higher in constant or fluctuating light, respectively. The results indicate plant redox proteomes are subject to dynamic changes in reductive and oxidative pathways to cooperatively fine-tune photosynthetic and metabolic processes in the light. The importance of the individual elements of the NTRC/Trx networks mediating these responses depend on the extent of light variability, with NTRC playing a crucial role to balance protein-redox states in rapidly fluctuating light.
Collapse
Affiliation(s)
- Liang-Yu Hou
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Frederik Sommer
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Louis Poeker
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Dejan Dziubek
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Peter Geigenberger
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Plouviez M, Dubreucq E. Key Proteomics Tools for Fundamental and Applied Microalgal Research. Proteomes 2024; 12:13. [PMID: 38651372 PMCID: PMC11036299 DOI: 10.3390/proteomes12020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Microscopic, photosynthetic prokaryotes and eukaryotes, collectively referred to as microalgae, are widely studied to improve our understanding of key metabolic pathways (e.g., photosynthesis) and for the development of biotechnological applications. Omics technologies, which are now common tools in biological research, have been shown to be critical in microalgal research. In the past decade, significant technological advancements have allowed omics technologies to become more affordable and efficient, with huge datasets being generated. In particular, where studies focused on a single or few proteins decades ago, it is now possible to study the whole proteome of a microalgae. The development of mass spectrometry-based methods has provided this leap forward with the high-throughput identification and quantification of proteins. This review specifically provides an overview of the use of proteomics in fundamental (e.g., photosynthesis) and applied (e.g., lipid production for biofuel) microalgal research, and presents future research directions in this field.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
- The Cawthron Institute, Nelson 7010, New Zealand
| | - Eric Dubreucq
- Agropolymer Engineering and Emerging Technologies, L’Institut Agro Montpellier, 34060 Montpellier, France;
| |
Collapse
|
7
|
Meloni M, Fanti S, Tedesco D, Gurrieri L, Trost P, Fermani S, Lemaire SD, Zaffagnini M, Henri J. Characterization of chloroplast ribulose-5-phosphate-3-epimerase from the microalga Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2024; 194:2263-2277. [PMID: 38134324 DOI: 10.1093/plphys/kiad680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Carbon fixation relies on Rubisco and 10 additional enzymes in the Calvin-Benson-Bassham cycle. Epimerization of xylulose-5-phosphate (Xu5P) into ribulose-5-phosphate (Ru5P) contributes to the regeneration of ribulose-1,5-bisphosphate, the substrate of Rubisco. Ribulose-5-phosphate-3-epimerase (RPE, EC 5.1.3.1) catalyzes the formation of Ru5P, but it can also operate in the pentose-phosphate pathway by catalyzing the reverse reaction. Here, we describe the structural and biochemical properties of the recombinant RPE isoform 1 from Chlamydomonas (Chlamydomonas reinhardtii) (CrRPE1). The enzyme is a homo-hexamer that contains a zinc ion in the active site and exposes a catalytic pocket on the top of an α8β8 triose isomerase-type barrel as observed in structurally solved RPE isoforms from both plant and non-plant sources. By optimizing and developing enzyme assays to monitor the reversible epimerization of Ru5P to Xu5P and vice versa, we determined the catalytic parameters that differ from those of other plant paralogs. Despite being identified as a putative target of multiple thiol-based redox modifications, CrRPE1 activity is not affected by both reductive and oxidative treatments, indicating that enzyme catalysis is insensitive to possible redox alterations of cysteine residues. We mapped phosphorylation sites on the crystal structure, and the specific location at the entrance of the catalytic cleft supports a phosphorylation-based regulatory mechanism. This work provides an accurate description of the structural features of CrRPE1 and an in-depth examination of its catalytic and regulatory properties highlighting the physiological relevance of this enzyme in the context of photosynthetic carbon fixation.
Collapse
Affiliation(s)
- Maria Meloni
- Laboratory of Molecular Plant Physiology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, 4 Place Jussieu, 75005, Paris, France
| | - Silvia Fanti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Daniele Tedesco
- Institute for Organic Synthesis and Photoreactivity, National Research Council (ISOF-CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Libero Gurrieri
- Laboratory of Molecular Plant Physiology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Paolo Trost
- Laboratory of Molecular Plant Physiology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Simona Fermani
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Stéphane D Lemaire
- Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, 4 Place Jussieu, 75005, Paris, France
| | - Mirko Zaffagnini
- Laboratory of Molecular Plant Physiology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Julien Henri
- Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
8
|
Lambert L, de Carpentier F, André P, Marchand CH, Danon A. Type II metacaspase mediates light-dependent programmed cell death in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2024; 194:2648-2662. [PMID: 37971939 PMCID: PMC10980519 DOI: 10.1093/plphys/kiad618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Among the crucial processes that preside over the destiny of cells from any type of organism are those involving their self-destruction. This process is well characterized and conceptually logical to understand in multicellular organisms; however, the levels of knowledge and comprehension of its existence are still quite enigmatic in unicellular organisms. We use Chlamydomonas (Chlamydomonas reinhardtii) to lay the foundation for understanding the mechanisms of programmed cell death (PCD) in a unicellular photosynthetic organism. In this paper, we show that while PCD induces the death of a proportion of cells, it allows the survival of the remaining population. A quantitative proteomic analysis aiming at unveiling the proteome of PCD in Chlamydomonas allowed us to identify key proteins that led to the discovery of essential mechanisms. We show that in Chlamydomonas, PCD relies on the light dependence of a photosynthetic organism to generate reactive oxygen species and induce cell death. Finally, we obtained and characterized mutants for the 2 metacaspase genes in Chlamydomonas and showed that a type II metacaspase is essential for PCD execution.
Collapse
Affiliation(s)
- Lou Lambert
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| | - Félix de Carpentier
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
- Doctoral School of Plant Sciences, Université Paris-Saclay, Saint-Aubin 91190, France
| | - Phuc André
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| | - Christophe H Marchand
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Paris F-75005, France
| | - Antoine Danon
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| |
Collapse
|
9
|
Jin C, Zhu Y, You J, Yu Q, Liu Q, Zhou X. The regulation of light quality on the substance production and photosynthetic activity of Dunaliella bardawil. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112872. [PMID: 38401433 DOI: 10.1016/j.jphotobiol.2024.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
To study the influence and regulation of light quality on the microalgal photosynthetic activity and production of biomass and substances, green alga Dunaliella bardawil was cultured in this study under the monochromatic red light (7R0B), blue light (0R7B), and their combinations with different ratios (xRyB, x + y = 7), as well as a control of white light (W). The results demonstrated that the only advantage for control W was its chlorophyll-a (Chl-a) and Chl-b contents. All substance production at 7R0B were much lower than at control W, except of glycerol. Compared to control W, protein production at 1R6B (259.22 mg/L) was 1.10 times greater, carbohydrate production at 0R7B (306.49 mg/L) was 1.34 times higher, lipid production at 3R4B (133.60 mg/L) was 1.36 times higher, and glycerol production at 4R3B (53.58 mg/L) was 1.13 times greater. In comparison to control W, there was the significant improvements of at least 19%, 20%, and 5%, respectively, in the values of potential maximal relative electron transport efficiency (rETRmax), light intensity with saturated rETR (IK), and actual photochemical efficiency of PSII (QYss) in treatments. The correlation analysis revealed that the content of carotenoids was closely related to non-photochemical quenching (NPQ). The test using Chl-a fluorescence transients (JIP-test) proved that red light inhibited electron transport from reduced Quinone A (QA-) to QB and resulted in a sharp increase in RC/CSm, and that the blue-dominated light enhanced electron transport from QA- to QB and from plastoquinone (PQ) to PSI receptor side. The photosynthetic parameters including Ψo, φEO, φRO, δRO, PIABS, PItotal, DFABS, and DFtotal, which were positively correlated with growth and substance production, were improved by blue-dominated light. The variations in the electron transport chain might provide the signals for metabolic regulation. The results of this study will be helpful to promote the production of Dunaliella bardawil under artificial illumination and to clarify the regulating mechanism of light quality on microalgal photosynthesis.
Collapse
Affiliation(s)
- Cuili Jin
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China; Marine Science & Technology Institute, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Yan Zhu
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Jiajie You
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Qiuyan Yu
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Qing Liu
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China; Marine Science & Technology Institute, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China
| | - Xiaojian Zhou
- College of Environmental Science & Engineering, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China; Marine Science & Technology Institute, Yangzhou University, 196 Huayang West Street, Hanjiang District, Yangzhou City, Jiangsu Province, China.
| |
Collapse
|
10
|
Zou Y, Sabljić I, Horbach N, Dauphinee AN, Åsman A, Sancho Temino L, Minina EA, Drag M, Stael S, Poreba M, Ståhlberg J, Bozhkov PV. Thermoprotection by a cell membrane-localized metacaspase in a green alga. THE PLANT CELL 2024; 36:665-687. [PMID: 37971931 PMCID: PMC10896300 DOI: 10.1093/plcell/koad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Caspases are restricted to animals, while other organisms, including plants, possess metacaspases (MCAs), a more ancient and broader class of structurally related yet biochemically distinct proteases. Our current understanding of plant MCAs is derived from studies in streptophytes, and mostly in Arabidopsis (Arabidopsis thaliana) with 9 MCAs with partially redundant activities. In contrast to streptophytes, most chlorophytes contain only 1 or 2 uncharacterized MCAs, providing an excellent platform for MCA research. Here we investigated CrMCA-II, the single type-II MCA from the model chlorophyte Chlamydomonas (Chlamydomonas reinhardtii). Surprisingly, unlike other studied MCAs and similar to caspases, CrMCA-II dimerizes both in vitro and in vivo. Furthermore, activation of CrMCA-II in vivo correlated with its dimerization. Most of CrMCA-II in the cell was present as a proenzyme (zymogen) attached to the plasma membrane (PM). Deletion of CrMCA-II by genome editing compromised thermotolerance, leading to increased cell death under heat stress. Adding back either wild-type or catalytically dead CrMCA-II restored thermoprotection, suggesting that its proteolytic activity is dispensable for this effect. Finally, we connected the non-proteolytic role of CrMCA-II in thermotolerance to the ability to modulate PM fluidity. Our study reveals an ancient, MCA-dependent thermotolerance mechanism retained by Chlamydomonas and probably lost during the evolution of multicellularity.
Collapse
Affiliation(s)
- Yong Zou
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Igor Sabljić
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Natalia Horbach
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Adrian N Dauphinee
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Anna Åsman
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Lucia Sancho Temino
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Elena A Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Simon Stael
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-756 51 Uppsala, Sweden
| |
Collapse
|
11
|
Wittmann D, Wang C, Grimm B. More indications for redox-sensitive cysteine residues of the Arabidopsis 5-aminolevulinate dehydratase. FRONTIERS IN PLANT SCIENCE 2024; 14:1294802. [PMID: 38317833 PMCID: PMC10839789 DOI: 10.3389/fpls.2023.1294802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Redox-dependent thiol-disulfide switches of cysteine residues are one of the significant posttranslational modifications of proteins to control rapidly their stability, activity, and protein interaction. Redox control also modulates the tetrapyrrole biosynthesis (TBS). Among the redox-dependent TBS enzymes, 5-aminolevulinic acid dehydratase (ALAD) was previously recognized to interact with reductants, such a thioredoxins or NADPH-dependent thioredoxin reductase C. In this report, we aim to verify the redox sensitivity of ALAD and identify the redox-reactive cysteine residues among the six cysteines of the mature protein form Arabidopsis. Based on structural modelling and comparative studies of wild-type ALAD and ALAD mutants with single and double Cys➔Ser substitutions under oxidizing and reducing conditions, we aim to predict the dimerization and oligomerisation of ALAD as well as the crucial Cys residues for disulfide bridge formation and enzyme activity. The Cys404Ser mutation led to a drastic inactivation of ALAD and redox-dependent properties of ALAD were severely impaired, when Cys71 was simultaneously mutated with Cys152 or Cys251. Cys71 is located in a flexible N-terminal arm of ALAD, which could allow intramolecular disulfide bridges with Cys residues at the surface of the remaining globule ALAD structure. As a result, we propose different roles of Cys residues for redox control, catalytic activity and Mg2+-dependent assembly.
Collapse
Affiliation(s)
- Daniel Wittmann
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
12
|
Mallén-Ponce MJ, Pérez-Pérez ME. Redox-mediated activation of ATG3 promotes ATG8 lipidation and autophagy progression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2023; 194:359-375. [PMID: 37772945 PMCID: PMC10756753 DOI: 10.1093/plphys/kiad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Autophagy is one of the main degradative pathways used by eukaryotic organisms to eliminate useless or damaged intracellular material to maintain cellular homeostasis under stress conditions. Mounting evidence indicates a strong interplay between the generation of reactive oxygen species and the activation of autophagy. Although a tight redox regulation of autophagy has been shown in several organisms, including microalgae, the molecular mechanisms underlying this control remain poorly understood. In this study, we have performed an in-depth in vitro and in vivo redox characterization of ATG3, an E2-activating enzyme involved in ATG8 lipidation and autophagosome formation, from 2 evolutionary distant unicellular model organisms: the green microalga Chlamydomonas (Chlamydomonas reinhardtii) and the budding yeast Saccharomyces cerevisiae. Our results indicated that ATG3 activity from both organisms is subjected to redox regulation since these proteins require reducing equivalents to transfer ATG8 to the phospholipid phosphatidylethanolamine. We established the catalytic Cys of ATG3 as a redox target in algal and yeast proteins and showed that the oxidoreductase thioredoxin efficiently reduces ATG3. Moreover, in vivo studies revealed that the redox state of ATG3 from Chlamydomonas undergoes profound changes under autophagy-activating stress conditions, such as the absence of photoprotective carotenoids, the inhibition of fatty acid synthesis, or high light irradiance. Thus, our results indicate that the redox-mediated activation of ATG3 regulates ATG8 lipidation under oxidative stress conditions in this model microalga.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| |
Collapse
|
13
|
Burlacot A. Quantifying the roles of algal photosynthetic electron pathways: a milestone towards photosynthetic robustness. THE NEW PHYTOLOGIST 2023; 240:2197-2203. [PMID: 37872749 DOI: 10.1111/nph.19328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
During photosynthesis, electron transport reactions generate and shuttle reductant to allow CO2 reduction by the Calvin-Benson-Bassham cycle and the formation of biomass building block in the so-called linear electron flow (LEF). However, in nature, environmental parameters like light intensity or CO2 availability can vary and quickly change photosynthesis rates, creating an imbalance between photosynthetic energy production and metabolic needs. In addition to LEF, alternative photosynthetic electron flows are central to allow photosynthetic energy to match metabolic demand in response to environmental variations. Microalgae arguably harbour one of the most diverse set of alternative electron flows (AEFs), including cyclic (CEF), pseudocyclic (PCEF) and chloroplast-to-mitochondria (CMEF) electron flow. While CEF, PCEF and CMEF have large functional overlaps, they differ in the conditions they are active and in their role for photosynthetic energy balance. Here, I review the molecular mechanisms of CEF, PCEF and CMEF in microalgae. I further propose a quantitative framework to compare their key physiological roles and quantify how the photosynthetic energy is partitioned to maintain a balanced energetic status of the cell. Key differences in AEF within the green lineage and the potential of rewiring photosynthetic electrons to enhance plant robustness will be discussed.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Allouche D, Kostova G, Hamon M, Marchand CH, Caron M, Belhocine S, Christol N, Charteau V, Condon C, Durand S. New RoxS sRNA Targets Identified in Bacillus subtilis by Pulsed SILAC. Microbiol Spectr 2023; 11:e0047123. [PMID: 37338392 PMCID: PMC10433868 DOI: 10.1128/spectrum.00471-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/18/2023] [Indexed: 06/21/2023] Open
Abstract
Non-coding RNAs (sRNA) play a key role in controlling gene expression in bacteria, typically by base-pairing with ribosome binding sites to block translation. The modification of ribosome traffic along the mRNA generally affects its stability. However, a few cases have been described in bacteria where sRNAs can affect translation without a major impact on mRNA stability. To identify new sRNA targets in Bacillus subtilis potentially belonging to this class of mRNAs, we used pulsed-SILAC (stable isotope labeling by amino acids in cell culture) to label newly synthesized proteins after short expression of the RoxS sRNA, the best characterized sRNA in this bacterium. RoxS sRNA was previously shown to interfere with the expression of genes involved in central metabolism, permitting control of the NAD+/NADH ratio in B. subtilis. In this study, we confirmed most of the known targets of RoxS, showing the efficiency of the method. We further expanded the number of mRNA targets encoding enzymes of the TCA cycle and identified new targets. One of these is YcsA, a tartrate dehydrogenase that uses NAD+ as co-factor, in excellent agreement with the proposed role of RoxS in management of NAD+/NADH ratio in Firmicutes. IMPORTANCE Non-coding RNAs (sRNA) play an important role in bacterial adaptation and virulence. The identification of the most complete set of targets for these regulatory RNAs is key to fully identifying the perimeter of its function(s). Most sRNAs modify both the translation (directly) and mRNA stability (indirectly) of their targets. However, sRNAs can also influence the translation efficiency of the target primarily, with little or no impact on mRNA stability. The characterization of these targets is challenging. We describe here the application of the pulsed SILAC method to identify such targets and obtain the most complete list of targets for a defined sRNA.
Collapse
Affiliation(s)
- Delphine Allouche
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Gergana Kostova
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marion Hamon
- FR550, CNRS, Plateforme de Protéomique, Institut de Biologie Physico-Chimique, Paris, France
| | - Christophe H. Marchand
- FR550, CNRS, Plateforme de Protéomique, Institut de Biologie Physico-Chimique, Paris, France
- CNRS, UMR7238, Laboratory of Computational and Quantitative Biology, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Mathias Caron
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sihem Belhocine
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ninon Christol
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Violette Charteau
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sylvain Durand
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
15
|
Carrera-Pacheco SE, Hankamer B, Oey M. Environmental and nuclear influences on microalgal chloroplast gene expression. TRENDS IN PLANT SCIENCE 2023; 28:955-967. [PMID: 37080835 DOI: 10.1016/j.tplants.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal chloroplasts, such as those of the model organism Chlamydomonas reinhardtii, are emerging as a new platform to produce recombinant proteins, including industrial enzymes, diagnostics, as well as animal and human therapeutics. Improving transgene expression and final recombinant protein yields, at laboratory and industrial scales, require optimization of both environmental and cellular factors. Most studies on C. reinhardtii have focused on optimization of cellular factors. Here, we review the regulatory influences of environmental factors, including light (cycle time, intensity, and quality), carbon source (CO2 and organic), and temperature. In particular, we summarize their influence via the redox state, cis-elements, and trans-factors on biomass and recombinant protein production to support the advancement of emerging large-scale light-driven biotechnology applications.
Collapse
Affiliation(s)
- Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ben Hankamer
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| | - Melanie Oey
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| |
Collapse
|
16
|
Burlacot A, Peltier G. Energy crosstalk between photosynthesis and the algal CO 2-concentrating mechanisms. TRENDS IN PLANT SCIENCE 2023; 28:795-807. [PMID: 37087359 DOI: 10.1016/j.tplants.2023.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth's ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms - called CO2-concentrating mechanisms (CCMs) - for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
17
|
Wittmann D, Geigenberger P, Grimm B. NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner. Cells 2023; 12:1670. [PMID: 37371140 DOI: 10.3390/cells12121670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Redox regulation of plastid gene expression and different metabolic pathways promotes many activities of redox-sensitive proteins. We address the question of how the plastid redox state and the contributing reducing enzymes control the enzymes of tetrapyrrole biosynthesis (TBS). In higher plants, this metabolic pathway serves to produce chlorophyll and heme, among other essential end products. Because of the strictly light-dependent synthesis of chlorophyll, tight control of TBS requires a diurnal balanced supply of the precursor 5-aminolevulinic acid (ALA) to prevent the accumulation of photoreactive metabolic intermediates in darkness. We report on some TBS enzymes that accumulate in a light intensity-dependent manner, and their contents decrease under oxidizing conditions of darkness, low light conditions, or in the absence of NADPH-dependent thioredoxin reductase (NTRC) and thioredoxin f1 (TRX-f1). Analysis of single and double trxf1 and ntrc mutants revealed a decreased content of the early TBS enzymes glutamyl-tRNA reductase (GluTR) and 5-aminolevulinic acid dehydratase (ALAD) instead of an exclusive decrease in enzyme activity. This effect was dependent on light conditions and strongly attenuated after transfer to high light intensities. Thus, it is suggested that a deficiency of plastid-localized thiol-redox transmitters leads to enhanced degradation of TBS enzymes rather than being directly caused by lower catalytic activity. The effects of the proteolytic activity of the Clp protease on TBS enzymes were studied by using Clp subunit-deficient mutants. The simultaneous lack of TRX and Clp activities in double mutants confirms the Clp-induced degradation of some TBS proteins in the absence of reductive activity of TRXs. In addition, we verified previous observations that decreased chlorophyll and heme levels in ntrc could be reverted to WT levels in the ntrc/Δ2cp triple mutant. The decreased synthesis of 5-aminolevulinic acid and porphobilinogen in ntrc was completely restored in ntrc/Δ2cp and correlated with WT-like levels of GluTR, ALAD, and other TBS proteins.
Collapse
Affiliation(s)
- Daniel Wittmann
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
18
|
Caubrière D, Moseler A, Rouhier N, Couturier J. Diversity and roles of cysteine desulfurases in photosynthetic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3345-3360. [PMID: 36861318 DOI: 10.1093/jxb/erad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2023] [Indexed: 06/08/2023]
Abstract
As sulfur is part of many essential protein cofactors such as iron-sulfur clusters, molybdenum cofactors, or lipoic acid, its mobilization from cysteine represents a fundamental process. The abstraction of the sulfur atom from cysteine is catalysed by highly conserved pyridoxal 5'-phosphate-dependent enzymes called cysteine desulfurases. The desulfuration of cysteine leads to the formation of a persulfide group on a conserved catalytic cysteine and the concomitant release of alanine. Sulfur is then transferred from cysteine desulfurases to different targets. Numerous studies have focused on cysteine desulfurases as sulfur-extracting enzymes for iron-sulfur cluster synthesis in mitochondria and chloroplasts but also for molybdenum cofactor sulfuration in the cytosol. Despite this, knowledge about the involvement of cysteine desulfurases in other pathways is quite rudimentary, particularly in photosynthetic organisms. In this review, we summarize current understanding of the different groups of cysteine desulfurases and their characteristics in terms of primary sequence, protein domain architecture, and subcellular localization. In addition, we review the roles of cysteine desulfurases in different fundamental pathways and highlight the gaps in our knowledge to encourage future work on unresolved issues especially in photosynthetic organisms.
Collapse
Affiliation(s)
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| |
Collapse
|
19
|
Wang F, Dischinger K, Westrich LD, Meindl I, Egidi F, Trösch R, Sommer F, Johnson X, Schroda M, Nickelsen J, Willmund F, Vallon O, Bohne AV. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1612-1633. [PMID: 36649171 PMCID: PMC10022639 DOI: 10.1093/plphys/kiad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.
Collapse
Affiliation(s)
- Fei Wang
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Irene Meindl
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Egidi
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Xenie Johnson
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Joerg Nickelsen
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Olivier Vallon
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | | |
Collapse
|
20
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
21
|
Yang Y, Hassan SH, Awasthi MK, Gajendran B, Sharma M, Ji MK, Salama ES. The recent progress on the bioactive compounds from algal biomass for human health applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Coutelier H, Ilioaia O, Le Peillet J, Hamon M, D’Amours D, Teixeira MT, Xu Z. The Polo kinase Cdc5 is regulated at multiple levels in the adaptation response to telomere dysfunction. Genetics 2022; 223:6808627. [PMID: 36342193 PMCID: PMC9836022 DOI: 10.1093/genetics/iyac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Telomere dysfunction activates the DNA damage checkpoint to induce a cell cycle arrest. After an extended period of time, however, cells can bypass the arrest and undergo cell division despite the persistence of the initial damage, a process called adaptation to DNA damage. The Polo kinase Cdc5 in Saccharomyces cerevisiae is essential for adaptation and for many other cell cycle processes. How the regulation of Cdc5 in response to telomere dysfunction relates to adaptation is not clear. Here, we report that Cdc5 protein level decreases after telomere dysfunction in a Mec1-, Rad53- and Ndd1-dependent manner. This regulation of Cdc5 is important to maintain long-term cell cycle arrest but not for the initial checkpoint arrest. We find that both Cdc5 and the adaptation-deficient mutant protein Cdc5-ad are heavily phosphorylated and several phosphorylation sites modulate adaptation efficiency. The PP2A phosphatases are involved in Cdc5-ad phosphorylation status and contribute to adaptation mechanisms. We finally propose that Cdc5 orchestrates multiple cell cycle pathways to promote adaptation.
Collapse
Affiliation(s)
| | | | | | - Marion Hamon
- Sorbonne Université, PSL, CNRS, FR550, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Maria Teresa Teixeira
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - Zhou Xu
- Corresponding author: Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France.
| |
Collapse
|
23
|
de Carpentier F, Maes A, Marchand CH, Chung C, Durand C, Crozet P, Lemaire SD, Danon A. How abiotic stress-induced socialization leads to the formation of massive aggregates in Chlamydomonas. PLANT PHYSIOLOGY 2022; 190:1927-1940. [PMID: 35775951 PMCID: PMC9614484 DOI: 10.1093/plphys/kiac321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 05/05/2023]
Abstract
Multicellular organisms implement a set of reactions involving signaling and cooperation between different types of cells. Unicellular organisms, on the other hand, activate defense systems that involve collective behaviors between individual organisms. In the unicellular model alga Chlamydomonas (Chlamydomonas reinhardtii), the existence and the function of collective behaviors mechanisms in response to stress remain mostly at the level of the formation of small structures called palmelloids. Here, we report the characterization of a mechanism of abiotic stress response that Chlamydomonas can trigger to form massive multicellular structures. We showed that these aggregates constitute an effective bulwark within which the cells are efficiently protected from the toxic environment. We generated a family of mutants that aggregate spontaneously, the socializer (saz) mutants, of which saz1 is described here in detail. We took advantage of the saz mutants to implement a large-scale multiomics approach that allowed us to show that aggregation is not the result of passive agglutination, but rather genetic reprogramming and substantial modification of the secretome. The reverse genetic analysis we conducted allowed us to identify positive and negative regulators of aggregation and to make hypotheses on how this process is controlled in Chlamydomonas.
Collapse
Affiliation(s)
- Félix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Alexandre Maes
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Christophe H Marchand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | - Céline Chung
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Cyrielle Durand
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pierre Crozet
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
- Polytech-Sorbonne, Sorbonne Université, 75005 Paris, France
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005 Paris, France
| | | |
Collapse
|
24
|
Neusius D, Kleinknecht L, Teh JT, Ostermeier M, Kelterborn S, Eirich J, Hegemann P, Finkemeier I, Bohne AV, Nickelsen J. Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1780-1800. [PMID: 35899410 DOI: 10.1111/tpj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.
Collapse
Affiliation(s)
- Daniel Neusius
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Laura Kleinknecht
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jing Tsong Teh
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Matthias Ostermeier
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Simon Kelterborn
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Peter Hegemann
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jörg Nickelsen
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| |
Collapse
|
25
|
de Bont L, Donnay N, Couturier J, Rouhier N. Redox regulation of enzymes involved in sulfate assimilation and in the synthesis of sulfur-containing amino acids and glutathione in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:958490. [PMID: 36051294 PMCID: PMC9426629 DOI: 10.3389/fpls.2022.958490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Sulfur is essential in plants because of its presence in numerous molecules including the two amino acids, cysteine, and methionine. Cysteine serves also for the synthesis of glutathione and provides sulfur to many other molecules including protein cofactors or vitamins. Plants absorb sulfate from their environment and assimilate it via a reductive pathway which involves, respectively, a series of transporters and enzymes belonging to multigenic families. A tight control is needed to adjust each enzymatic step to the cellular requirements because the whole pathway consumes energy and produces toxic/reactive compounds, notably sulfite and sulfide. Glutathione is known to regulate the activity of some intermediate enzymes. In particular, it provides electrons to adenosine 5'-phosphosulfate reductases but also regulates the activity of glutamate-cysteine ligase by reducing a regulatory disulfide. Recent proteomic data suggest a more extended post-translational redox control of the sulfate assimilation pathway enzymes and of some associated reactions, including the synthesis of both sulfur-containing amino acids, cysteine and methionine, and of glutathione. We have summarized in this review the known oxidative modifications affecting cysteine residues of the enzymes involved. In particular, a prominent regulatory role of protein persulfidation seems apparent, perhaps because sulfide produced by this pathway may react with oxidized thiol groups. However, the effect of persulfidation has almost not yet been explored.
Collapse
Affiliation(s)
- Linda de Bont
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Natacha Donnay
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| | | |
Collapse
|
26
|
Yu G, Hao J, Pan X, Shi L, Zhang Y, Wang J, Fan H, Xiao Y, Yang F, Lou J, Chang W, Malnoë A, Li M. Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH. NATURE PLANTS 2022; 8:840-855. [PMID: 35798975 DOI: 10.1038/s41477-022-01177-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-photochemical quenching (NPQ) plays an important role for phototrophs in decreasing photo-oxidative damage. qH is a sustained form of NPQ and depends on the plastid lipocalin (LCNP). A thylakoid membrane-anchored protein SUPPRESSOR OF QUENCHING1 (SOQ1) prevents qH formation by inhibiting LCNP. SOQ1 suppresses qH with its lumen-located thioredoxin (Trx)-like and NHL domains. Here we report structural data, genetic modification and biochemical characterization of Arabidopsis SOQ1 lumenal domains. Our results show that the Trx-like and NHL domains are associated together, with the cysteine motif located at their interface. Residue E859, required for SOQ1 function, is pivotal for maintaining the Trx-NHL association. Importantly, the C-terminal region of SOQ1 forms an independent β-stranded domain that has structural homology to the N-terminal domain of bacterial disulfide bond protein D and is essential for negative regulation of qH. Furthermore, SOQ1 is susceptible to cleavage at the loops connecting the neighbouring lumenal domains both in vitro and in vivo, which could be a regulatory process for its suppression function of qH.
Collapse
Affiliation(s)
- Guimei Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jingfang Hao
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, Capital Normal University, Beijing, China
| | - Lifang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jifeng Wang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongcheng Fan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yang Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Fuquan Yang
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jizhong Lou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Alizée Malnoë
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
27
|
Le Moigne T, Sarti E, Nourisson A, Zaffagnini M, Carbone A, Lemaire SD, Henri J. Crystal structure of chloroplast fructose-1,6-bisphosphate aldolase from the green alga Chlamydomonas reinhardtii. J Struct Biol 2022; 214:107873. [DOI: 10.1016/j.jsb.2022.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
|
28
|
Kochoni E, Aharchaou I, Ohlund L, Rosabal M, Sleno L, Fortin C. New insights in copper handling strategies in the green alga Chlamydomonas reinhardtii under low-iron condition. Metallomics 2022; 14:6582230. [PMID: 35524697 DOI: 10.1093/mtomcs/mfac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022]
Abstract
Copper (Cu) is a redox-active transition element critical to various metabolic processes. These functions are accomplished in tandem with Cu binding ligands, mainly proteins. The main goal of this work was to understand the mechanisms that govern the intracellular fate of Cu in the freshwater green alga, Chlamydomonas reinhardtii, and more specifically to understand the mechanisms underlying Cu detoxification by algal cells in low-Fe conditions. We show that Cu accumulation was up to 51-fold greater for algae exposed to Cu in low-Fe medium as compared to the replete-Fe growth medium. Using the stable isotope 65Cu as a tracer, we studied the subcellular distribution of Cu within the various cell compartments of C. reinhardtii. These data were coupled with metallomic and proteomic approaches to identify potential Cu-binding ligands in the heat-stable protein and peptide fractions of the cytosol. Cu was mostly found in the organelles (78%), and in the heat-stable proteins and peptides (21%) fractions. The organelle fraction appeared to also be the main target compartment of Cu accumulation in Fe-depleted cells. As Fe levels in the medium were shown to influence Cu homeostasis, we found that C. reinhardtii can cope with this additional stress by utilizing different Cu-binding ligands. Indeed, in addition to expected Cu-binding ligands such as glutathione and phytochelatins, 25 proteins were detected that may also play a role in the Cu detoxification processes in C. reinhardtii. Our results shed new light on the coping mechanisms of C. reinhardtii when exposed to environmental conditions that induce high rates of Cu accumulation.
Collapse
Affiliation(s)
- Emeric Kochoni
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Imad Aharchaou
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Leanne Ohlund
- Département de Chimie, Université du Québec à Montréal (UQAM), 2101, rue Jeanne-Mance, Montréal, QC, H2×2J6, Canada
| | - Maikel Rosabal
- EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,Département des Sciences biologiques, Université du Québec à Montréal (UQAM), 141 Avenue du Président-Kennedy, Montréal, QC, H2×1Y4, Canada
| | - Lekha Sleno
- EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,Département de Chimie, Université du Québec à Montréal (UQAM), 2101, rue Jeanne-Mance, Montréal, QC, H2×2J6, Canada
| | - Claude Fortin
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
29
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
30
|
Shimakawa G, Shoguchi E, Burlacot A, Ifuku K, Che Y, Kumazawa M, Tanaka K, Nakanishi S. Coral symbionts evolved a functional polycistronic flavodiiron gene. PHOTOSYNTHESIS RESEARCH 2022; 151:113-124. [PMID: 34309771 DOI: 10.1007/s11120-021-00867-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/17/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis in cyanobacteria, green algae, and basal land plants is protected against excess reducing pressure on the photosynthetic chain by flavodiiron proteins (FLV) that dissipate photosynthetic electrons by reducing O2. In these organisms, the genes encoding FLV are always conserved in the form of a pair of two-type isozymes (FLVA and FLVB) that are believed to function in O2 photo-reduction as a heterodimer. While coral symbionts (dinoflagellates of the family Symbiodiniaceae) are the only algae to harbor FLV in photosynthetic red plastid lineage, only one gene is found in transcriptomes and its role and activity remain unknown. Here, we characterized the FLV genes in Symbiodiniaceae and found that its coding region is composed of tandemly repeated FLV sequences. By measuring the O2-dependent electron flow and P700 oxidation, we suggest that this atypical FLV is active in vivo. Based on the amino-acid sequence alignment and the phylogenetic analysis, we conclude that in coral symbionts, the gene pair for FLVA and FLVB have been fused to construct one coding region for a hybrid enzyme, which presumably occurred when or after both genes were inherited from basal green algae to the dinoflagellate. Immunodetection suggested the FLV polypeptide to be cleaved by a post-translational mechanism, adding it to the rare cases of polycistronic genes in eukaryotes. Our results demonstrate that FLV are active in coral symbionts with genomic arrangement that is unique to these species. The implication of these unique features on their symbiotic living environment is discussed.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Adrien Burlacot
- Aix Marseille University, CEA, CNRS, Institut de Biosciences Et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yufen Che
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Minoru Kumazawa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Kenya Tanaka
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8631, Japan
| |
Collapse
|
31
|
Wakao S, Niyogi KK. Chlamydomonas as a model for reactive oxygen species signaling and thiol redox regulation in the green lineage. PLANT PHYSIOLOGY 2021; 187:687-698. [PMID: 35237823 PMCID: PMC8491031 DOI: 10.1093/plphys/kiab355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 05/15/2023]
Abstract
One-sentence summary: Advances in proteomic and transcriptomic studies have made Chlamydomonas a powerful research model in redox and reactive oxygen species regulation with unique and overlapping mechanisms with plants.
Collapse
Affiliation(s)
- Setsuko Wakao
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Author for communication: Senior author
| | - Krishna K. Niyogi
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
32
|
Smythers AL, Iannetta AA, Hicks LM. Crosslinking mass spectrometry unveils novel interactions and structural distinctions in the model green alga Chlamydomonas reinhardtii. Mol Omics 2021; 17:917-928. [PMID: 34499065 DOI: 10.1039/d1mo00197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactomics is an emerging field that seeks to identify both transient and complex-bound protein interactions that are essential for metabolic functions. Crosslinking mass spectrometry (XL-MS) has enabled untargeted global analysis of these protein networks, permitting largescale simultaneous analysis of protein structure and interactions. Increased commercial availability of highly specific, cell permeable crosslinkers has propelled the study of these critical interactions forward, with the development of MS-cleavable crosslinkers further increasing confidence in identifications. Herein, the global interactome of the unicellular alga Chlamydomonas reinhardtii was analyzed via XL-MS by implementing the MS-cleavable disuccinimidyl sulfoxide (DSSO) crosslinker and enriching for crosslinks using strong cation exchange chromatography. Gentle lysis via repeated freeze-thaw cycles facilitated in vitro analysis of 157 protein-protein crosslinks (interlinks) and 612 peptides linked to peptides of the same protein (intralinks) at 1% FDR throughout the C. reinhardtii proteome. The interlinks confirmed known protein relationships across the cytosol and chloroplast, including coverage on 42% and 38% of the small and large ribosomal subunits, respectively. Of the 157 identified interlinks, 92% represent the first empirical evidence of interaction observed in C. reinhardtii. Several of these crosslinks point to novel associations between proteins, including the identification of a previously uncharacterized Mg-chelatase associated protein (Cre11.g477733.t1.2) bound to seven distinct lysines on Mg-chelatase (Cre06.g306300.t1.2). Additionally, the observed intralinks facilitated characterization of novel protein structures across the C. reinhardtii proteome. Together, these data establish a framework of protein-protein interactions that can be further explored to facilitate understanding of the dynamic protein landscape in C. reinhardtii.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, 125 South Road, CB#3290, Chapel Hill, NC 27599-3290, USA.
| | - Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, 125 South Road, CB#3290, Chapel Hill, NC 27599-3290, USA.
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan Laboratories, 125 South Road, CB#3290, Chapel Hill, NC 27599-3290, USA.
| |
Collapse
|
33
|
Le Moigne T, Gurrieri L, Crozet P, Marchand CH, Zaffagnini M, Sparla F, Lemaire SD, Henri J. Crystal structure of chloroplastic thioredoxin z defines a type-specific target recognition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:434-447. [PMID: 33930214 DOI: 10.1111/tpj.15300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous disulfide oxidoreductases structured according to a highly conserved fold. TRXs are involved in a myriad of different processes through a common chemical mechanism. Plant TRXs evolved into seven types with diverse subcellular localization and distinct protein target selectivity. Five TRX types coexist in the chloroplast, with yet scarcely described specificities. We solved the crystal structure of a chloroplastic z-type TRX, revealing a conserved TRX fold with an original electrostatic surface potential surrounding the redox site. This recognition surface is distinct from all other known TRX types from plant and non-plant sources and is exclusively conserved in plant z-type TRXs. We show that this electronegative surface endows thioredoxin z (TRXz) with a capacity to activate the photosynthetic Calvin-Benson cycle enzyme phosphoribulokinase. The distinct electronegative surface of TRXz thereby extends the repertoire of TRX-target recognitions.
Collapse
Affiliation(s)
- Théo Le Moigne
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Faculty of Sciences, Doctoral School of Plant Sciences, Université Paris-Saclay, Saint-Aubin, 91190, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
| | - Libero Gurrieri
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Pierre Crozet
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
- Sorbonne Université, Polytech Sorbonne, Paris, 75005, France
| | - Christophe H Marchand
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
- Plateforme de Protéomique, Institut de Biologie Physico-Chimique, FR 550, CNRS, 13 Rue Pierre et Marie Curie, Paris, 75005, France
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, Bologna, 40126, Italy
| | - Stéphane D Lemaire
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
| | - Julien Henri
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, Paris, 75005, France
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 13 Rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
34
|
Bleau JR, Spoel SH. Selective redox signaling shapes plant-pathogen interactions. PLANT PHYSIOLOGY 2021; 186:53-65. [PMID: 33793940 PMCID: PMC8154045 DOI: 10.1093/plphys/kiaa088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
A review of recent progress in understanding the mechanisms whereby plants utilize selective and reversible redox signaling to establish immunity.
Collapse
Affiliation(s)
- Jade R Bleau
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Author for communication:
| |
Collapse
|
35
|
Willems P, Van Breusegem F, Huang J. Contemporary proteomic strategies for cysteine redoxome profiling. PLANT PHYSIOLOGY 2021; 186:110-124. [PMID: 33793888 PMCID: PMC8154054 DOI: 10.1093/plphys/kiaa074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/24/2020] [Indexed: 05/08/2023]
Abstract
Protein cysteine residues are susceptible to oxidative modifications that can affect protein functions. Proteomic techniques that comprehensively profile the cysteine redoxome, the repertoire of oxidized cysteine residues, are pivotal towards a better understanding of the protein redox signaling. Recent technical advances in chemical tools and redox proteomic strategies have greatly improved selectivity, in vivo applicability, and quantification of the cysteine redoxome. Despite this substantial progress, still many challenges remain. Here, we provide an update on the recent advances in proteomic strategies for cysteine redoxome profiling, compare the advantages and disadvantages of current methods and discuss the outstanding challenges and future perspectives for plant redoxome research.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
36
|
Heme-binding protein CYB5D1 is a radial spoke component required for coordinated ciliary beating. Proc Natl Acad Sci U S A 2021; 118:2015689118. [PMID: 33875586 DOI: 10.1073/pnas.2015689118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordinated beating is crucial for the function of multiple cilia. However, the molecular mechanism is poorly understood. Here, we characterize a conserved ciliary protein CYB5D1 with a heme-binding domain and a cordon-bleu ubiquitin-like domain. Mutation or knockdown of Cyb5d1 in zebrafish impaired coordinated ciliary beating in the otic vesicle and olfactory epithelium. Similarly, the two flagella of an insertional mutant of the CYB5D1 ortholog in Chlamydomonas (Crcyb5d1) showed an uncoordinated pattern due to a defect in the cis-flagellum. Biochemical analyses revealed that CrCYB5D1 is a radial spoke stalk protein that binds heme only under oxidizing conditions. Lack of CrCYB5D1 resulted in a reductive shift in flagellar redox state and slowing down of the phototactic response. Treatment of Crcyb5d1 with oxidants restored coordinated flagellar beating. Taken together, these data suggest that CrCYB5D1 may integrate environmental and intraciliary signals and regulate the redox state of cilia, which is crucial for the coordinated beating of multiple cilia.
Collapse
|
37
|
Structural and functional insights into nitrosoglutathione reductase from Chlamydomonas reinhardtii. Redox Biol 2020; 38:101806. [PMID: 33316743 PMCID: PMC7744773 DOI: 10.1016/j.redox.2020.101806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Protein S-nitrosylation plays a fundamental role in cell signaling and nitrosoglutathione (GSNO) is considered as the main nitrosylating signaling molecule. Enzymatic systems controlling GSNO homeostasis are thus crucial to indirectly control the formation of protein S-nitrosothiols. GSNO reductase (GSNOR) is the key enzyme controlling GSNO levels by catalyzing its degradation in the presence of NADH. Here, we found that protein extracts from the microalga Chlamydomonas reinhardtii catabolize GSNO via two enzymatic systems having specific reliance on NADPH or NADH and different biochemical features. Scoring the Chlamydomonas genome for orthologs of known plant GSNORs, we found two genes encoding for putative and almost identical GSNOR isoenzymes. One of the two, here named CrGSNOR1, was heterologously expressed and purified. Its kinetic properties were determined and the three-dimensional structures of the apo-, NAD+- and NAD+/GSNO-forms were solved. These analyses revealed that CrGSNOR1 has a strict specificity towards GSNO and NADH, and a conserved folding with respect to other plant GSNORs. The catalytic zinc ion, however, showed an unexpected variability of the coordination environment. Furthermore, we evaluated the catalytic response of CrGSNOR1 to thermal denaturation, thiol-modifying agents and oxidative modifications as well as the reactivity and position of accessible cysteines. Despite being a cysteine-rich protein, CrGSNOR1 contains only two solvent-exposed/reactive cysteines. Oxidizing and nitrosylating treatments have null or limited effects on CrGSNOR1 activity and folding, highlighting a certain resistance of the algal enzyme to redox modifications. The molecular mechanisms and structural features underlying the response to thiol-based modifications are discussed. Chlamydomonas protein extracts catalyze NAD(P)H-dependent GSNO degradation. Chlamydomonas GSNOR1 is a zinc-containing protein strictly relying on GSNO and NADH. The 3D-structure of CrGSNOR1 revealed a conserved folding with other plant GSNORs. CrGSNOR1 contains only two solvent-exposed/reactive cysteines. Oxidizing and nitrosylating treatments have limited effects on CrGSNOR1 activity.
Collapse
|
38
|
Wittmann D, Sinha N, Grimm B. Thioredoxin-dependent control balances the metabolic activities of tetrapyrrole biosynthesis. Biol Chem 2020; 402:379-397. [PMID: 33068374 DOI: 10.1515/hsz-2020-0308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/13/2020] [Indexed: 11/15/2022]
Abstract
Plastids are specialized organelles found in plants, which are endowed with their own genomes, and differ in many respects from the intracellular compartments of organisms belonging to other kingdoms of life. They differentiate into diverse, plant organ-specific variants, and are perhaps the most versatile organelles known. Chloroplasts are the green plastids in the leaves and stems of plants, whose primary function is photosynthesis. In response to environmental changes, chloroplasts use several mechanisms to coordinate their photosynthetic activities with nuclear gene expression and other metabolic pathways. Here, we focus on a redox-based regulatory network composed of thioredoxins (TRX) and TRX-like proteins. Among multiple redox-controlled metabolic activities in chloroplasts, tetrapyrrole biosynthesis is particularly rich in TRX-dependent enzymes. This review summarizes the effects of plastid-localized reductants on several enzymes of this pathway, which have been shown to undergo dithiol-disulfide transitions. We describe the impact of TRX-dependent control on the activity, stability and interactions of these enzymes, and assess its contribution to the provision of adequate supplies of metabolic intermediates in the face of diurnal and more rapid and transient changes in light levels and other environmental factors.
Collapse
Affiliation(s)
- Daniel Wittmann
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| | - Neha Sinha
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| |
Collapse
|
39
|
High-Resolution Crystal Structure of Chloroplastic Ribose-5-Phosphate Isomerase from Chlamydomonas reinhardtii-An Enzyme Involved in the Photosynthetic Calvin-Benson Cycle. Int J Mol Sci 2020; 21:ijms21207787. [PMID: 33096784 PMCID: PMC7589169 DOI: 10.3390/ijms21207787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023] Open
Abstract
The Calvin–Benson cycle is the key metabolic pathway of photosynthesis responsible for carbon fixation and relies on eleven conserved enzymes. Ribose-5-phosphate isomerase (RPI) isomerizes ribose-5-phosphate into ribulose-5-phosphate and contributes to the regeneration of the Rubisco substrate. Plant RPI is the target of diverse post-translational modifications including phosphorylation and thiol-based modifications to presumably adjust its activity to the photosynthetic electron flow. Here, we describe the first experimental structure of a photosynthetic RPI at 1.4 Å resolution. Our structure confirms the composition of the catalytic pocket of the enzyme. We describe the homo-dimeric state of the protein that we observed in the crystal and in solution. We also map the positions of previously reported post-translational modifications and propose mechanisms by which they may impact the catalytic parameters. The structural data will inform the biochemical modeling of photosynthesis.
Collapse
|
40
|
Abstract
Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.
Collapse
|
41
|
Zechmann B. Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress. PLANTS 2020; 9:plants9091067. [PMID: 32825274 PMCID: PMC7569779 DOI: 10.3390/plants9091067] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Glutathione and reactive oxygen species (ROS) play important roles, within different cell compartments, in activating plant defense and the development of resistance. In mitochondria, the accumulation of ROS and the change of glutathione towards its oxidized state leads to mitochondrial dysfunction, activates cell death, and triggers resistance. The accumulation of glutathione in chloroplasts and peroxisomes at the early stages of plant pathogen interactions is related to increased tolerance and resistance. The collapse of the antioxidative system in these two cell compartments at the later stages leads to cell death through retrograde signaling. The cytosol can be considered to be the switchboard during biotic stress where glutathione is synthesized, equally distributed to, and collected from different cell compartments. Changes in the redox state of glutathione and the accumulation of ROS in the cytosol during biotic stress can initiate the activation of defense genes in nuclei through pathways that involve salicylic acid, jasmonic acid, auxins, and abscisic acid. This review dissects the roles of glutathione in individual organelles during compatible and incompatible bacterial, fungal, and viral diseases in plants and explores the subcelluar roles of ROS, glutathione, ascorbate, and related enzymes in the development of resistance.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| |
Collapse
|
42
|
Treves H, Siemiatkowska B, Luzarowska U, Murik O, Fernandez-Pozo N, Moraes TA, Erban A, Armbruster U, Brotman Y, Kopka J, Rensing SA, Szymanski J, Stitt M. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. NATURE PLANTS 2020; 6:1031-1043. [PMID: 32719473 DOI: 10.1038/s41477-020-0729-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/24/2020] [Indexed: 05/25/2023]
Abstract
The unparalleled performance of Chlorella ohadii under irradiances of twice full sunlight underlines the gaps in our understanding of how the photosynthetic machinery operates, and what sets its upper functional limit. Rather than succumbing to photodamage under extreme irradiance, unique features of photosystem II function allow C. ohadii to maintain high rates of photosynthesis and growth, accompanied by major changes in composition and cellular structure. This remarkable resilience allowed us to investigate the systems response of photosynthesis and growth to extreme illumination in a metabolically active cell. Using redox proteomics, transcriptomics, metabolomics and lipidomics, we explored the cellular mechanisms that promote dissipation of excess redox energy, protein S-glutathionylation, inorganic carbon concentration, lipid and starch accumulation, and thylakoid stacking. C. ohadii possesses a readily available capacity to utilize a sudden excess of reducing power and carbon for growth and reserve formation, and post-translational redox regulation plays a pivotal role in this rapid response. Frequently the response in C. ohadii deviated from that of model species, reflecting its life history in desert sand crusts. Comparative global and case-specific analyses provided insights into the potential evolutionary role of effective reductant utilization in this extreme resistance of C. ohadii to extreme irradiation.
Collapse
Affiliation(s)
- Haim Treves
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany.
| | | | | | - Omer Murik
- Department of Plant & Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | | | - Alexander Erban
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Stefan Andreas Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jedrzej Szymanski
- Department of Network Analysis and Modelling, IPK, Gatersleben, Germany
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
43
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
44
|
Smythers AL, McConnell EW, Lewis HC, Mubarek SN, Hicks LM. Photosynthetic Metabolism and Nitrogen Reshuffling Are Regulated by Reversible Cysteine Thiol Oxidation Following Nitrogen Deprivation in Chlamydomonas. PLANTS 2020; 9:plants9060784. [PMID: 32585825 PMCID: PMC7355495 DOI: 10.3390/plants9060784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
As global temperatures climb to historic highs, the far-reaching effects of climate change have impacted agricultural nutrient availability. This has extended to low latitude oceans, where a deficit in both nitrogen and phosphorus stores has led to dramatic decreases in carbon sequestration in oceanic phytoplankton. Although Chlamydomonas reinhardtii, a freshwater model green alga, has shown drastic systems-level alterations following nitrogen deprivation, the mechanisms through which these alterations are triggered and regulated are not fully understood. This study examined the role of reversible oxidative signaling in the nitrogen stress response of C. reinhardtii. Using oxidized cysteine resin-assisted capture enrichment coupled with label-free quantitative proteomics, 7889 unique oxidized cysteine thiol identifiers were quantified, with 231 significantly changing peptides from 184 proteins following 2 h of nitrogen deprivation. These results demonstrate that the cellular response to nitrogen assimilation, photosynthesis, pigment biosynthesis, and lipid metabolism are regulated by reversible oxidation. An enhanced role of non-damaging oxidative pathways is observed throughout the photosynthetic apparatus that provides a framework for further analysis in phototrophs.
Collapse
|
45
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
46
|
Ford MM, Smythers AL, McConnell EW, Lowery SC, Kolling DRJ, Hicks LM. Inhibition of TOR in Chlamydomonas reinhardtii Leads to Rapid Cysteine Oxidation Reflecting Sustained Physiological Changes. Cells 2019; 8:cells8101171. [PMID: 31569396 PMCID: PMC6829209 DOI: 10.3390/cells8101171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The target of rapamycin (TOR) kinase is a master metabolic regulator with roles in nutritional sensing, protein translation, and autophagy. In Chlamydomonas reinhardtii, a unicellular green alga, TOR has been linked to the regulation of increased triacylglycerol (TAG) accumulation, suggesting that TOR or a downstream target(s) is responsible for the elusive “lipid switch” in control of increasing TAG accumulation under nutrient limitation. However, while TOR has been well characterized in mammalian systems, it is still poorly understood in photosynthetic systems, and little work has been done to show the role of oxidative signaling in TOR regulation. In this study, the TOR inhibitor AZD8055 was used to relate reversible thiol oxidation to the physiological changes seen under TOR inhibition, including increased TAG content. Using oxidized cysteine resin-assisted capture enrichment coupled with label-free quantitative proteomics, 401 proteins were determined to have significant changes in oxidation following TOR inhibition. These oxidative changes mirrored characterized physiological modifications, supporting the role of reversible thiol oxidation in TOR regulation of TAG production, protein translation, carbohydrate catabolism, and photosynthesis through the use of reversible thiol oxidation. The delineation of redox-controlled proteins under TOR inhibition provides a framework for further characterization of the TOR pathway in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Megan M Ford
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Amanda L Smythers
- Department of Chemistry, Marshall University, Huntington, WV 25755, USA.
| | - Evan W McConnell
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sarah C Lowery
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
47
|
Burlacot A, Peltier G, Li-Beisson Y. Subcellular Energetics and Carbon Storage in Chlamydomonas. Cells 2019; 8:E1154. [PMID: 31561610 PMCID: PMC6830334 DOI: 10.3390/cells8101154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023] Open
Abstract
Microalgae have emerged as a promising platform for production of carbon- and energy- rich molecules, notably starch and oil. Establishing an economically viable algal biotechnology sector requires a holistic understanding of algal photosynthesis, physiology, cell cycle and metabolism. Starch/oil productivity is a combined effect of their cellular content and cell division activities. Cell growth, starch and fatty acid synthesis all require carbon building blocks and a source of energy in the form of ATP and NADPH, but with a different requirement in ATP/NADPH ratio. Thus, several cellular mechanisms have been developed by microalgae to balance ATP and NADPH supply which are essentially produced by photosynthesis. Major energy management mechanisms include ATP production by the chloroplast-based cyclic electron flow and NADPH removal by water-water cycles. Furthermore, energetic coupling between chloroplast and other cellular compartments, mitochondria and peroxisome, is increasingly recognized as an important process involved in the chloroplast redox poise. Emerging literature suggests that alterations of energy management pathways affect not only cell fitness and survival, but also influence biomass content and composition. These emerging discoveries are important steps towards diverting algal photosynthetic energy to useful products for biotechnological applications.
Collapse
Affiliation(s)
- Adrien Burlacot
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache CEDEX, 13108 Saint Paul-Lez-Durance, France.
| | - Gilles Peltier
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache CEDEX, 13108 Saint Paul-Lez-Durance, France.
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache CEDEX, 13108 Saint Paul-Lez-Durance, France.
| |
Collapse
|
48
|
Selles B, Moseler A, Rouhier N, Couturier J. Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4139-4154. [PMID: 31055601 DOI: 10.1093/jxb/erz213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 05/25/2023]
Abstract
Sulfur is an essential element for the growth and development of plants, which synthesize cysteine and methionine from the reductive assimilation of sulfate. Besides its incorporation into proteins, cysteine is the building block for the biosynthesis of numerous sulfur-containing molecules and cofactors. The required sulfur atoms are extracted either directly from cysteine by cysteine desulfurases or indirectly after its catabolic transformation to 3-mercaptopyruvate, a substrate for sulfurtransferases (STRs). Both enzymes are transiently persulfidated in their reaction cycle, i.e. the abstracted sulfur atom is bound to a reactive cysteine residue in the form of a persulfide group. Trans-persulfidation reactions occur when sulfur atoms are transferred to nucleophilic acceptors such as glutathione, proteins, or small metabolites. STRs form a ubiquitous, multigenic protein family. They are characterized by the presence of at least one rhodanese homology domain (Rhd), which usually contains the catalytic, persulfidated cysteine. In this review, we focus on Arabidopsis STRs, presenting the sequence characteristics of all family members as well as their biochemical and structural features. The physiological functions of particular STRs in the biosynthesis of molybdenum cofactor, thio-modification of cytosolic tRNAs, arsenate tolerance, cysteine catabolism, and hydrogen sulfide formation are also discussed.
Collapse
Affiliation(s)
| | - Anna Moseler
- Université de Lorraine, Inra, IAM, Nancy, France
| | | | | |
Collapse
|
49
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
50
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|