1
|
Xu Z, Zhang L, Kong K, Kong J, Ji R, Liu Y, Liu J, Li H, Ren Y, Zhou W, Zhao T, Zhao T, Liu B. Creeping Stem 1 regulates directional auxin transport for lodging resistance in soybean. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39535932 DOI: 10.1111/pbi.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Soybean, a staple crop on a global scale, frequently encounters challenges due to lodging under high planting densities, which results in significant yield losses. Despite extensive research, the fundamental genetic mechanisms governing lodging resistance in soybeans remain elusive. In this study, we identify and characterize the Creeping Stem 1 (CS1) gene, which plays a crucial role in conferring lodging resistance in soybeans. The CS1 gene encodes a HEAT-repeat protein that modulates hypocotyl gravitropism by regulating amyloplast sedimentation. Functional analysis reveals that the loss of CS1 activity disrupts polar auxin transport, vascular bundle development and the biosynthesis of cellulose and lignin, ultimately leading to premature lodging and aberrant root development. Conversely, increasing CS1 expression significantly enhances lodging resistance and improves yield under conditions of high planting density. Our findings shed light on the genetic mechanisms that underlie lodging resistance in soybeans and highlight the potential of CS1 as a valuable target for genetic engineering to improve crop lodging resistance and yield.
Collapse
Affiliation(s)
- Zhiyong Xu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Dabeinong Technology Group Co., Ltd, China
| | - Liya Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Keke Kong
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiejie Kong
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ronghuan Ji
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Liu
- Beijing Dabeinong Technology Group Co., Ltd, China
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenbin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Li W, Wang L, Xue H, Zhang M, Song H, Qin M, Dong Q. Molecular and genetic basis of plant architecture in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1477616. [PMID: 39435023 PMCID: PMC11491365 DOI: 10.3389/fpls.2024.1477616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Plant architecture determines canopy coverage, photosynthetic efficiency, and ultimately productivity in soybean (Glycine max). Optimizing plant architecture is a major goal of breeders to develop high yield soybean varieties. Over the past few decades, the yield per unit area of soybean has not changed significantly; however, rice and wheat breeders have succeeded in achieving high yields by generating semi-dwarf varieties. Semi-dwarf crops have the potential to ensure yield stability in high-density planting environments because they can significantly improve responses to fertilizer input, lodging resistance, and enhance resistance to various abiotic and biotic stresses. Soybean has a unique plant architecture, with leaves, inflorescences, and pods growing at each node; internode number greatly affects the final yield. Therefore, producing high-yielding soybean plants with an ideal architecture requires the coordination of effective node formation, effective internode formation, and branching. Dozens of quantitative trait loci (QTLs) controlling plant architecture have been identified in soybean, but only a few genes that control this trait have been cloned and characterized. Here, we review recent progress in understanding the genetic basis of soybean plant architecture. We provide our views and perspectives on how to breed new high-yielding soybean varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Quanzhong Dong
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| |
Collapse
|
3
|
Hou Z, Huang H, Wang Y, Chen L, Yue L, Liu B, Kong F, Yang H. Molecular Regulation of Shoot Architecture in Soybean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39254042 DOI: 10.1111/pce.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Soybean (Glycine max [L.] Merr.) serves as a major source of protein and oil for humans and animals. Shoot architecture, the spatial arrangement of a plant's above-ground organs, strongly affects crop yield and is therefore a critical agronomic trait. Unlike wheat and rice crops that have greatly benefitted from the Green Revolution, soybean yield has not changed significantly in the past six decades owing to its unique shoot architecture. Soybean is a pod-bearing crop with pods adhered to the nodes, and variation in shoot architecture traits, such as plant height, node number, branch number and number of seeds per pod, directly affects the number of pods and seeds per plant, thereby determining yield. In this review, we summarize the relationship between soybean yield and these major components of shoot architecture. We also describe the latest advances in identifying the genes and molecular mechanisms underlying soybean shoot architecture and discuss possible directions and approaches for breeding new soybean varieties with ideal shoot architecture and improved yield.
Collapse
Affiliation(s)
- Zhihong Hou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Huan Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanan Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Yue
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
4
|
Freitas-Alves NS, Moreira-Pinto CE, Távora FTPK, Paes-de-Melo B, Arraes FBM, Lourenço-Tessutti IT, Moura SM, Oliveira AC, Morgante CV, Qi Y, Fatima Grossi-de-Sa M. CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks. J Adv Res 2024:S2090-1232(24)00367-9. [PMID: 39163906 DOI: 10.1016/j.jare.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Soybean is a worldwide-cultivated crop due to its applications in the food, feed, and biodiesel industries. Genome editing in soybean began with ZFN and TALEN technologies; however, CRISPR/Cas has emerged and shortly became the preferable approach for soybean genome manipulation since it is more precise, easy to handle, and cost-effective. Recent reports have focused on the conventional Cas9 nuclease, Cas9 nickase (nCas9) derived base editors, and Cas12a (formally Cpf1) as the most commonly used genome editors in soybean. Nonetheless, several challenges in the complex plant genetic engineering pipeline need to be overcome to effectively edit the genome of an elite soybean cultivar. These challenges include (1) optimizing CRISPR cassette design (i.e., gRNA and Cas promoters, gRNA design and testing, number of gRNAs, and binary vector), (2) improving transformation frequency, (3) increasing the editing efficiency ratio of targeted plant cells, and (4) improving soybean crop production. AIM OF REVIEW This review provides an overview of soybean genome editing using CRISPR/Cas technology, discusses current challenges, and highlights theoretical (insights) and practical suggestions to overcome the existing bottlenecks. KEY SCIENTIFIC CONCEPTS OF REVIEW The CRISPR/Cas system was discovered as part of the bacterial innate immune system. It has been used as a biotechnological tool for genome editing and efficiently applied in soybean to unveil gene function, improve agronomic traits such as yield and nutritional grain quality, and enhance biotic and abiotic stress tolerance. To date, the efficiency of gRNAs has been validated using protoplasts and hairy root assays, while stable plant transformation relies on Agrobacterium-mediated and particle bombardment methods. Nevertheless, most steps of the CRISPR/Cas workflow require optimizations to achieve a more effective genome editing in soybean plants.
Collapse
Affiliation(s)
- Nayara Sabrina Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Clidia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabiano T P K Távora
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Stéfanie M Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Embrapa Semi-Arid, Petrolina, PE, Brazil
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil; Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande, MS, Brazil.
| |
Collapse
|
5
|
Luo K, Yuan X, Zuo J, Xue Y, Zhang K, Chen P, Li Y, Lin P, Wang X, Yang W, Flexas J, Yong T. Light recovery after maize harvesting promotes soybean flowering in a maize-soybean relay strip intercropping system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2188-2201. [PMID: 38581688 DOI: 10.1111/tpj.16738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Moving from sole cropping to intercropping is a transformative change in agriculture, contributing to yield. Soybeans adapt to light conditions in intercropping by adjusting the onset of reproduction and the inflorescence architecture to optimize reproductive success. Maize-soybean strip intercropping (MS), maize-soybean relay strip intercropping (IS), and sole soybean (SS) systems are typical soybean planting systems with significant differences in light environments during growth periods. To elucidate the effect of changes in the light environment on soybean flowering processes and provide a theoretical basis for selecting suitable varieties in various planting systems to improve yields, field experiments combining planting systems (IS, MS, and SS) and soybean varieties (GQ8, GX7, ND25, and NN996) were conducted in 2021 and 2022. Results showed that growth recovery in the IS resulted in a balance in the expression of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) in the meristematic tissues of soybeans, which promoted the formation of new branches or flowers. IS prolonged the flowering time (2-7 days) and increased the number of forming flowers compared with SS (93.0 and 169%) and MS (67.3 and 103.3%) at the later soybean flowering stage. The higher carbon and nitrogen content in the middle and bottom canopies of soybean contributed to decreased flower abscission by 26.7 and 30.2%, respectively, compared with SS. Canopy light environment recovery promoted branch and flower formation and transformation of flowers into pods with lower flower-pod abscission, which contributed to elevating soybean yields in late-maturing and multibranching varieties (ND25) in IS.
Collapse
Affiliation(s)
- Kai Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Xiaoting Yuan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Jia Zuo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Yuanyuan Xue
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Kejing Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Ping Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Yiling Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Ping Lin
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears/Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Eco- Physiology and Farming System in Southwest of China, Chengdu, China
| |
Collapse
|
6
|
Li Y, Guo Y, Cao Y, Xia P, Xu D, Sun N, Jiang L, Dong J. Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:928-942. [PMID: 37929685 DOI: 10.1111/jipb.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/04/2023] [Indexed: 11/07/2023]
Abstract
Precise responses to changes in light quality are crucial for plant growth and development. For example, hypocotyls of shade-avoiding plants typically elongate under shade conditions. Although this typical shade-avoidance response (TSR) has been studied in Arabidopsis (Arabidopsis thaliana), the molecular mechanisms underlying shade tolerance are poorly understood. Here we report that B. napus (Brassica napus) seedlings exhibit dual shade responses. In addition to the TSR, B. napus seedlings also display an atypical shade response (ASR), with shorter hypocotyls upon perception of early-shade cues. Genome-wide selective sweep analysis indicated that ASR is associated with light and auxin signaling. Moreover, genetic studies demonstrated that phytochrome A (BnphyA) promotes ASR, whereas BnphyB inhibits it. During ASR, YUCCA8 expression is activated by early-shade cues, leading to increased auxin biosynthesis. This inhibits hypocotyl elongation, as young B. napus seedlings are highly sensitive to auxin. Notably, two non-canonical AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor genes, BnIAA32 and BnIAA34, are expressed during this early stage. BnIAA32 and BnIAA34 inhibit hypocotyl elongation under shade conditions, and mutations in BnIAA32 and BnIAA34 suppress ASR. Collectively, our study demonstrates that the temporal expression of BnIAA32 and BnIAA34 determines the behavior of B. napus seedlings following shade-induced auxin biosynthesis.
Collapse
Affiliation(s)
- Yafei Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yiyi Guo
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yue Cao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Cao H, Wang R, Zhao J, Shi L, Huang Y, Wu T, Zhang C. Genome-wide identification and expression analysis of the cryptochromes reveal the CsCRY1 role under low-light-stress in cucumber. FRONTIERS IN PLANT SCIENCE 2024; 15:1371435. [PMID: 38660445 PMCID: PMC11040678 DOI: 10.3389/fpls.2024.1371435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Introduction Low-light-stress is a common meteorological disaster that can result in slender seedlings. The photoreceptors play a crucial role in perceiving and regulating plants' tolerance to low-light-stress. However, the low-light-stress tolerance of cucumber has not been effectively evaluated, and the functions of these photoreceptor genes in cucumber, particularly under low-light-stress conditions, are not clear. Methods Herein, we evaluated the growth characteristics of cucumber seedlings under various LED light treatment. The low-light-stress tolerant cucumber CR and intolerant cucumber CR were used as plant materials for gene expression analysis, and then the function of CsCRY1 was analyzed. Results The results revealed that light treatment below 40 μmol m-2 s-1 can quickly and effectively induce low-light-stress response. Then, cucumber CR exhibited remarkable tolerance to low-light-stress was screened. Moreover, a total of 11 photoreceptor genes were identified and evaluated. Among them, the cryptochrome 1 (CRY1) had the highest expression level and was only induced in the low-light sensitive cucumber CS. The transcript CsaV3_3G047490.1 is predicted to encode a previously unknown CsCRY1 protein, which lacks 70 amino acids at its C-terminus due to alternative 5' splice sites within the final intron of the CsCRY1 gene. Discussion CRY1 is a crucial photoreceptor that plays pivotal roles in regulating plants' tolerance to low-light stress. In this study, we discovered that alternative splicing of CsCRY1 generates multiple transcripts encoding distinct CsCRY1 protein variants, providing valuable insights for future exploration and utilization of CsCRY1 in cucumber.
Collapse
Affiliation(s)
- Haishun Cao
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rui Wang
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junhong Zhao
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Liangliang Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tingquan Wu
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Changyuan Zhang
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
8
|
He W, Chai Q, Zhao C, Yu A, Fan Z, Yin W, Hu F, Fan H, Sun Y, Wang F. Blue light regulated lignin and cellulose content of soybean petioles and stems under low light intensity. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23091. [PMID: 38669458 DOI: 10.1071/fp23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/10/2024] [Indexed: 04/28/2024]
Abstract
To improve light harvest and plant structural support under low light intensity, it is useful to investigate the effects of different ratios of blue light on petiole and stem growth. Two true leaves of soybean seedlings were exposed to a total light intensity of 200μmolm-2 s-1 , presented as either white light or three levels of blue light (40μmolm-2 s-1 , 67μmolm-2 s-1 and 100μmolm-2 s-1 ) for 15days. Soybean petioles under the low blue light treatment upregulated expression of genes relating to lignin metabolism, enhancing lignin content compared with the white light treatment. The low blue light treatment had high petiole length, increased plant height and improved petiole strength arising from high lignin content, thus significantly increasing leaf dry weight relative to the white light treatment. Compared with white light, the treatment with the highest blue light ratio reduced plant height and enhanced plant support through increased cellulose and hemicellulose content in the stem. Under low light intensity, 20% blue light enhanced petiole length and strength to improve photosynthate biomass; whereas 50% blue light lowered plants' centre of gravity, preventing lodging and conserving carbohydrate allocation.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Qiang Chai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Cai Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Aizhong Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Zhilong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Wen Yin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Falong Hu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Hong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yali Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
9
|
Antwi-Boasiako A, Jia S, Liu J, Guo N, Chen C, Karikari B, Feng J, Zhao T. Identification and Genetic Dissection of Resistance to Red Crown Rot Disease in a Diverse Soybean Germplasm Population. PLANTS (BASEL, SWITZERLAND) 2024; 13:940. [PMID: 38611470 PMCID: PMC11013609 DOI: 10.3390/plants13070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Red crown rot (RCR) disease caused by Calonectria ilicicola negatively impacts soybean yield and quality. Unfortunately, the knowledge of the genetic architecture of RCR resistance in soybeans is limited. In this study, 299 diverse soybean accessions were used to explore their genetic diversity and resistance to RCR, and to mine for candidate genes via emergence rate (ER), survival rate (SR), and disease severity (DS) by a multi-locus random-SNP-effect mixed linear model of GWAS. All accessions had brown necrotic lesions on the primary root, with five genotypes identified as resistant. Nine single-nucleotide polymorphism (SNP) markers were detected to underlie RCR response (ER, SR, and DS). Two SNPs colocalized with at least two traits to form a haplotype block which possessed nine genes. Based on their annotation and the qRT-PCR, three genes, namely Glyma.08G074600, Glyma.08G074700, and Glyma.12G043600, are suggested to modulate soybean resistance to RCR. The findings from this study could serve as the foundation for breeding RCR-tolerant soybean varieties, and the candidate genes could be validated to deepen our understanding of soybean response to RCR.
Collapse
Affiliation(s)
- Augustine Antwi-Boasiako
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.A.-B.); (S.J.); (J.L.); (N.G.)
- Council for Scientific and Industrial Research-Crops Research Institute (CSIR-CRI), Fumesua, Kumasi P.O. Box 3785, Ghana
| | - Shihao Jia
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.A.-B.); (S.J.); (J.L.); (N.G.)
| | - Jiale Liu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.A.-B.); (S.J.); (J.L.); (N.G.)
| | - Na Guo
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.A.-B.); (S.J.); (J.L.); (N.G.)
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale P.O. Box TL 1882, Ghana;
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jianying Feng
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.A.-B.); (S.J.); (J.L.); (N.G.)
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (A.A.-B.); (S.J.); (J.L.); (N.G.)
| |
Collapse
|
10
|
Tekle MG, Alemayehu G, Bitew Y. Yield, lodging, and water use efficiency of Tef [Eragrostis tef (zucc) Trotter] in response to carbonized rice husk application under variable moisture condition. PLoS One 2024; 19:e0298416. [PMID: 38452036 PMCID: PMC10919715 DOI: 10.1371/journal.pone.0298416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Terminal drought and lodging are among the major yield-limiting factors for tef cultivation in the highly weathered soils of the Ethiopian highlands. Therefore, a study was conducted to assess the yield and lodging responses of tef to varying moisture depletion levels (MDL) and the application of carbonized rice husk (CRH). A two-year 4×4 factorial experiment with 20, 35, 55, and 75% MDL and 0, 291, 582, and 873 kg ha-1 of CRH was laid out in a split-plot design, with each treatment replicated four times. The pooled mean ANOVA showed leaf area index (LAI) and lodging index (LI) were not significantly influenced by the main and interaction effects of MDL and CRH (p > 0.05); however, individual year ANOVA showed that both LI and LAI were influenced by the interaction of MDL and CRH (p<0.05) in 2021 and 2022, respectively. The lowest LI (19.7%) was obtained from the application of 873 kg CRH ha-1, followed by 20.6% from 582 kg CRH ha-1 in 2022. A 20.7% LI reduction was recorded in 2022 compared to 2021. Tef plant height and number of tillers per plant were significantly affected by MDL at p<0.05 and p<0.01, respectively, but not by CRH and its interaction with MDL. The effect of MDL was significant on tef HI (p<0.01) but not on traits including grain yield, straw yield, and water use efficiency. In conclusion, the pooled mean analysis result showed that, though there was no significant difference in yield, tef irrigated at 55% MDL provided a maximum HI of 33.8%, which was 6.21% more than the control, and increased the level of lodging resistance with a LI of 31.9%, which was next to 75% MDL with 582 kg ha-1 CRH. The authors suggested that the research should further be verified across locations for wide application.
Collapse
Affiliation(s)
- Mekonnen Gebru Tekle
- College of Agriculture and Natural Resource Management, Wolkite University, Horticulture, Wolkite, Gurage, Ethiopia
- Department of Plant Sciences, College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Getachew Alemayehu
- Department of Plant Sciences, College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Yayeh Bitew
- Department of Plant Sciences, College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
11
|
Song Z, Zhao F, Chu L, Lin H, Xiao Y, Fang Z, Wang X, Dong J, Lyu X, Yu D, Liu B, Gai J, Xu D. The GmSTF1/2-GmBBX4 negative feedback loop acts downstream of blue-light photoreceptors to regulate isoflavonoid biosynthesis in soybean. PLANT COMMUNICATIONS 2024; 5:100730. [PMID: 37817409 PMCID: PMC10873893 DOI: 10.1016/j.xplc.2023.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
Isoflavonoids, secondary metabolites derived from the phenylalanine pathway, are predominantly biosynthesized in legumes, especially soybean (Glycine max). They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health. In this study, we report that light signaling controls isoflavonoid biosynthesis in soybean. Blue-light photoreceptors (GmCRY1s, GmCRY2s, GmPHOT1s, and GmPHOT2s) and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation, whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis. GmPHOT1s and GmPHOT2s stabilize GmSTF1/2, whereas GmCOP1b promotes the degradation of these two proteins in soybean. GmSTF1/2 regulate the expression of approximately 27.9% of the genes involved in soybean isoflavonoid biosynthesis, including GmPAL2.1, GmPAL2.3, and GmUGT2. They also repress the expression of GmBBX4, a negative regulator of isoflavonoid biosynthesis in soybean. In addition, GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis. Thus, GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis. Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.
Collapse
Affiliation(s)
- Zhaoqing Song
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengyue Zhao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Chu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Lin
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuntao Xiao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Fang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environmentally Friendly Management of Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Junyi Gai
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dongqing Xu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Liu X, Huang K, Chu C. reduced internode 1 shortens internode length while increasing soybean yield. PLANT COMMUNICATIONS 2024; 5:100781. [PMID: 38140728 PMCID: PMC10873910 DOI: 10.1016/j.xplc.2023.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Xiujie Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Kai Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Chen S, Fan X, Song M, Yao S, Liu T, Ding W, Liu L, Zhang M, Zhan W, Yan L, Sun G, Li H, Wang L, Zhang K, Jia X, Yang Q, Yang J. Cryptochrome 1b represses gibberellin signaling to enhance lodging resistance in maize. PLANT PHYSIOLOGY 2024; 194:902-917. [PMID: 37934825 DOI: 10.1093/plphys/kiad546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/16/2023] [Indexed: 11/09/2023]
Abstract
Maize (Zea mays L.) is one of the most important crops worldwide. Photoperiod, light quality, and light intensity in the environment can affect the growth, development, yield, and quality of maize. In Arabidopsis (Arabidopsis thaliana), cryptochromes are blue-light receptors that mediate the photocontrol of stem elongation, leaf expansion, shade tolerance, and photoperiodic flowering. However, the function of maize cryptochrome ZmCRY in maize architecture and photomorphogenic development remains largely elusive. The ZmCRY1b transgene product can activate the light signaling pathway in Arabidopsis and complement the etiolation phenotype of the cry1-304 mutant. Our findings show that the loss-of-function mutant of ZmCRY1b in maize exhibits more etiolation phenotypes under low blue light and appears slender in the field compared with wild-type plants. Under blue and white light, overexpression of ZmCRY1b in maize substantially inhibits seedling etiolation and shade response by enhancing protein accumulation of the bZIP transcription factors ELONGATED HYPOCOTYL 5 (ZmHY5) and ELONGATED HYPOCOTYL 5-LIKE (ZmHY5L), which directly upregulate the expression of genes encoding gibberellin (GA) 2-oxidase to deactivate GA and repress plant height. More interestingly, ZmCRY1b enhances lodging resistance by reducing plant and ear heights and promoting root growth in both inbred lines and hybrids. In conclusion, ZmCRY1b contributes blue-light signaling upon seedling de-etiolation and integrates light signals with the GA metabolic pathway in maize, resulting in lodging resistance and providing information for improving maize varieties.
Collapse
Affiliation(s)
- Shizhan Chen
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaocong Fan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaitao Yao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Tong Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Wusi Ding
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Liu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Menglan Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Weimin Zhan
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Yan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghua Sun
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongdan Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijian Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Kang Zhang
- Department of Precision Plant Gene Delivery, Genovo Biotechnology Co. Ltd, Tianjin 301700, China
| | - Xiaolin Jia
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinghua Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
14
|
Li Z, Lyu X, Li H, Tu Q, Zhao T, Liu J, Liu B. The mechanism of low blue light-induced leaf senescence mediated by GmCRY1s in soybean. Nat Commun 2024; 15:798. [PMID: 38280892 PMCID: PMC10821915 DOI: 10.1038/s41467-024-45086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
Leaf senescence is a crucial trait that has a significant impact on crop quality and yield. Previous studies have demonstrated that light is a key factor in modulating the senescence process. However, the precise mechanism by which plants sense light and control senescence remains largely unknown, particularly in crop species. In this study, we reveal that the reduction in blue light under shading conditions can efficiently induce leaf senescence in soybean. The blue light receptors GmCRY1s rather than GmCRY2s, primarily regulate leaf senescence in response to blue light signals. Our results show that GmCRY1s interact with DELLA proteins under light-activated conditions, stabilizing them and consequently suppressing the transcription of GmWRKY100 to delay senescence. Conversely, LBL reduces the interaction between GmCRY1s and the DELLA proteins, leading to their degradation and premature senescence of leaves. Our findings suggest a GmCRY1s-GmDELLAs-GmWRKY100 regulatory cascade that is involved in mediating LBL-induced leaf senescence in soybean, providing insight into the mechanism of how light signals regulate leaf senescence. Additionally, we generate GmWRKY100 knockout soybeans that show delayed leaf senescence and improved yield under natural field conditions, indicating potential applications in enhancing soybean production by manipulating the leaf senescence trait.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qichao Tu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
15
|
Jia Q, Yin Y, Gai S, Tian L, Zhu Z, Qin L, Wang Y. Onion cryptochrome 1 (AcCRY1) regulates photomorphogenesis and photoperiod flowering in Arabidopsis and exploration of its functional mechanisms under blue light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108300. [PMID: 38157835 DOI: 10.1016/j.plaphy.2023.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Cryptochromes (CRYs), as blue-light photoreceptors, play a crucial role in regulating flowering time and hypocotyl and cotyledon development. Their physiological functions have been extensively studied in various plant species. However, research on onions remains limited. In this study, we identified AcCRY1 and conducted preliminary investigations into its function. Our results demonstrate that AcCRY1 possesses a conserved domain typical of cryptochromes with high homology to those found in monocots. Furthermore, we examined the expression level of AcCRY1 in onion. The green tissues is significantly higher compared to non-green tissues, and it exhibits a significant response to blue-light induction. AcCRY1 demonstrates cytoplasmic localization under blue-light conditions, while it localizes in the nucleus during darkness, indicating a strong dependence on blue-light for its subcellular distribution. In comparison to cry1, overexpression of AcCRY1 leads to a significant shorten in seedling hypocotyl length, notable expansion of cotyledons, and acceleration of flowering time. The yeast two-hybrid experiment demonstrated the in vitro interaction between AcCRY1, AcCOP1, and AcSPA1. Additionally, BIFC analysis confirmed their interaction in Onion epidermis. Notably, under blue-light conditions, a significantly enhanced binding activity was observed compared to dark conditions. These findings establish a functional foundation for the regulatory role of AcCRY1 in important physiological processes of onion and provide initial insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Qingwei Jia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuqing Yin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuting Gai
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lu Tian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhihao Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, PR China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
16
|
Li S, Sun Z, Sang Q, Qin C, Kong L, Huang X, Liu H, Su T, Li H, He M, Fang C, Wang L, Liu S, Liu B, Liu B, Fu X, Kong F, Lu S. Soybean reduced internode 1 determines internode length and improves grain yield at dense planting. Nat Commun 2023; 14:7939. [PMID: 38040709 PMCID: PMC10692089 DOI: 10.1038/s41467-023-42991-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/26/2023] [Indexed: 12/03/2023] Open
Abstract
Major cereal crops have benefitted from Green Revolution traits such as shorter and more compact plants that permit high-density planting, but soybean has remained relatively overlooked. To balance ideal soybean yield with plant height under dense planting, shortening of internodes without reducing the number of nodes and pods is desired. Here, we characterized a short-internode soybean mutant, reduced internode 1 (rin1). Partial loss of SUPPRESSOR OF PHYA 105 3a (SPA3a) underlies rin1. RIN1 physically interacts with two homologs of ELONGATED HYPOCOTYL 5 (HY5), STF1 and STF2, to promote their degradation. RIN1 regulates gibberellin metabolism to control internode development through a STF1/STF2-GA2ox7 regulatory module. In field trials, rin1 significantly enhances grain yield under high-density planting conditions comparing to its wild type of elite cultivar. rin1 mutants therefore could serve as valuable resources for improving grain yield under high-density cultivation and in soybean-maize intercropping systems.
Collapse
Affiliation(s)
- Shichen Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhihui Sun
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Qing Sang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Qin
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lingping Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xin Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Tong Su
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Milan He
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lingshuang Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Shuangrong Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Sijia Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Tayade R, Imran M, Ghimire A, Khan W, Nabi RBS, Kim Y. Molecular, genetic, and genomic basis of seed size and yield characteristics in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1195210. [PMID: 38034572 PMCID: PMC10684784 DOI: 10.3389/fpls.2023.1195210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Soybean (Glycine max L. Merr.) is a crucial oilseed cash crop grown worldwide and consumed as oil, protein, and food by humans and feed by animals. Comparatively, soybean seed yield is lower than cereal crops, such as maize, rice, and wheat, and the demand for soybean production does not keep up with the increasing consumption level. Therefore, increasing soybean yield per unit area is the most crucial breeding objective and is challenging for the scientific community. Moreover, yield and associated traits are extensively researched in cereal crops, but little is known about soybeans' genetics, genomics, and molecular regulation of yield traits. Soybean seed yield is a complex quantitative trait governed by multiple genes. Understanding the genetic and molecular processes governing closely related attributes to seed yield is crucial to increasing soybean yield. Advances in sequencing technologies have made it possible to conduct functional genomic research to understand yield traits' genetic and molecular underpinnings. Here, we provide an overview of recent progress in the genetic regulation of seed size in soybean, molecular, genetics, and genomic bases of yield, and related key seed yield traits. In addition, phytohormones, such as auxin, gibberellins, cytokinins, and abscisic acid, regulate seed size and yield. Hence, we also highlight the implications of these factors, challenges in soybean yield, and seed trait improvement. The information reviewed in this study will help expand the knowledge base and may provide the way forward for developing high-yielding soybean cultivars for future food demands.
Collapse
Affiliation(s)
- Rupesh Tayade
- Upland Field Machinery Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- Division of Biosafety, National Institute of Agriculture Science, Rural Development Administration, Jeonju, Jeollabul-do, Republic of Korea
| | - Amit Ghimire
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Waleed Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Rizwana Begum Syed Nabi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Yoonha Kim
- Upland Field Machinery Research Center, Kyungpook National University, Daegu, Republic of Korea
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
18
|
Qin C, Li YH, Li D, Zhang X, Kong L, Zhou Y, Lyu X, Ji R, Wei X, Cheng Q, Jia Z, Li X, Wang Q, Wang Y, Huang W, Yang C, Liu L, Wang X, Xing G, Hu G, Shan Z, Wang R, Li H, Li H, Zhao T, Liu J, Lu Y, Hu X, Kong F, Qiu LJ, Liu B. PH13 improves soybean shade traits and enhances yield for high-density planting at high latitudes. Nat Commun 2023; 14:6813. [PMID: 37884530 PMCID: PMC10603158 DOI: 10.1038/s41467-023-42608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Shading in combination with extended photoperiods can cause exaggerated stem elongation (ESE) in soybean, leading to lodging and reduced yields when planted at high-density in high-latitude regions. However, the genetic basis of plant height in adaptation to these regions remains unclear. Here, through a genome-wide association study, we identify a plant height regulating gene on chromosome 13 (PH13) encoding a WD40 protein with three main haplotypes in natural populations. We find that an insertion of a Ty1/Copia-like retrotransposon in the haplotype 3 leads to a truncated PH13H3 with reduced interaction with GmCOP1s, resulting in accumulation of STF1/2, and reduced plant height. In addition, PH13H3 allele has been strongly selected for genetic improvement at high latitudes. Deletion of both PH13 and its paralogue PHP can prevent shade-induced ESE and allow high-density planting. This study provides insights into the mechanism of shade-resistance and offers potential solutions for breeding high-yielding soybean cultivar for high-latitude regions.
Collapse
Affiliation(s)
- Chao Qin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ying-Hui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Delin Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueru Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Lingping Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Xiangguang Lyu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ronghuan Ji
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuzhi Wei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qican Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiwei Jia
- Longping Biotechnology (Hainan) Co., Ltd, Yazhou-Bay Science and Technology City, Sanya, Hainan, 572025, China
| | - Xiaojiao Li
- Longping Biotechnology (Hainan) Co., Ltd, Yazhou-Bay Science and Technology City, Sanya, Hainan, 572025, China
| | - Qiang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, 150086, China
| | - Yueqiang Wang
- Jilin Academy of Agricultural Sciences, Changchun, Jilin, 130033, China
| | - Wen Huang
- Tonghua Academy of Agricultural Sciences, Tonghua, Jilin, 135007, China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050035, China
| | - Like Liu
- Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Xing Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, Jiangsu, 221131, China
| | - Guangnan Xing
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guoyu Hu
- Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China
| | - Zhihui Shan
- Oil Crops Research Institute, Chinese Academy of Agriculture Sciences, Wuhan, Hubei, 430062, China
| | - Ruizhen Wang
- Crops Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, 330200, China
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuping Lu
- Longping Biotechnology (Hainan) Co., Ltd, Yazhou-Bay Science and Technology City, Sanya, Hainan, 572025, China
| | - Xiping Hu
- Beidahuang KenFeng Seed Co., Ltd, Binxi Economic Development Zone, Harbin, Heilongjiang, 150090, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| | - Li-Juan Qiu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Sun J, Huang S, Lu Q, Li S, Zhao S, Zheng X, Zhou Q, Zhang W, Li J, Wang L, Zhang K, Zheng W, Feng X, Liu B, Kong F, Xiang F. UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nat Commun 2023; 14:6262. [PMID: 37805547 PMCID: PMC10560287 DOI: 10.1038/s41467-023-41824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Plant height is a key agronomic trait that affects yield and is controlled by both phytohormone gibberellin (GA) and ultraviolet-B (UV-B) irradiation. However, whether and how plant height is modulated by UV-B-mediated changes in GA metabolism are not well understood. It has not been reported that the E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) is involved in the regulation of plant growth in response to environmental factors. We perform a forward genetic screen in soybean and find that a mutation in Glycine max Increased Leaf Petiole Angle1 (GmILPA1), encoding a subunit of the APC/C, lead to dwarfism under UV-B irradiation. UV-B promotes the accumulation of GmILPA1, which ubiquitinate the GA catabolic enzyme GA2 OXIDASE-like (GmGA2ox-like), resulting in its degradation in a UV-B-dependent manner. Another E3 ligase, GmUBL1, also ubiquitinate GmGA2ox-like and enhance the GmILPA1-mediated degradation of GmGA2ox-like, which suggest that GmILPA1-GmGA2ox-like module counteract the UV-B-mediated reduction of bioactive GAs. We also determine that GmILPA1 is a target of selection during soybean domestication and breeding. The deletion (Indel-665) in the promoter might facilitate the adaptation of soybean to high UV-B irradiation. This study indicates that an evolutionary GmILPA1 variant has the capability to develop ideal plant architecture with soybean cultivars.
Collapse
Affiliation(s)
- Jiaqi Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shiyu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qing Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shuo Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shizhen Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiaojian Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qian Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenxiao Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jie Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lili Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenyu Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130000, China.
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
20
|
Liao H, Quan H, Huang B, Ji H, Zhang T, Chen J, Zhou J. Integrated transcriptomic and metabolomic analysis reveals the molecular basis of tissue-specific accumulation of bioactive steroidal alkaloids in Fritillaria unibracteata. PHYTOCHEMISTRY 2023; 214:113831. [PMID: 37598994 DOI: 10.1016/j.phytochem.2023.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Fritillaria unibracteata is an endangered medicinal plant whose bulb has been used as a Chinese herb to suppress cough, asthma and excessive phlegm for centuries. Steroidal alkaloids, which are synthesized via the steroid synthesis pathways, are their significant bioactive constituents. However, few studies on genes involved in steroidal alkaloid biosynthesis in F. unibracteata have been reported, mainly due to the lack of the F. unibracteata genome. In this paper, comparative transcriptomic and metabolomic analyses of four different tissues of F. unibracteata (leaves, flowers, stems, and bulbs) were performed. Imperialine, peiminine, and peimisine were among the significant bioactive compounds that were considerably abundant in bulb tissue, according to the metabolomic findings. Then, 83.60 Gb transcriptome sequencing of four different tissues was performed, of which one gene encoding phosphomevalonate kinase was directly functionally characterized to verify the accuracy of sequences obtained from the transcriptome. A total of 9217 differentially expressed unigenes (DEGs) were identified in four different tissues of F. unibracteata. GO and KEGG enrichments revealed that phenylpropanoid biosynthesis, MVA-mediated terpenoid backbone biosynthesis, and steroid biosynthesis were enriched in bulb tissue, whereas enrichment of MEP-mediated terpenoid backbone biosynthesis, photosynthesis, photosynthesis-antenna protein and carotenoid biosynthesis was observed in aerial tissues. Moreover, clustering analysis indicated that the downstream steroid biosynthesis pathway was more important in steroidal alkaloid biosynthesis compared to the upstream terpenoid backbone biosynthesis pathway. Hence, MVA-mediated biosynthesis of steroidal alkaloids was proposed, in which 15 bulb-clustered DEGs were positively correlated with a high accumulation of bioactive steroid alkaloids, further validating our proposal. In addition, 36 CYP450s showing a positive correlation with bioactive steroidal alkaloids provided candidate enzymes to catalyze the subsequent steps of steroidal alkaloid biosynthesis. In addition, the transcription factors and ABC transporters clustered in bulb tissue might be responsible for the regulation and transportation of steroidal alkaloid biosynthesis. Protein-protein interaction analysis implied a highly complex steroid alkaloid biosynthesis network in which delta (24)-sterol reductase might be one of the central catalysts. Based on the integrated transcriptome and metabolome, this current study is a first step in understanding the tissue-specific biosynthesis of steroidal alkaloids in F. unibracteata. Furthermore, key genes and regulators identified herein could facilitate metabolic engineering to improve steroidal alkaloids in F. unibracteata.
Collapse
Affiliation(s)
- Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Binhan Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Huiyue Ji
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Tian Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Jiao Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
21
|
Liu X, Wickland DP, Lin Z, Liu Q, Dos Santos LB, Hudson KA, Hudson ME. Promoter deletion in the soybean Compact mutant leads to overexpression of a gene with homology to the C20-gibberellin 2-oxidase family. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5153-5165. [PMID: 37551820 DOI: 10.1093/jxb/erad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Height is a critical component of plant architecture, significantly affecting crop yield. The genetic basis of this trait in soybean remains unclear. In this study, we report the characterization of the Compact mutant of soybean, which has short internodes. The candidate gene was mapped to chromosome 17, and the interval containing the causative mutation was further delineated using biparental mapping. Whole-genome sequencing of the mutant revealed an 8.7 kb deletion in the promoter of the Glyma.17g145200 gene, which encodes a member of the class III gibberellin (GA) 2-oxidases. The mutation has a dominant effect, likely via increased expression of the GA 2-oxidase transcript observed in green tissue, as a result of the deletion in the promoter of Glyma.17g145200. We further demonstrate that levels of GA precursors are altered in the Compact mutant, supporting a role in GA metabolism, and that the mutant phenotype can be rescued with exogenous GA3. We also determined that overexpression of Glyma.17g145200 in Arabidopsis results in dwarfed plants. Thus, gain of promoter activity in the Compact mutant leads to a short internode phenotype in soybean through altered metabolism of gibberellin precursors. These results provide an example of how structural variation can control an important crop trait and a role for Glyma.17g145200 in soybean architecture, with potential implications for increasing crop yield.
Collapse
Affiliation(s)
- Xing Liu
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daniel P Wickland
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Zhicong Lin
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Quilin Liu
- Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Karen A Hudson
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois, Urbana, IL, USA
| |
Collapse
|
22
|
Niazian M, Belzile F, Curtin SJ, de Ronne M, Torkamaneh D. Optimization of in vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation of soybean for visual screening of transformants using RUBY. FRONTIERS IN PLANT SCIENCE 2023; 14:1207762. [PMID: 37484469 PMCID: PMC10361064 DOI: 10.3389/fpls.2023.1207762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
In vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation (HRT) assays are key components of the plant biotechnology and functional genomics toolkit. In this report, both in vitro and ex vitro HRT were optimized in soybean using the RUBY reporter. Different parameters including A. rhizogenes strain, optical density of the bacterial cell culture (OD600), co-cultivation media, soybean genotype, explant age, and acetosyringone addition and concentration were evaluated. Overall, the in vitro assay was more efficient than the ex vitro assay in terms of the percentage of induction of hairy roots and transformed roots (expressing RUBY). Nonetheless, the ex vitro technique was deemed faster and a less complicated approach. The highest transformation of RUBY was observed on 7-d-old cotyledons of cv. Bert inoculated for 30 minutes with the R1000 resuspended in ¼ B5 medium to OD600 (0.3) and 150 µM of acetosyringone. The parameters of this assay also led to the highest percentage of RUBY through two-step ex vitro hairy root transformation. Finally, using machine learning-based modeling, optimal protocols for both assays were further defined. This study establishes efficient and reliable hairy root transformation protocols applicable for functional studies in soybean.
Collapse
Affiliation(s)
- Mohsen Niazian
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Shaun J. Curtin
- Plant Science Research Unit, United States Department of Agriculture (USDA), St Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec City, QC, Canada
| |
Collapse
|
23
|
Lyu X, Li YH, Li Y, Li D, Han C, Hong H, Tian Y, Han L, Liu B, Qiu LJ. The domestication-associated L1 gene encodes a eucomic acid synthase pleiotropically modulating pod pigmentation and shattering in soybean. MOLECULAR PLANT 2023:S1674-2052(23)00169-7. [PMID: 37433301 DOI: 10.1016/j.molp.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Pod coloration is a domestication-related trait in soybean, with modern cultivars typically displaying brown or tan pods, while their wild relative, Glycine soja, possesses black pods. However, the factors regulating this color variation remain unknown. In this study, we cloned and characterized L1, the classical locus responsible for black pods in soybean. By using map-based cloning and genetic analyses, we identified the causal gene of L1 and revealed that it encodes a hydroxymethylglutaryl-coenzyme A (CoA) lyase-like (HMGL-like) domain protein. Biochemical assays showed that L1 functions as a eucomic acid synthase and facilitates the synthesis of eucomic acid and piscidic acid, both of which contribute to coloration of pods and seed coats in soybean. Interestingly, we found that L1 plants are more prone to pod shattering under light exposure than l1 null mutants because dark pigmentation increases photothermal efficiency. Hence, pleiotropic effects of L1 on pod color and shattering, as well as seed pigmentation, likely contributed to the preference for l1 alleles during soybean domestication and improvement. Collectively, our study provides new insights into the mechanism of pod coloration and identifies a new target for future de novo domestication of legume crops.
Collapse
Affiliation(s)
- Xiangguang Lyu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yanfei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People''s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Delin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Chao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Huilong Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yu Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| |
Collapse
|
24
|
Li H, Du H, He M, Wang J, Wang F, Yuan W, Huang Z, Cheng Q, Gou C, Chen Z, Liu B, Kong F, Fang C, Zhao X, Yu D. Natural variation of FKF1 controls flowering and adaptation during soybean domestication and improvement. THE NEW PHYTOLOGIST 2023; 238:1671-1684. [PMID: 36811193 DOI: 10.1111/nph.18826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Soybean (Glycine max) is a major source of protein and edible oil world-wide and is cultivated in a wide range of latitudes. However, it is extremely sensitive to photoperiod, which influences flowering time, maturity, and yield, and severely limits soybean latitude adaptation. In this study, a genome-wide association study (GWAS) identified a novel locus in accessions harboring the E1 allele, called Time of flowering 8 (Tof8), which promotes flowering and enhances adaptation to high latitude in cultivated soybean. Gene functional analyses showed that Tof8 is an ortholog of Arabidopsis FKF1. We identified two FKF1 homologs in the soybean genome. Both FKF1 homologs are genetically dependent on E1 by binding to E1 promoter to activate E1 transcription, thus repressing FLOWERING LOCUS T 2a (FT2a) and FT5a transcription, which modulate flowering and maturity through the E1 pathway. We also demonstrate that the natural allele FKF1bH3 facilitated adaptation of soybean to high-latitude environments and was selected during domestication and improvement, leading to its rapid expansion in cultivated soybean. These findings provide novel insights into the roles of FKF1 in controlling flowering time and maturity in soybean and offer new means to fine-tune adaptation to high latitudes and increase grain yield.
Collapse
Affiliation(s)
- Haiyang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Milan He
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jianhao Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fan Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Wenjie Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zerong Huang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Qun Cheng
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chuanjie Gou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Zheng Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohui Zhao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Li Z, Zhao T, Liu J, Li H, Liu B. Shade-Induced Leaf Senescence in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1550. [PMID: 37050176 PMCID: PMC10097262 DOI: 10.3390/plants12071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Leaf senescence is a vital developmental process that involves the orderly breakdown of macromolecules to transfer nutrients from mature leaves to emerging and reproductive organs. This process is essential for a plant's overall fitness. Multiple internal and external factors, such as leaf age, plant hormones, stresses, and light environment, regulate the onset and progression of leaf senescence. When plants grow close to each other or are shaded, it results in significant alterations in light quantity and quality, such as a decrease in photosynthetically active radiation (PAR), a drop in red/far-red light ratios, and a reduction in blue light fluence rate, which triggers premature leaf senescence. Recently, studies have identified various components involved in light, phytohormone, and other signaling pathways that regulate the leaf senescence process in response to shade. This review summarizes the current knowledge on the molecular mechanisms that control leaf senescence induced by shade.
Collapse
Affiliation(s)
| | | | | | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Lyu X, Mu R, Liu B. Shade avoidance syndrome in soybean and ideotype toward shade tolerance. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:31. [PMID: 37313527 PMCID: PMC10248688 DOI: 10.1007/s11032-023-01375-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 06/15/2023]
Abstract
The shade avoidance syndrome (SAS) in soybean can have destructive effects on yield, as essential carbon resources reserved for yield are diverted to the petiole and stem for exaggerated elongation, resulting in lodging and susceptibility to disease. Despite numerous attempts to reduce the unfavorable impacts of SAS for the development of cultivars suitable for high-density planting or intercropping, the genetic bases and fundamental mechanisms of SAS remain largely unclear. The extensive research conducted in the model plant Arabidopsis provides a framework for understanding the SAS in soybean. Nevertheless, recent investigations suggest that the knowledge obtained from model Arabidopsis may not be applicable to all processes in soybean. Consequently, further efforts are required to identify the genetic regulators of SAS in soybean for molecular breeding of high-yield cultivars suitable for density farming. In this review, we present an overview of the recent developments in SAS studies in soybean and suggest an ideal planting architecture for shade-tolerant soybean intended for high-yield breeding.
Collapse
Affiliation(s)
- Xiangguang Lyu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ruolan Mu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Ritonga FN, Zhou D, Zhang Y, Song R, Li C, Li J, Gao J. The Roles of Gibberellins in Regulating Leaf Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:1243. [PMID: 36986931 PMCID: PMC10051486 DOI: 10.3390/plants12061243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and development are correlated with many aspects, including phytohormones, which have specific functions. However, the mechanism underlying the process has not been well elucidated. Gibberellins (GAs) play fundamental roles in almost every aspect of plant growth and development, including cell elongation, leaf expansion, leaf senescence, seed germination, and leafy head formation. The central genes involved in GA biosynthesis include GA20 oxidase genes (GA20oxs), GA3oxs, and GA2oxs, which correlate with bioactive GAs. The GA content and GA biosynthesis genes are affected by light, carbon availability, stresses, phytohormone crosstalk, and transcription factors (TFs) as well. However, GA is the main hormone associated with BR, ABA, SA, JA, cytokinin, and auxin, regulating a wide range of growth and developmental processes. DELLA proteins act as plant growth suppressors by inhibiting the elongation and proliferation of cells. GAs induce DELLA repressor protein degradation during the GA biosynthesis process to control several critical developmental processes by interacting with F-box, PIFS, ROS, SCLl3, and other proteins. Bioactive GA levels are inversely related to DELLA proteins, and a lack of DELLA function consequently activates GA responses. In this review, we summarized the diverse roles of GAs in plant development stages, with a focus on GA biosynthesis and signal transduction, to develop new insight and an understanding of the mechanisms underlying plant development.
Collapse
Affiliation(s)
- Faujiah Nurhasanah Ritonga
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- Graduate School, Padjadjaran University, Bandung 40132, West Java, Indonesia
| | - Dandan Zhou
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250100, China
| | - Yihui Zhang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Runxian Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Cheng Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jingjuan Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jianwei Gao
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| |
Collapse
|
28
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
29
|
Yue L, Pei X, Kong F, Zhao L, Lin X. Divergence of functions and expression patterns of soybean bZIP transcription factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1150363. [PMID: 37123868 PMCID: PMC10146240 DOI: 10.3389/fpls.2023.1150363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is a major protein and oil crop. Soybean basic region/leucine zipper (bZIP) transcription factors are involved in many regulatory pathways, including yield, stress responses, environmental signaling, and carbon-nitrogen balance. Here, we discuss the members of the soybean bZIP family and their classification: 161 members have been identified and clustered into 13 groups. Our review of the transcriptional regulation and functions of soybean bZIP members provides important information for future study of bZIP transcription factors and genetic resources for soybean breeding.
Collapse
Affiliation(s)
- Lin Yue
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xinxin Pei
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- *Correspondence: Xiaoya Lin, ; Lin Zhao,
| |
Collapse
|
30
|
Yang Y, Qiu Y, Ye W, Sun G, Li H. RNA sequencing-based exploration of the effects of far-red light on microRNAs involved in the shade-avoidance response of D. officinale. PeerJ 2023; 11:e15001. [PMID: 36967993 PMCID: PMC10035421 DOI: 10.7717/peerj.15001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Dendrobium officinale (D. officinale) has remarkable medicinal functions and high economic value. The shade-avoidance response to far-red light importantly affects the D. officinale productivity. However, the regulatory mechanism of miRNAs involved in the far-red light-avoidance response is unknown. Previous studies have found that, in D. officinale, 730 nm (far-red) light can promote the accumulation of plant metabolites, increase leaf area, and accelerate stem elongation. Here, the effects of far-red light on D. officinale were analysed via RNA-seq. KEGG analysis of miRNA target genes revealed various far-red light response pathways, among which the following played central roles: the one-carbon pool by folate; ascorbate and aldarate; cutin, suberine and wax biosynthesis; and sulfur metabolism. Cytoscape analysis of DE miRNA targets showed that novel_miR_484 and novel_miR_36 were most likely involved in the effects of far-red light on the D. officinale shade avoidance. Content verification revealed that far-red light promotes the accumulation of one-carbon compounds and ascorbic acid. Combined with qPCR validation results, the results showed that miR395b, novel_miR_36, novel_miR_159, novel_miR_178, novel_miR_405, and novel_miR_435 may participate in the far-red light signalling network through target genes, regulating the D. officinale shade avoidance. These findings provide new ideas for the efficient production of D. officinale.
Collapse
Affiliation(s)
- Yifan Yang
- College of Architectural Engineering, Sanming University, Sanming, China
| | - Yuqiang Qiu
- Xiamen Institute of Technology, Xiamen, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Sanming, China
| | - Gang Sun
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Hansheng Li
- College of Architectural Engineering, Sanming University, Sanming, China
| |
Collapse
|
31
|
Luo Y, Chang Y, Li C, Wang Y, Cui H, Jin M, Wang Z, Li Y. Shading decreases lodging resistance of wheat under different planting densities by altering lignin monomer composition of stems. FRONTIERS IN PLANT SCIENCE 2022; 13:1056193. [PMID: 36466230 PMCID: PMC9714359 DOI: 10.3389/fpls.2022.1056193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
To clarify the influences of shading stress and planting density on the lignin monomer composition of wheat stems and their relationship with lodging resistance, Lodging resistant variety Shannong 23 (SN23) and lodging sensitive variety Shannong 16 (SN16) were grown during 2018-2019 and 2019-2020 growing seasons. The planting densities were 150 × 104 plants ha-1 (D1), 225 × 104 plants ha-1 (D2) and 300 × 104 plants ha-1 (D3). At the jointing stage, an artificial shading shed was used to simulate shading stress. Then the effects of shading on stem morphological characteristics, lignin monomer composition and lodging resistance of wheat under different planting densities were studied. Results indicate that shading at the jointing stage increased the length of basal internodes and the plant height and moved the height of center of gravity (CG) upward. Moreover, the stem diameter and the wall thickness decreased by 0.10-0.53 mm and 0.18-0.40 mm, respectively. The stem filling degree was reduced accordingly. As indicated by the correlation analysis and the stepwise regression analysis, shading-induced lodging mainly resulted from changes in the stem morphological characteristics and lignin accumulation. The influential magnitude of these factors was ordered as follows: stem filling degree, wall thickness, lignin content, contents and proportions of monomers S and H, and length of the second internode. The expression abundance of TaPAL, TaCOMT, TaCCR, and TaCAD declined in response to shading stress and high planting density. As a result, the distribution ratios of photosynthetic carbon sources to lignin monomers S, G and H were changed. The lignin content of stems on the day 42 after the jointing stage decreased by 18.48%. The monomer S content decreased, while the content and proportion of monomer H increased, thus weakening the breaking strength of wheat stems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Li
- *Correspondence: Yong Li, ; Zhenlin Wang,
| |
Collapse
|
32
|
Sun G, Yang L, Zhan W, Chen S, Song M, Wang L, Jiang L, Guo L, Wang K, Ye X, Gou M, Zheng X, Yang J, Yan Z. HFR1, a bHLH Transcriptional Regulator from Arabidopsis thaliana, Improves Grain Yield, Shade and Osmotic Stress Tolerances in Common Wheat. Int J Mol Sci 2022; 23:ijms231912057. [PMID: 36233359 PMCID: PMC9569703 DOI: 10.3390/ijms231912057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Common wheat, Triticum aestivum, is the most widely grown staple crop worldwide. To catch up with the increasing global population and cope with the changing climate, it is valuable to breed wheat cultivars that are tolerant to abiotic or shade stresses for density farming. Arabidopsis LONG HYPOCOTYL IN FAR-RED 1 (AtHFR1), a photomorphogenesis-promoting factor, is involved in multiple light-related signaling pathways and inhibits seedling etiolation and shade avoidance. We report that overexpression of AtHFR1 in wheat inhibits etiolation phenotypes under various light and shade conditions, leading to shortened plant height and increased spike number relative to non-transgenic plants in the field. Ectopic expression of AtHFR1 in wheat increases the transcript levels of TaCAB and TaCHS as observed previously in Arabidopsis, indicating that the AtHFR1 transgene can activate the light signal transduction pathway in wheat. AtHFR1 transgenic seedlings significantly exhibit tolerance to osmotic stress during seed germination compared to non-transgenic wheat. The AtHFR1 transgene represses transcription of TaFT1, TaCO1, and TaCO2, delaying development of the shoot apex and heading in wheat. Furthermore, the AtHFR1 transgene in wheat inhibits transcript levels of PHYTOCHROME-INTERACTING FACTOR 3-LIKEs (TaPIL13, TaPIL15-1B, and TaPIL15-1D), downregulating the target gene STAYGREEN (TaSGR), and thus delaying dark-induced leaf senescence. In the field, grain yields of three AtHFR1 transgenic lines were 18.2–48.1% higher than those of non-transgenic wheat. In summary, genetic modification of light signaling pathways using a photomorphogenesis-promoting factor has positive effects on grain yield due to changes in plant architecture and resource allocation and enhances tolerances to osmotic stress and shade avoidance response.
Collapse
Affiliation(s)
- Guanghua Sun
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Luhao Yang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Weimin Zhan
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shizhan Chen
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Meifang Song
- Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijian Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liangliang Jiang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (J.Y.); (Z.Y.)
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (J.Y.); (Z.Y.)
| |
Collapse
|
33
|
Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant Development and Crop Yield: The Role of Gibberellins. PLANTS (BASEL, SWITZERLAND) 2022; 11:2650. [PMID: 36235516 PMCID: PMC9571322 DOI: 10.3390/plants11192650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/12/2023]
Abstract
Gibberellins have been classically related to a few key developmental processes, thus being essential for the accurate unfolding of plant genetic programs. After more than a century of research, over one hundred different gibberellins have been described. There is a continuously increasing interest in gibberellins research because of their relevant role in the so-called "Green Revolution", as well as their current and possible applications in crop improvement. The functions attributed to gibberellins have been traditionally restricted to the regulation of plant stature, seed germination, and flowering. Nonetheless, research in the last years has shown that these functions extend to many other relevant processes. In this review, the current knowledge on gibberellins homeostasis and mode of action is briefly outlined, while specific attention is focused on the many different responses in which gibberellins take part. Thus, those genes and proteins identified as being involved in the regulation of gibberellin responses in model and non-model species are highlighted. The present review aims to provide a comprehensive picture of the state-of-the-art perception of gibberellins molecular biology and its effects on plant development. This picture might be helpful to enhance our current understanding of gibberellins biology and provide the know-how for the development of more accurate research and breeding programs.
Collapse
Affiliation(s)
| | | | | | - Jesús Mª Vielba
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| |
Collapse
|
34
|
Zhang X, Li Y, Yan H, Cai K, Li H, Wu Z, Wu J, Yang X, Jiang H, Wang Q, Qu G, Zhao X. Integrated metabolomic and transcriptomic analyses reveal different metabolite biosynthesis profiles of Juglans mandshurica in shade. FRONTIERS IN PLANT SCIENCE 2022; 13:991874. [PMID: 36237500 PMCID: PMC9552962 DOI: 10.3389/fpls.2022.991874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Light is not only a very important source of energy for the normal growth and development of plants, but also a regulator of many development and metabolic processes. The mechanism of plant growth and development under low light conditions is an important scientific question. With the promulgation of the law to stop natural forest cutting, understory regeneration is an important method for artificial forest afforestation. Here, the growth and physiological indexes of Juglans mandshurica, an important hardwood species in Northeast China, were measured under different shade treatments. In addition, transcriptome and metabolome were compared to analyze the molecular mechanism of shade tolerance in J. mandshurica. The results showed that the seedling height of the shade treatment group was significantly higher than that of the control group, and the 50% light (L50) treatment was the highest. Compared with the control group, the contents of gibberellin, abscisic acid, brassinolide, chlorophyll a, and chlorophyll b in all shade treatments were significantly higher. However, the net photosynthetic rate and water use efficiency decreased with increasing shade. Furthermore, the transcriptome identified thousands of differentially expressed genes in three samples. Using enrichment analysis, we found that most of the differentially expressed genes were enriched in photosynthesis, plant hormone signal transduction and chlorophyll synthesis pathways, and the expression levels of many genes encoding transcription factors were also changed. In addition, analysis of differentially accumulated metabolites showed that a total of 470 differential metabolites were identified, and flavonoids were the major differential metabolites of J. mandshurica under light stress. These results improved our understanding of the molecular mechanism and metabolite accumulation under light stress in J. mandshurica.
Collapse
Affiliation(s)
- Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Yuxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhiwei Wu
- Scientific Research Center of Harbin Forestry and Grassland Bureau, Harbin, China
| | - Jianguo Wu
- Daquanzi Forest Station in Binxian County, Harbin, China
| | - Xiangdong Yang
- Daquanzi Forest Station in Binxian County, Harbin, China
| | - Haichen Jiang
- Daquanzi Forest Station in Binxian County, Harbin, China
| | - Qingcheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
35
|
Xu Z, Wang R, Kong K, Begum N, Almakas A, Liu J, Li H, Liu B, Zhao T, Zhao T. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:983650. [PMID: 36147224 PMCID: PMC9485679 DOI: 10.3389/fpls.2022.983650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
Plant height is one of the key agronomic traits affecting soybean yield. The cytokinin response factors (CRFs), as a branch of the APETALA2/ethylene responsive factor (AP2/ERF) super gene family, have been reported to play important roles in regulating plant growth and development. However, their functions in soybean remain unknown. This study characterized a soybean CRF gene named GmCRF4a by comparing the performance of the homozygous Gmcrf4a-1 mutant, GmCRF4a overexpression (OX) and co-silencing (CS) lines. Phenotypic analysis showed that overexpression of GmCRF4a resulted in taller hypocotyls and epicotyls, more main stem nodes, and higher plant height. While down-regulation of GmCRF4a conferred shorter hypocotyls and epicotyls, as well as a reduction in plant height. The histological analysis results demonstrated that GmCRF4a promotes epicotyl elongation primarily by increasing cell length. Furthermore, GmCRF4a is required for the expression of GmYUCs genes to elevate endogenous auxin levels, which may subsequently enhance stem elongation. Taken together, these observations describe a novel regulatory mechanism in soybean, and provide the basis for elucidating the function of GmCRF4a in auxin biosynthesis pathway and plant heigh regulation in plants.
Collapse
Affiliation(s)
- Zhiyong Xu
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruikai Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aisha Almakas
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Zhao J, Shi X, Chen L, Chen Q, Tian X, Ai L, Zhao H, Yang C, Yan L, Zhang M. Genetic and transcriptome analyses reveal the candidate genes and pathways involved in the inactive shade-avoidance response enabling high-density planting of soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:973643. [PMID: 35991396 PMCID: PMC9382032 DOI: 10.3389/fpls.2022.973643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
High-density planting is a major way to improve crop yields. However, shade-avoidance syndrome (SAS) is a major factor limiting increased planting density. First Green Revolution addressed grass lodging problem by using dwarf/semi-dwarf genes. However, it is not suitable for soybean, which bear seeds on stalk and whose seed yield depends on plant height. Hence, mining shade-tolerant germplasms and elucidating the underlying mechanism could provide meaningful resources and information for high-yield breeding. Here, we report a high-plant density-tolerant soybean cultivar, JiDou 17, which exhibited an inactive SAS (iSAS) phenotype under high-plant density or low-light conditions at the seedling stage. A quantitative trait locus (QTL) mapping analysis using a recombinant inbred line (RIL) population showed that this iSAS phenotype is related to a major QTL, named shade-avoidance response 1 (qSAR1), which was detected. The mapping region was narrowed by a haplotype analysis into a 554 kb interval harboring 44 genes, including 4 known to be key regulators of the SAS network and 4 with a variance response to low-light conditions between near isogenic line (NIL) stems. Via RNA-seq, we identified iSAS-specific genes based on one pair of near isogenic lines (NILs) and their parents. The iSAS-specific genes expressed in the stems were significantly enriched in the "proteasomal protein catabolic" process and the proteasome pathway, which were recently suggested to promote the shade-avoidance response by enhancing PIF7 stability. Most iSAS-specific proteasome-related genes were downregulated under low-light conditions. The expression of genes related to ABA, CK, and GA significantly varied between the low- and normal-light conditions. This finding is meaningful for the cloning of genes that harbor beneficial variation(s) conferring the iSAS phenotype fixed in domestication and breeding practice.
Collapse
Affiliation(s)
- Jing Zhao
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- School of Life Sciences, Yantai University, Yantai, China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Lei Chen
- School of Life Sciences, Yantai University, Yantai, China
| | - Qiang Chen
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Xuan Tian
- Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Lijuan Ai
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Hongtao Zhao
- Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
37
|
Ji R, Xu X, Liu J, Zhao T, Li H, Zhai J, Liu B. Induced Mutation in GmCOP1b Enhances the Performance of Soybean under Dense Planting Conditions. Int J Mol Sci 2022; 23:5394. [PMID: 35628205 PMCID: PMC9141786 DOI: 10.3390/ijms23105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is the key photomorphogenic inhibitor that has been extensively studied in higher plants. Nevertheless, its role has not been documented in the economically important soybean. Here we investigated the functions of two COP1 homologous genes, GmCOP1a and GmCOP1b, by analyzing Gmcop1a and Gmcop1b mutants with indels using CRISPR in soybean. We revealed that, although both genes are required for skotomorphogenesis in the dark, the GmCOP1b gene seems to play a more prominent role than GmCOP1a in promoting stem elongation under normal light conditions. Consistently, the bZIP transcriptional factors STF1/2, which repress stem elongation in soybean, accumulated to the highest level in the Gmcop1a1b double mutant, followed by the Gmcop1b and Gmcop1a mutants. Furthermore, the Gmcop1b mutants showed reduced shade response and enhanced performance under high-density conditions in field trials. Taken together, this study provides essential genetic resources for elucidating functional mechanisms of GmCOP1 and breeding of high yield soybean cultivars for future sustainable agriculture.
Collapse
Affiliation(s)
- Ronghuan Ji
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.J.); (X.X.); (J.L.); (T.Z.); (H.L.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Xinying Xu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.J.); (X.X.); (J.L.); (T.Z.); (H.L.)
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.J.); (X.X.); (J.L.); (T.Z.); (H.L.)
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.J.); (X.X.); (J.L.); (T.Z.); (H.L.)
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.J.); (X.X.); (J.L.); (T.Z.); (H.L.)
| | - Jixian Zhai
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (R.J.); (X.X.); (J.L.); (T.Z.); (H.L.)
| |
Collapse
|
38
|
Chen Z, Li M, Liu S, Chen X, Zhang W, Zhu Q, Kohnen MV, Wang Q. The Function and Photoregulatory Mechanisms of Cryptochromes From Moso Bamboo ( Phyllostachys edulis). FRONTIERS IN PLANT SCIENCE 2022; 13:866057. [PMID: 35432389 PMCID: PMC9006058 DOI: 10.3389/fpls.2022.866057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Light is one of the most important environmental factors affecting growth and geographic distribution of forestry plants. Moso bamboo is the largest temperate bamboo on earth and an important non-woody forestry species that serves not only important functions in the economy of rural areas but also carbon sequestration in the world. Due to its decades-long reproductive timing, the germplasm of moso bamboo cannot be readily improved by conventional breeding methods, arguing for a greater need to study the gene function and regulatory mechanisms of this species. We systematically studied the photoregulatory mechanisms of the moso bamboo (Phyllostachys edulis) cryptochrome 1, PheCRY1. Our results show that, similar to its Arabidopsis counterpart, the bamboo PheCRY1s are functionally restricted to the blue light inhibition of cell elongation without an apparent activity in promoting floral initiation. We demonstrate that PheCRY1s undergo light-dependent oligomerization that is inhibited by PheBIC1s, and light-dependent phosphorylation that is catalyzed by PhePPKs. We hypothesize that light-induced phosphorylation of PheCRY1s facilitate their degradation, which control availability of the PheCRY1 proteins and photosensitivity of bamboo plants. Our results demonstrate the evolutionary conservation of not only the function but also photoregulatory mechanism of PheCRY1 in this monocot forestry species.
Collapse
Affiliation(s)
- Ziyin Chen
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siyuan Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojie Chen
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiang Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Zhu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Markus V Kohnen
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
39
|
Ji H, Xiao R, Lyu X, Chen J, Zhang X, Wang Z, Deng Z, Wang Y, Wang H, Li R, Chai Q, Hao Y, Xu Q, Liao J, Wang Q, Liu Y, Tang R, Liu B, Li X. Differential light-dependent regulation of soybean nodulation by papilionoid-specific HY5 homologs. Curr Biol 2022; 32:783-795.e5. [PMID: 35081330 DOI: 10.1016/j.cub.2021.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
Legumes have evolved photosynthesis and symbiotic nitrogen fixation for the acquisition of energy and nitrogen nutrients. During the transition from heterotrophic to autotrophic growth, blue light primarily triggers photosynthesis and low soil nitrogen induces symbiotic nodulation. Whether and how darkness and blue light influence root symbiotic nodulation during this transition is unknown. Here, we show that short-term darkness promotes nodulation and that blue light inhibits nodulation through two soybean TGACG-motif-binding factors (STF1 and STF2), which are Papilionoideae-specific transcription factors and divergent orthologs of Arabidopsis ELONGATED HYPOCOTYL 5 (HY5). STF1 and STF2 negatively regulate soybean nodulation by repressing the transcription of nodule inception a (GmNINa), which is a central regulator of nodulation, in response to darkness and blue light. STF1 and STF2 are not capable of moving from the shoots to roots, and they act both locally and systemically to mediate darkness- and blue-light-regulated nodulation. We further show that cryptochromes GmCRY1s are required for nodulation in the dark and partially contribute to the blue light inhibition of nodulation. In addition, root GmCRY1s mediate blue-light-induced transcription of STF1 and STF2, and intriguingly, GmCRY1b can interact with STF1 and STF2 to stabilize the protein stability of STF1 and STF2. Our results establish that the blue light receptor GmCRY1s-STF1/2 module plays a pivotal role in integrating darkness/blue light and nodulation signals. Furthermore, our findings reveal a molecular basis by which photosensory pathways modulate nodulation and autotrophic growth through an intricate interplay facilitating seedling establishment in response to low nitrogen and light signals.
Collapse
Affiliation(s)
- Hongtao Ji
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Renhao Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguang Lyu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiahuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehai Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhijuan Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yongliang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ran Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Chai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongfang Hao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junwen Liao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruizhen Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
40
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
41
|
Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, Xu D. HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:800989. [PMID: 35111179 PMCID: PMC8801436 DOI: 10.3389/fpls.2021.800989] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master regulator that regulates various physiological and biological processes in plants such as photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function among various plant species. HY5 acts as a master regulator of light-mediated transcriptional regulatory hub that directly or indirectly controls the transcription of approximately one-third of genes at the whole genome level. The transcription, protein abundance, and activity of HY5 are tightly modulated by a variety of factors through distinct regulatory mechanisms. This review primarily summarizes recent advances on HY5-mediated molecular and physiological processes and regulatory mechanisms on HY5 in the model plant Arabidopsis as well as in crops.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Mu R, Lyu X, Ji R, Liu J, Zhao T, Li H, Liu B. GmBICs Modulate Low Blue Light-Induced Stem Elongation in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:803122. [PMID: 35185980 PMCID: PMC8850649 DOI: 10.3389/fpls.2022.803122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
Blue-light inhibitors of cryptochromes (BICs) promote hypocotyl elongation by suppressing the activity of cryptochromes in Arabidopsis. Nevertheless, the roles of BICs in other plant species are still unclear. Here we investigate their functions by genetic overexpression and CRISPR/Cas9 engineered mutations targeting the six GmBIC genes in soybean. We showed that the GmBICs overexpression (GmBICs-OX) lines strongly promoted stem elongation, while the single, double, and quadruple mutations in the GmBIC genes resulted in incremental dwarfing phenotypes. Furthermore, overexpression of GmBIC2a abolished the low blue light (LBL)-induced stem elongation, demonstrating the involvement of GmBICs in regulating cryptochrome-mediated LBL-induced shade avoidance syndrome (SAS). The Gmbic1a1b2a2b quadruple mutant displayed reduced stem elongation under LBL conditions, which was reminiscent of the GmCRY1b-OX lines. Taken together, this study provided essential genetic resources for elucidating GmBICs functional mechanisms and breeding of shade-tolerant soybean cultivars in future.
Collapse
|
43
|
Li C, Wang X, Zhang L, Zhang C, Yu C, Zhao T, Liu B, Li H, Liu J. OsBIC1 Directly Interacts with OsCRYs to Regulate Leaf Sheath Length through Mediating GA-Responsive Pathway. Int J Mol Sci 2021; 23:ijms23010287. [PMID: 35008710 PMCID: PMC8745657 DOI: 10.3390/ijms23010287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Cryptochrome 1 and 2 (CRY1 and CRY2) are blue light receptors involved in the regulation of hypocotyl elongation, cotyledon expansion, and flowering time in Arabidopsisthaliana. Two cryptochrome-interacting proteins, Blue-light Inhibitor of Cryptochrome 1 and 2 (BIC1 and BIC2), have been found in Arabidopsis. BIC1 plays critical roles in suppressing the physiological activities of CRY2, which include the blue light-dependent dimerization, phosphorylation, photobody formation, and degradation process, but the functional characterization of BIC protein in other crops has not yet been performed. To investigate the function of BIC protein in rice (Oryza sativa), two homologous genes of Arabidopsis BIC1 and BIC2, namely OsBIC1 and OsBIC2 (OsBICs), were identified. The overexpression of OsBIC1 and OsBIC2 led to increased leaf sheath length, whereas mutations in OsBIC1 displayed shorter leaf sheath in a blue light intensity-dependent manner. OsBIC1 regulated blue light-induced leaf sheath elongation through direct interaction with OsCRY1a, OsCRY1b, and OsCRY2 (OsCRYs). Longitudinal sections of the second leaf sheath demonstrated that OsBIC1 and OsCRYs controlled leaf sheath length by influencing the ratio of epidermal cells with different lengths. RNA-sequencing (RNA-seq) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis further proved that OsBIC1 and OsCRYs regulated similar transcriptome changes in regulating Gibberellic Acids (GA)-responsive pathway. Taken together, these results suggested that OsBIC1 and OsCRYs worked together to regulate epidermal cell elongation and control blue light-induced leaf sheath elongation through the GA-responsive pathway.
Collapse
Affiliation(s)
- Cong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xin Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Liya Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Chunyu Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Chunsheng Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Tao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
| | - Hongyu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
- Correspondence: (H.L.); (J.L.)
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (X.W.); (L.Z.); (C.Z.); (C.Y.); (T.Z.); (B.L.)
- Correspondence: (H.L.); (J.L.)
| |
Collapse
|
44
|
Liu Y, Jafari F, Wang H. Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome. ABIOTECH 2021; 2:131-145. [PMID: 36304753 PMCID: PMC9590540 DOI: 10.1007/s42994-021-00038-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022]
Abstract
As sessile organisms, plants are unable to move or escape from their neighboring competitors under high-density planting conditions. Instead, they have evolved the ability to sense changes in light quantity and quality (such as a reduction in photoactive radiation and drop in red/far-red light ratios) and evoke a suite of adaptative responses (such as stem elongation, reduced branching, hyponastic leaf orientation, early flowering and accelerated senescence) collectively termed shade avoidance syndrome (SAS). Over the past few decades, much progress has been made in identifying the various photoreceptor systems and light signaling components implicated in regulating SAS, and in elucidating the underlying molecular mechanisms, based on extensive molecular genetic studies with the model dicotyledonous plant Arabidopsis thaliana. Moreover, an emerging synthesis of the field is that light signaling integrates with the signaling pathways of various phytohormones to coordinately regulate different aspects of SAS. In this review, we present a brief summary of the various cross-talks between light and hormone signaling in regulating SAS. We also present a perspective of manipulating SAS to tailor crop architecture for breeding high-density tolerant crop cultivars.
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
| |
Collapse
|
45
|
Circadian Rhythms in Legumes: What Do We Know and What Else Should We Explore? Int J Mol Sci 2021; 22:ijms22094588. [PMID: 33925559 PMCID: PMC8123782 DOI: 10.3390/ijms22094588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
The natural timing devices of organisms, commonly known as biological clocks, are composed of specific complex folding molecules that interact to regulate the circadian rhythms. Circadian rhythms, the changes or processes that follow a 24-h light–dark cycle, while endogenously programmed, are also influenced by environmental factors, especially in sessile organisms such as plants, which can impact ecosystems and crop productivity. Current knowledge of plant clocks emanates primarily from research on Arabidopsis, which identified the main components of the circadian gene regulation network. Nonetheless, there remain critical knowledge gaps related to the molecular components of circadian rhythms in important crop groups, including the nitrogen-fixing legumes. Additionally, little is known about the synergies and trade-offs between environmental factors and circadian rhythm regulation, especially how these interactions fine-tune the physiological adaptations of the current and future crops in a rapidly changing world. This review highlights what is known so far about the circadian rhythms in legumes, which include major as well as potential future pulse crops that are packed with nutrients, particularly protein. Based on existing literature, this review also identifies the knowledge gaps that should be addressed to build a sustainable food future with the reputed “poor man’s meat”.
Collapse
|
46
|
Pierik R. Beating the blues: engineering cryptochrome expression improves soybean yield. MOLECULAR PLANT 2021; 14:202-204. [PMID: 33450369 DOI: 10.1016/j.molp.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
47
|
Lyu X, Li H, Liu B. Protoplast System for Studying Blue-Light-Dependent Formation of Cryptochrome Photobody. Methods Mol Biol 2021; 2297:105-113. [PMID: 33656674 DOI: 10.1007/978-1-0716-1370-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cryptochromes (CRYs) belong to an ancient and conserved class of blue-light receptor regulating circadian clock and development in animals and plants. Arabidopsis CRY2 form physiologically active homodimers in response to blue light treatment and further oligomerize into photobodies, which are expected to be the foci harboring protein interaction, phosphorylation, and ubiquitination. Here we describe two efficient methods developed to test the formation of blue-light-dependent photobodies of CRY-GFP fusing proteins using the mesophyll protoplasts of Arabidopsis or soybean, respectively.
Collapse
Affiliation(s)
- Xiangguang Lyu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Hongyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|