1
|
Fahim AM, Dacrory S, Hashem AH, Kamel S. Antimicrobial, anticancer activities, molecular docking, and DFT/B3LYP/LANL2DZ analysis of heterocyclic cellulose derivative and their Cu-complexes. Int J Biol Macromol 2024; 269:132027. [PMID: 38702001 DOI: 10.1016/j.ijbiomac.2024.132027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
In this study, novel Cu-complexes of heterocyclic cellulose which were synthesized via the reaction of carboxymethyl cellulose (CMC) from bagasse pulp with NH2NH2 to give hydrazide cellulose which easily reacted with CS2 to form salt and then cyclized in the presence of HCl to afford cellulose oxadiazole, or with hydrazine hydrate to give cellulose triazole. Furthermore, the cellulose oxadiazole and triazole moieties acting as chelating agents with metal ion Cu (II), and all synthesized compounds were examined for their spectral analysis to show the adsorption of Cu (II) on the surface of cellulose through intramolecular hydrogen bonding. Results illustrated that cellulose oxadiazole and Cu- cellulose oxadiazole exhibited antimicrobial activities more than triazole and Cu- cellulose triazole. Furthermore, anticancer results showed that both cellulose oxadiazole and triazole exhibited activity higher than Cu-cellulose oxadiazole and Cu-cellulose triazole, where the cellulose triazole showed the highest activity (IC50 = 58.7 μg/μL). Additionally, the docking simulation of the synthesized cellulose complexes with different proteins such as PDBID:3t88, PDBID:4ynt, PDBID:1tgh, PDBID:2wje, and PDBID:4hdq and shortage bond length to confirm the experimental results. Optimization of metal complexes utilized the DFT/B3LYP/LANL2DZ basis set to confirm the stability of these metals theoretically and their physical descriptors and FMO analysis.
Collapse
Affiliation(s)
- Asmaa M Fahim
- Department of Green Chemistry, National Research Centre, Dokki, P.O. Box.12622, Cairo, Egypt
| | - Sawsan Dacrory
- Cellulose and paper Department, National Research Centre, Giza 12622, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Samir Kamel
- Cellulose and paper Department, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
2
|
AlHazmy SM, Zouaghi MO, Al-Hakimi AN, Alorini T, Alhagri IA, Arfaoui Y, Al-Ashwal R, Mansour L, Hamdi N. Synthesis, characterization, optical properties, biological activity and theoretical studies of a 4 nitrobenzylidene) amino) phenyl)imino)methyl)naphthalen-2-ol -based fluorescent Schiff base. Heliyon 2024; 10:e26349. [PMID: 38495175 PMCID: PMC10943314 DOI: 10.1016/j.heliyon.2024.e26349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
A new Schiff base, 1-(E)-(4-((E) 4nitrobenzylidene) amino) phenyl)imino) methyl)naphthalen-2-ol (4NMN), was prepared from the reaction of p-phenylenediamine with 2-hydroxy-1-naphthaldehyde and 4-nitrobenzaldehyde and characterized with spectroscopic analysis. UV-VIS and NMR. Frontier molecular orbitals, molecular electrostatic potential, and chemical reactivity descriptors of the synthesized compound were studied using molecular modeling methods. The antibacterial and antifungal activities of the Schiff base were studied for its minimum inhibitory concentration. The compound showed a higher effect on yeast than against bacteria. Density functional theory (DFT) calculations were performed to study the mechanism of reaction for the synthesis of 4NMN, and the results were consistent with the experimental findings. 4NMN exhibited moderate antibacterial and antifungal activities and demonstrated higher inhibition potential against different resistant strains compared to the reference drug gentamycin. The absorption and fluorescence spectra of 4NMN were measured in different solvents, and the effect of relative polarity and acidity on the medium was observed. An inner filter effect was observed at high concentrations, and the compound showed considerable fluorescence enhancement with increasing medium viscosity and fluorescence quenching by the addition of traces of Cr1+ and Cu2+. Additionally, molecular docking studies were conducted to investigate the efficiency of antibacterial and antifungal targets.
Collapse
Affiliation(s)
- Sadeq M. AlHazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Mohamed Oussama Zouaghi
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Ahmed N. Al-Hakimi
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Thamer Alorini
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Ibrahim A. Alhagri
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Youssef Arfaoui
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Rania Al-Ashwal
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
- Advanced Diagnostic and Progressive Human Care Research Group, School of Biomedical Engineering and Health Science Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | - Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| |
Collapse
|
3
|
Ali M, Sholkamy EN, Alobaidi AS, Al-Muhanna MK, Barakat A. Synthesis of Schiff Bases Based on Chitosan and Heterocyclic Moiety: Evaluation of Antimicrobial Activity. ACS OMEGA 2023; 8:47304-47312. [PMID: 38107929 PMCID: PMC10719998 DOI: 10.1021/acsomega.3c08446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Schiff bases of chitosan (CS) were prepared by reaction of four different heterocyclic compounds, namely, 1,3-dimethyl-2,4,6-trioxohexahydropyrimidine-5-carbaldehyde (M1), 3-acetyl-2H-chromen-2-one (M2), 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (M3), and 4-oxo-4H-chromene-3-carbaldehyde (M4), with CS using thermal and ultrasound approaches. CS Schiff base formation was confirmed by using FT-IR, XRD, and TGA. Characteristic data show that amino groups in chitosan reacted with the functional group in the heterocyclic compound to form the Schiff base. CS Schiff bases show thermal stability more than pure CS. The antimicrobial activity of Schiff bases was tested against +ve Gram bacteria and -ve Gram bacteria. The result shows that Schiff bases prepared by temperature and ultrasound methods possess high antimicrobial activity against +ve Gram bacteria and -ve Gram bacteria; in comparison, Schiff bases produced by the ultrasound method have higher antimicrobial activity. The Schiff base (CSM4U), prepared by the ultrasound method by reaction of CS with 4-oxo-4H-chromene-3-carbaldehyde, exhibited higher antimicrobial activity than Gentamicin as an antibacterial agent. The inhibition range caused by CSM4U was between 19 and 27 mm. Moreover, CSM4U also acted as an antifungal agent, causing an inhibition zone of 21 mm for both Candida albicans and Candida tropicalis, which was higher than that of Terbinafine.
Collapse
Affiliation(s)
- M. Ali
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Essam Nageh Sholkamy
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed S. Alobaidi
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhanna K. Al-Muhanna
- The
Material Science Research Institute, King
Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Aazam ES, Majrashi MA. Novel Schiff Base Derived from Amino Pyrene: Synthesis, Characterization, Crystal Structure Determination, and Anticancer Applications of the Ligand and Its Metal Complexes. Molecules 2023; 28:7352. [PMID: 37959772 PMCID: PMC10648749 DOI: 10.3390/molecules28217352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we report the cytotoxicity of a newly synthesized Schiff base HL ((E)-2-ethoxy-6((pyren-1-ylimino)methyl)phenol) and its derived metal complexes (Zn(II), Cu(II), Co(II), Cr(III), and Fe(III)) along with their structural characterizations by means of elemental analysis, magnetic moment, molar conductance, IR, UV-Vis, ESR, and mass spectrometry. The single X-ray diffraction of the HL shows that it exists in the phenol-imine form in its solid state. The NMR and IR data indicate that the bidentate binding of the Schiff base ligand with the metal center occurs during complexation through the azomethine nitrogen atom and the hydroxyl group oxygen atom of the 3-ethoxy salicylaldehyde. The electronic spectra and magnetic measurements indicate that the Co(II) complex has a tetrahedral geometry and that the Cr(III) and Fe(III) complexes have a distorted octahedral geometry. The ESR and electronic spectra suggest that the Cu(II) complex has a distorted tetrahedral geometry. The cytotoxic effects of the HL and all of the metal complexes were studied using human breast cancer (MCF-7) cells. The Cu(II) and Zn(II) complexes exhibited the highest activity against the tested cell line, with IC50 values of 5.66 and 12.74 μg/mL, respectively, and their activity was higher than that of the fluorouracil cancer drug against the MCF-7 cells (18.05 μg/mL).
Collapse
Affiliation(s)
- Elham S. Aazam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah P.O. Box 23622, Saudi Arabia
| | | |
Collapse
|
5
|
Tsacheva I, Todorova Z, Momekova D, Momekov G, Koseva N. Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates. Pharmaceuticals (Basel) 2023; 16:938. [PMID: 37513849 PMCID: PMC10386503 DOI: 10.3390/ph16070938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
This review paper is focused on the design of anthracene and furan-containing Schiff bases and their advanced properties as ligands in complex transition metal ions The paper also provides a brief overview on a variety of biological applications, namely, potent candidates with antibacterial and antifungal activity, antioxidant and chemosensing properties. These advantageous properties are enhanced upon metal complexing. The subject of the review has been extended with a brief discussion on reactivity of Schiff bases with hydrogen phosphonates and the preparation of low and high molecular phosphonates, as well as their application as pharmacological agents. This work will be of interest for scientists seeking new challenges in discovering advanced pharmacological active molecules gaining inspiration from the versatile families of imines and aminophosphonates.
Collapse
Affiliation(s)
- Ivelina Tsacheva
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Zornica Todorova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Neli Koseva
- Bulgarian Academy of Sciences, 1 "15 Noemvri" Str., 1040 Sofia, Bulgaria
| |
Collapse
|
6
|
Thioether-based novel transition metal complexes: Synthesis, DNA interaction, in vitro biological assay, DFT calculations, and molecular docking studies. Bioorg Chem 2023; 132:106343. [PMID: 36623447 DOI: 10.1016/j.bioorg.2023.106343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
A novel Schiff base ligand 2-(((2-(benzylthio)phenyl)imino)methyl)-4-chlorophenol and its cobalt, nickel, copper, and zinc metal complexes were prepared. Using B3LYP/6-31++G(d,p) method with LanL2DZ as basis set, the molecular structure of metal complexes has been optimized, and their parameters have been explored. The distorted octahedral geometries have been observed in cobalt, nickel, and copper complexes. In contrast, zinc complex exhibited distorted tetrahedral geometry indicating the coordination of metal ions with ligands through ONS binding sites, which are confirmed by various spectroscopic techniques, magnetic measurements, molar conductivity, elemental analysis, and DFT studies. The intercalative binding mode between CT-DNA and synthesized metal complexes has been determined by absorption and fluorescence spectroscopy. The binding constant values of metal complexes found to be varied from 5.28 × 103 M-1 to 9.18 × 104 M-1. Furthermore, several methods have been used to scrutinize the bioactivities, such as in vitro anti-diabetic, anti-inflammatory, and antioxidant. From the obtained results, it can be concluded that zinc metal complex exhibited excellent anti-inflammatory and anti-diabetic activity compared to others. However, the copper complex has good antioxidant property. Besides deducing the prospective binding energies of inhibitors, molecular docking simulations have also been conducted utilizing the enzyme structures of B-DNA, 6-COX, α-amylase, and α-glucosidase.
Collapse
|
7
|
Alkis ME, Buldurun K, Alan Y, Turan N, Altun A. Electroporation Enhances the Anticancer Effects of Novel Cu(II) and Fe(II) Complexes in Chemotherapy-Resistant Glioblastoma Cancer Cells. Chem Biodivers 2023; 20:e202200710. [PMID: 36601965 DOI: 10.1002/cbdv.202200710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Schiff base ligand (L) was obtained by condensation reaction between 4-aminopyrimidin-2(1H)-one (cytosine) with 2-hydroxybenzaldehyde. The synthesized Schiff base was used for complexation with Cu(II) and Fe(II) ions used by a molar (2 : 1 mmol ration) in methanol solvent. The structural features of ligand, Cu(II), and Fe(II) metal complexes were determined by standard spectroscopic methods (FT-IR, elemental analysis, proton and carbon NMR spectra, UV/VIS, and mass spectroscopy, magnetic susceptibility, thermal analysis, and powder X-ray diffraction). The synthesized compounds (Schiff base and its metal complexes) were screened in terms of their anti-proliferative activities in U118 and T98G human glioblastoma cell lines alone or in combination with electroporation (EP). Moreover, the human HDF (human dermal fibroblast) cell lines was used to check the bio-compatibility of the compounds. Anti-proliferative activities of all compounds were ascertained using an MTT assay. The complexes exhibited a good anti-proliferative effect on U118 and T98G glioblastoma cell lines. In addition, these compounds had a negligible cytotoxic effect on the fibroblast HDF cell lines. The use of compounds in combination with EP significantly decreased the IC50 values compared to the use of compounds alone (p<0.05). These results show that newly synthesized Cu(II) and Fe(II) complexes can be developed for use in the treatment of chemotherapy-resistant U118 and T98G glioblastoma cells and that treatment with lower doses can be provided when used in combination with EP.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Kenan Buldurun
- Department of Food Processing, Technical Science Vocational School, Muş Alparslan University, 49250, Muş, Turkey
| | - Yusuf Alan
- Department of Molecular Biology, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| | - Ayhan Altun
- Department of Chemistry, Gebze Technical University, 41400, Kocaeli, Turkey
| |
Collapse
|
8
|
Singh A, Maiti SK, Gogoi HP, Barman P. Purine-based Schiff base Co(II), Cu(II), and Zn(II) complexes: Synthesis, characterization, DFT calculations, DNA binding study, and molecular docking. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Majid SA, Mir JM, Jan G, Shalla AH. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2131402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Gowhar Jan
- Department of Chemistry, IUST, Awantipora Pulwama, India
| | | |
Collapse
|
10
|
Copper(II) complexes with 4-(diethylamino)salicylaldehyde and α-diimines: Anticancer, antioxidant, antigenotoxic effects and interaction with DNA and albumins. J Inorg Biochem 2022; 235:111942. [DOI: 10.1016/j.jinorgbio.2022.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
|
11
|
Coordination Chemistry, Antibacterial Screening, and In Silico ADME Study of Mononuclear NiII and CuII Complexes of Asymmetric Schiff Base of Streptomycin and Aniline. J CHEM-NY 2022. [DOI: 10.1155/2022/3881217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel metal complexes, that is, Ni (StmAn)2(4) and Cu (StmAn)2(5), were synthesized from unsymmetrical Schiff base ligand StmAn (3). The ligand was prepared by refluxing streptomycin (2) and aniline (1). They were characterized by elemental microanalysis, conductivity measurements, and spectroscopic techniques such as 1H NMR, FT-IR, ESI-mass, and electronic absorption spectral study. Interestingly, the study revealed metal coordination through azomethine nitrogen and N-atom of NH-CH3 of N-methyl-L-glucosamine unit of streptomycin. The electronic absorption spectral study supported an octahedral geometry for complex 4 and a tetrahedral geometry for complex 5. Particle size calculation by Scherrer’s formula indicated their nanocrystalline nature. The geometry optimization of the complexes was achieved by running an MM2 job in Gaussian supported Cs-ChemOffice ultra-12.0.1 and ArgusLab 4.0.1 version software. Based on SwissADME predictions, a theoretical drug profile was generated by analyzing absorption, distribution, metabolism, excretion, and toxicity (ADMET) scores of the compounds. They were screened for in vitro antibacterial activity study against four clinical pathogens such as E. coli, S. pneumoniae, P. vulgaris, and S. aureus. Minimum inhibitory concentration (MIC) study demonstrated greater inhibitory potency of complex (4) (0.024 g/L) for S. aureus relative to ligand (3) and complex (5). Studies show that metal complexes are more toxic to bacteria.
Collapse
|
12
|
Singh A, Gogoi HP, Barman P, Das A, Pandey P. Tetracoordinated ONNO donor purine based Schiff base and its metal complexes: Synthesis, characterization, DNA binding, theoretical studies, and bioactivities. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anmol Singh
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Himadri Priya Gogoi
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Ankita Das
- Department of Microbiology Assam University Silchar Assam India
| | - Piyush Pandey
- Department of Microbiology Assam University Silchar Assam India
| |
Collapse
|
13
|
Amin Mir M. Synthesis, Catalysis and Antimicrobial activity of 5d- metal chelate complex of Schiff base ligands. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Agarwal P, Asija S, Deswal Y, Kumar N. Recent advancements in the anticancer potentials of first row transition metal complexes. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Shokrollahi S, Amiri A, Schenk-Joß K. Binding affinity of p-PD-based schiff-bases towards human serum albumin; in-vitro and in-silico assessment. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Jose PA, Sankarganesh M, Raja JD, Sakthivel A, Annaraj J, Jeyaveeramadhavi S, Girija A. Spectrophotometric and fluorometric detection of DNA/BSA interaction, antimicrobial, anticancer, antioxidant and catalytic activities of biologically active methoxy substituted pyrimidine-ligand capped copper nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120454. [PMID: 34666266 DOI: 10.1016/j.saa.2021.120454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
New Schiff base ligand (DPMN) was synthesized from the condensation of 2-hydroxy-5-nitrobenzaldehyde and 2-amino-4,6-dimethoxypyrimidine which was confirmed by spectroscopic and analytical methods. Solid air stable copper nanoparticles (DPMN-CuNPs) were synthesized from its copper chloride salt and it is stabilized by the prepared Schiff base ligand by phase transfer assisted synthesis which is a modified Brust-Schiffrin technique. The formation of ligand stabilized copper nanoparticles was confirmed by UV-Visible and FT-IR spectroscopic techniques. The size, surface morphology and quality of DPMN-CuNPs were analyzed by SEM and TEM techniques. Antioxidant activities of DPMN and DPMN-CuNPs with DPPH, SOD, peroxide and nitrous oxide were analyzed by electronic absorption spectroscopy. DNA interaction between DPMN and DPMN-CuNPs with CT-DNA was carried out using electronic absorption, fluorescence, viscometric measurements and cyclic voltammetric techniques. Interaction between BSA and the synthesized compounds analyzed by electronic absorption spectroscopy, Antimicrobial studies confirmed that the synthesized DPMN-CuNPs possess significant biological activities than DPMN. Anticancer results suggest that prepared DPMN-CuNPs have significant anticancer activity against different cancer cell lines and least toxic effect against the normal (NHDF) cell line. Other than the positive response in biological evaluation, our DPMN-CuNPs possess good catalytic activity in methyl orange reduction, methylene blue degradation and nitro phenol reduction.
Collapse
Affiliation(s)
- P Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College (Autonomous), Nagapattinum, Tamil Nadu 611 002, India
| | - M Sankarganesh
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India; Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - J Dhaveethu Raja
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India.
| | - A Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu 626 005, India
| | - J Annaraj
- Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021, India
| | - S Jeyaveeramadhavi
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India
| | - A Girija
- Department of Chemistry, Velumanokaran Arts and Science College for Women, Ramanathapuram, Tamil Nadu 623 504, India
| |
Collapse
|
17
|
Singh K, Siwach P. Synthesis, spectroscopic, theoretical and biological evaluation of novel Schiff base complexes of divalent transition metals. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kiran Singh
- Department of Chemistry Kurukshetra University Kurukshetra India
| | - Preeti Siwach
- Department of Chemistry Kurukshetra University Kurukshetra India
| |
Collapse
|
18
|
Alkhatib FM, Farghaly TA, Harras MF, El-Ghamry HA. Copper(II) complexes based on 1,3,4-thiadiazolethiosemicarbazone NNS donor ligands: synthesis, molecular structure, DNA binding and in silico molecular docking approach. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.2011319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatmah M. Alkhatib
- Chemistry Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Marwa F. Harras
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hoda A. El-Ghamry
- Chemistry Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
19
|
Fontinha D, Sousa SA, Morais TS, Prudêncio M, Leitão JH, Le Gal Y, Lorcy D, Silva RAL, Velho MFG, Belo D, Almeida M, Guerreiro JF, Pinheiro T, Marques F. Gold(iii) bis(dithiolene) complexes: from molecular conductors to prospective anticancer, antimicrobial and antiplasmodial agents. Metallomics 2021; 12:974-987. [PMID: 32391537 DOI: 10.1039/d0mt00064g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The anticancer, antimicrobial and antiplasmodial activities of six gold(iii) bis(dithiolene) complexes were studied. Complexes 1-6 showed relevant anticancer properties against A2780/A2780cisR ovarian cancer cells (IC50 values of 0.08-2 μM), also being able to overcome cisplatin resistance in A2780cisR cells. Complex 1 also exhibited significant antimicrobial activity against Staphylococcus aureus (minimum inhibitory concentration (MIC) values of 12.1 ± 3.9 μg mL-1) and both Candida glabrata and Candida albicans (MICs of 9.7 ± 2.7 and 19.9 ± 2.4 μg mL-1, respectively). In addition, all complexes displayed antiplasmodial activity against the Plasmodium berghei parasite liver stages, even exhibiting better results than the ones obtained using primaquine, an anti-malarial drug. Mechanistic studies support the idea that thioredoxin reductase, but not DNA, is a possible target of these complexes. Complex 1 is stable under biological conditions, which would be important if this compound is ever to be considered as a drug. Overall, the results obtained evidenced the promising biological activity of complex 1, which might have potential as a novel anticancer, antimicrobial and antiplasmodial agent to be used as an alternative to current therapeutics.
Collapse
Affiliation(s)
- Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sílvia A Sousa
- iBB-Institute for Bioengineering and Biosciences, Departmento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Departmento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Yann Le Gal
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Dominique Lorcy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Rafaela A L Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Mariana F G Velho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal. and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Dulce Belo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - M Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Joana F Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Teresa Pinheiro
- iBB-Institute for Bioengineering and Biosciences, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
20
|
Computational investigation of molecular structures, spectroscopic properties, cholinesterase inhibition and antibacterial activities of triazole Schiff bases endowed metal chelates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130382] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Ghanghas P, Choudhary A, Kumar D, Poonia K. Coordination metal complexes with Schiff bases: Useful pharmacophores with comprehensive biological applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108710] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Fathalla SK, El-Ghamry HA, Gaber M. Ru(III) complexes of triazole based Schiff base and azo dye ligands: An insight into the molecular structure and catalytic role in oxidative dimerization of 2-aminophenol. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Zafar W, Sumrra SH, Chohan ZH. A review: Pharmacological aspects of metal based 1,2,4-triazole derived Schiff bases. Eur J Med Chem 2021; 222:113602. [PMID: 34139626 DOI: 10.1016/j.ejmech.2021.113602] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Clinical reports have highlighted the radical increase of antibiotic resistance. As a result, multidrug resistance has emerged as a serious threat to human health. Many organic compounds commonly used as drugs in the past, no longer have pure organic mode of action rather need bio-transformation or more activation. Bulk of research has shown that they need trace amount of metal ions incorporated within the chemistry of bioactive molecules for enhancement of their potentiality to fight aggressively against resistance. The deficiency of some metal ions can also be responsible for many diseases like growth retardation, pernicious anemia and heart diseases in infants. To overcome these problems, there is a need to introduce novel strategies which have new mechanism of action along with significant spectrum of biological activity, enhanced safety and efficacy. Bioinorganic compounds have played imperative role in developing the new strategy in the form of "Metal Based Drugs". In current years there have been momentous rise of interest in the application of metal based Schiff base compounds to treat various diseases which are difficult to be treated with conventional methodologies. The unique properties of metal chelates acting as an intermediate between conventional organic and inorganic compounds provided innovative opportunities in the field of pharmaceutical chemistry. In this review, we have exclusively focused on the search of metal based 1,2,4-triazole derived Schiff base compounds (synthesized, reported and reviewed in the past ten years) that possess various biological activities such as antifungal, antibacterial, antioxidant, antidiabetic, anthelmintic, anticancer, antiproliferative, cytotoxic and DNA-intercalation activity.
Collapse
Affiliation(s)
- Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Zahid H Chohan
- Department of Chemistry, Institute of Southern Punjab, Multan, Pakistan
| |
Collapse
|
24
|
Abdelghany MM, Ahmed IS, Dessouki HA, Abdelrahman EA. Facile Synthesis of CuO and Ag Nanoparticles by Thermal Decomposition of Novel Schiff Base Complexes. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02032-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Prosser KE, Xie D, Chu A, MacNeil GA, Varju BR, Kadakia RT, Que EL, Walsby CJ. Copper(II) Pyridyl Aminophenolates: Hypoxia-Selective, Nucleus-Targeting Cytotoxins, and Magnetic Resonance Probes. Chemistry 2021; 27:9839-9849. [PMID: 33878230 DOI: 10.1002/chem.202100603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/10/2022]
Abstract
Targeting the low-oxygen (hypoxic) environments found in many tumours by using redox-active metal complexes is a strategy that can enhance efficacy and reduce the side effects of chemotherapies. We have developed a series of CuII complexes with tridentate pyridine aminophenolate-based ligands for preferential activation in the reduction window provided by hypoxic tissues. Furthermore, ligand functionalization with a pendant CF3 group provides a 19 F spectroscopic handle for magnetic-resonance studies of redox processes at the metal centre and behaviour in cellular environments. The phenol group in the ligand backbone was substituted at the para position with H, Cl, and NO2 to modulate the reduction potential of the CuII centre, giving a range of values below the window expected for hypoxic tissues. The NO2 -substituted complex, which has the highest reduction potential, showed enhanced cytotoxic selectivity towards HeLa cells grown under hypoxic conditions. Cell death occurs by apoptosis, as determined by analysis of the cell morphology. A combination of 19 F NMR and ICP-OES indicates localization of the NO2 complex in HeLa cell nuclei and increased cellular accumulation under hypoxia. This correlates with DNA nuclease activity being the likely origin of cytotoxic activity, as demonstrated by cleavage of DNA plasmids in the presence of the CuII nitro complex and a reducing agent. Selective detection of the paramagnetic CuII complexes and their diamagnetic ligands by 19 F MRI suggests hypoxia-targeting theranostic applications by redox activation.
Collapse
Affiliation(s)
- Kathleen E Prosser
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada.,Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Da Xie
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Annica Chu
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Bryton R Varju
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Rahul T Kadakia
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, TX 78712, USA
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
26
|
El-Gammal OA, Mohamed FS, Rezk GN, El-Bindary AA. Structural characterization and biological activity of a new metal complexes based of Schiff base. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115522] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Srinivasan V, Khamrang T, Ponraj C, Saravanan D, Yamini R, Bera S, Jhonsi MA. Pyrene based Schiff bases: Synthesis, crystal structure, antibacterial and BSA binding studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Singh G, Sharma G, Satija P, Singh A, Pawan, Ruiz CE, Silvera DG, Esteban MA, Soni S. Design and Synthesis of Heterocyclic Encapsulated Organosilatranes for In Silico, In Vitro Antioxidant and Cytotoxicity Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202004164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Geetika Sharma
- Department of Chemistry GGDSD College, Sector 32 C Chandigarh India
| | - Pinky Satija
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Akshpreet Singh
- Department of Chemistry GGDSD College, Sector 32 C Chandigarh India
| | - Pawan
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Cristóbal E. Ruiz
- Department of Cell Biology & Histology Faculty of Biology University of Murcia 30100 Murcia Spain
| | | | - María A. Esteban
- Department of Cell Biology & Histology Faculty of Biology University of Murcia 30100 Murcia Spain
| | - Sajeev Soni
- Department of Chemistry GGDSD College, Sector 32 C Chandigarh India
| |
Collapse
|
29
|
Kassab RM, Khalil FSAM, Abbas AA. Synthesis and Antimicrobial Activities of Some New Bis(Schiff Bases) and Their Triazole-Based Lariat Macrocycles. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Refaie M. Kassab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Ashraf A. Abbas
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
30
|
Wu S, Qi L, Ren Y, Ma H. 1,2,4-triazole-3-thione Schiff bases compounds: Crystal structure, hirshfeld surface analysis, DFT studies and biological evaluation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Sumrra SH, Habiba U, Zafar W, Imran M, Chohan ZH. A review on the efficacy and medicinal applications of metal-based triazole derivatives. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1839751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Umme Habiba
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Zahid Hussain Chohan
- Department of Chemistry, University College of Management and Sciences, Khanewal, Pakistan
| |
Collapse
|
32
|
Li Y, Dong J, Zhao P, Hu P, Yang D, Gao L, Li L. Synthesis of Amino Acid Schiff Base Nickel (II) Complexes as Potential Anticancer Drugs In Vitro. Bioinorg Chem Appl 2020; 2020:8834859. [PMID: 33061947 PMCID: PMC7542481 DOI: 10.1155/2020/8834859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022] Open
Abstract
Three hexacoordinated octahedral nickel (II) complexes, [Ni (Trp-sal) (phen) (CH3OH)] (1), [Ni (Trp-o-van) (phen) (CH3OH)]•2CH3OH (2), and [Ni (Trp-naph) (phen) (CH3OH)] (3) (where Trp-sal = Schiff base derived from tryptophan and salicylaldehyde, Trp-o-van = Schiff base derived from tryptophan and o-vanillin, Trp-naph = Schiff base derived from tryptophan and 2-hydroxy-1-naphthaldehyde, phen = 1, 10-phenanthroline), have been synthesized and characterized as potential anticancer agents. Details of structural study of these complexes using single-crystal X-ray crystallography showed that distorted octahedral environment around nickel (II) ion has been satisfied by three nitrogen atoms and three oxygen atoms. All these complexes displayed moderate cytotoxicity toward esophageal cancer cell line Eca-109 with the IC50 values of 23.95 ± 2.54 μM for 1, 18.14 ± 2.39 μM for 2, and 21.89 ± 3.19 μM for 3. Antitumor mechanism studies showed that complex 2 can increase the autophagy, reactive oxygen species (ROS) levels, and decrease the mitochondrial membrane potential remarkably in a dose-dependent manner in the Eca-109 cells. Complex 2 can cause cell cycle arrest in the G2/M phase. Additionally, complex 2 can regulate the Bcl-2 family and autophagy-related proteins.
Collapse
Affiliation(s)
- Yang Li
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Jianfang Dong
- Department of Material Science, Shandong Polytechnic Technician College, Liaocheng 252000, China
| | - Peiran Zhao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Ping Hu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
33
|
Gao E, Li Z, Zhu X, Ma Z, Zhu M. Synthesis, characterization, DNA binding, cytotoxicity and molecular docking properties of three novel butterfly‐like complexes with nitrogen‐containing heterocyclic ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Enjun Gao
- School of Chemical EngineeringUniversity of Science and Technology Liaoning Anshan 114051 China
| | - Zhipeng Li
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Xiaopeng Zhu
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Zhiyan Ma
- Yingkou Institute of Technology 115014 China
| | - Mingchang Zhu
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| |
Collapse
|
34
|
Takroni KM, Farghaly TA, Harras MF, El‐Ghamry HA. Synthesis, structure elucidation, DNA binding and molecular docking studies of novel copper(II) complexes of two 1,3,4‐thiadiazolethiosemicarbazone derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Khadiga M. Takroni
- Chemistry Department, Faculty of Applied Science Umm Al–Qura University Makkah Saudi Arabia
| | | | - Marwa F. Harras
- Pharmaceutical Chemistry Department, Faculty of Pharmacy Al‐Azhar University Cairo Egypt
| | - Hoda A. El‐Ghamry
- Chemistry Department, Faculty of Applied Science Umm Al–Qura University Makkah Saudi Arabia
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
35
|
Synthesis, characterization and antimicrobial activity of a novel chitosan Schiff bases based on heterocyclic moieties. Int J Biol Macromol 2020; 153:492-501. [DOI: 10.1016/j.ijbiomac.2020.02.302] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/21/2023]
|
36
|
Gupta B, Kumari A, Belwal S, Singh RV, Fahmi N. Synthesis, characterization of platinum(II) complexes of Schiff base ligands and evaluation of cytotoxic activity of platinum nanoparticles. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1728552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bhavana Gupta
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Anita Kumari
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Savita Belwal
- Department of Chemistry, Anurag group of institutions, Hyderabad, India
| | - R. V Singh
- Department of Chemistry, University of Rajasthan, Jaipur, India
| | - Nighat Fahmi
- Department of Chemistry, University of Rajasthan, Jaipur, India
| |
Collapse
|
37
|
|
38
|
Kreaunakpan J, Chainok K, Halcovitch NR, Tiekink ERT, Pirojsirikul T, Saithong S. Crystal and mol-ecular structures of a binuclear mixed ligand complex of silver(I) with thio-cyanate and 1 H-1,2,4-triazole-5(4 H)-thione. Acta Crystallogr E Crystallogr Commun 2020; 76:42-47. [PMID: 31921450 PMCID: PMC6944082 DOI: 10.1107/s2056989019016359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022]
Abstract
The complete mol-ecule of the binuclear title complex, bis-[μ-1H-1,2,4-triazole-5(4H)-thione-κ2 S:S]bis-{(thio-cyanato-κS)[1H-1,2,4-triazole-5(4H)-thione-κS]silver(I)}, [Ag2(SCN)2(C2H3N3S)4], is generated by crystallographic inversion symmetry. The independent triazole-3-thione ligands employ the exocyclic-S atoms exclusively in coordination. One acts as a terminal S-ligand and the other in a bidentate (μ2) bridging mode to provide a link between two AgI centres. Each AgI atom is also coordinated by a terminal S-bound thio-cyanate ligand, resulting in a distorted AgS4 tetra-hedral coordination geometry. An intra-molecular N-H⋯S(thio-cyanate) hydrogen bond is noted. In the crystal, amine-N-H⋯S(thione), N-H⋯N(triazol-yl) and N-H⋯N(thio-cyanate) hydrogen bonds give rise to a three-dimensional architecture. The packing is consolidated by triazolyl-C-H⋯S(thio-cyanate), triazolyl-C-H⋯N(thiocyanate) and S⋯S [3.2463 (9) Å] inter-actions as well as face-to-face π-π stacking between the independent triazolyl rings [inter-centroid separation = 3.4444 (15) Å]. An analysis of the calculated Hirshfeld surfaces shows the three major contributors are due to N⋯H/H⋯N, S⋯H/H⋯S and C⋯H/H⋯C contacts, at 35.8, 19.4 and 12.7%, respectively; H⋯H contacts contribute only 7.6% to the overall surface.
Collapse
Affiliation(s)
- Janjira Kreaunakpan
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kittipong Chainok
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
| | - Nathan R. Halcovitch
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Edward R. T. Tiekink
- Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Teerapong Pirojsirikul
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Saowanit Saithong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
39
|
Second sphere coordination in orthonitrophenolate binding: Synthesis, biological, cytotoxic and X-ray structural studies of [Co(bpy)2CO3](C6H4NO3)·3H2O. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Vhanale B, Deshmukh N, Shinde A. Synthesis, characterization, spectroscopic studies and biological evaluation of Schiff bases derived from 1-hydroxy-2-acetonapthanone. Heliyon 2019; 5:e02774. [PMID: 31763472 PMCID: PMC6859237 DOI: 10.1016/j.heliyon.2019.e02774] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022] Open
Abstract
The four Schiff bases (I - IV) were synthesized by the condensation reaction of 1(1-hydroxynaphthalen-2-yl)ethanone, 1-(4-chloro-1hydroxynaphthalen-2-yl)ethanone and 1-(4-bromo-1-hydroxynaphthalen-2-yl)ethanone with propane-1,3-diamine and pentane-1,3-diamine. The structural analysis is done by UVvis., FT-IR, 1H NMR, 13C NMR, LCMS and elemental analyses. These compounds were assayed for antibacterial (Escherichia coli and Salmonella Typhi) activity and antioxidant (2,2-Diphenyl-1-Picryl Hydrazyl(DPPH) and Hydroxyl radical scavenging method) activity. The antibacterial and antioxidant activities of synthesized Schiff bases exhibited better degrees of inhibitory effects. Among these, Schiff base 2,2'-((propane-1,3-diylbis(azanylylidene))bis(ethan-1-yl-1-ylidene))bis(4-chloronaphthalen-1-ol) (II) exhibited excellent antibacterial activity with MICs of 0.12, 0.25, 0.5 and 1 mg/ml against E. coli and Salmonella Typhi. Furthermore, two Schiff bases such as, 2,2'-((propane-1,3-diylbis(azanylylidene))bis(ethan-1-yl-1-ylidene))bis(naphthalen-1-ol) (I) and 2,2'-((pentane-1,3-diylbis(azanylylidene))bis(ethan-1-yl-1-ylidene))bis(4-bromonaphthalen-1-ol) (IV) exhibited promising antioxidant activity.
Collapse
Affiliation(s)
| | | | - A.T. Shinde
- Department of Chemical Sciences, N.E.S. Science College, Nanded, Maharashtra, 431605, India
| |
Collapse
|
41
|
Malekshah RE, Salehi M, Kubicki M, Khaleghian A. Synthesis, structure, computational modeling and biological activity of two new Casiopeínas ® complexes and their nanoparticles. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1656334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Mehdi Salehi
- Department of Chemistry, Semnan University, Semnan, Iran
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
42
|
Shukla SN, Gaur P, Chaurasia B. Studies on heterocyclic anchored Cu(II) complexes with ONO pincer type donor ligand as an efficient biomimetic and anticorrosion agent. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Novel benzildihydrazone based Schiff bases: Syntheses, characterization, thermal properties, theoretical DFT calculations and biological activity studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Multi-walled carbon nanotubes decorated with Cu(II) triazole Schiff base complex for adsorptive removal of synthetic dyes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Alpaslan G, Boyacioglu B, Demir N, Tümer Y, Yapar G, Yıldırım N, Yıldız M, Ünver H. Synthesis, characterization, biological activity and theoretical studies of a 2-amino-6-methoxybenzothiazole-based fluorescent Schiff base. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
46
|
Synthesis and structural characterization of antimicrobial binuclear copper(II) coordination compounds bridged by hydroxy- and/or thiodipropionic acid. J Inorg Biochem 2019; 191:8-20. [DOI: 10.1016/j.jinorgbio.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 11/22/2022]
|
47
|
Sujatha K, Vedula RR. Multicomponent Efficient Synthesis of New [1,2,4]Triazolo[3,4]thiadiazines. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kodam Sujatha
- Department of ChemistryNational Institute of Technology Warangal 506 004 Telangana India
| | - Rajeswar Rao Vedula
- Department of ChemistryNational Institute of Technology Warangal 506 004 Telangana India
| |
Collapse
|
48
|
Ali AA, Al-Hassani RM, Hussain DH, Rheima AM, Abd AN, Meteab HS. Fabrication of Solar Cells Using Novel Micro- and Nano-Complexes of Triazole Schiff Base Derivatives. JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY 2019; 54. [DOI: 10.35741/issn.0258-2724.54.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A new asymmetrical Schiff base triazole ligand, (4-(((3-mercapto-5-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-4-yl)imino)methyl)phenol) (L1), was synthesized and characterized using CHNS elemental analysis and FTIR, UV/Vis, mass, 1H NMR, and 13C NMR spectroscopies. The Schiff base metal complexes of NiL1, PdL1, and AgL1 were synthesized and identified using FTIR, UV/Vis and flame atomic absorption spectroscopies and elemental analysis, as well as magnetic susceptibility and conductivity measurements. NanoL1 and its complexes, nanoNiL1, nanoPdL1, and nanoAgL1, were prepared as compounds using ultrasound. The new nano-complexes were characterized using FTIR, UV/Vis, atomic force microscopy, scanning electron microscope, and XRD measurements. The structural, optical and morphological properties were studied in a solution of DMSO and then precipitated on silicon slides using the drop-casting method to fabricate the solar cells.
Collapse
|
49
|
Gaber M, Khedr AM, Mansour MA, Elsharkawy M. Nano-synthesis, characterization, modeling and molecular docking analysis of Mn (II), Co (II), Cr (III) and Cu (II) complexes with azo pyrazolone ligand as new favorable antimicrobial and antitumor agents. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohamed Gaber
- Chemistry Department, Faculty of Science; Tanta University; Tanta 31527 Egypt
| | - Abdalla M. Khedr
- Chemistry Department, Faculty of Science; Tanta University; Tanta 31527 Egypt
- Department of Chemistry, Faculty of Applied Science; Umm Al-Qura University; Makkah Saudi Arabia
| | - Mohammed A. Mansour
- Biochemistry Division, Chemistry Department, Faculty of Science; Tanta University; Tanta 31527 Egypt
- Institute of Cancer Sciences, University of Glasgow; Garscube Estate, Switchback Road Glasgow G61 1QH UK
| | - Mohsen Elsharkawy
- Chemistry Department, Faculty of Science; Tanta University; Tanta 31527 Egypt
| |
Collapse
|
50
|
Kumar S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA. Design, Synthesis and Biological Potential of 5-(2-Amino-6-(3/4-bromophenyl)pyrimidin-4-yl)benzene-1,3-diol Scaffolds as Promising Antimicrobial and Anticancer Agents. Mini Rev Med Chem 2018; 19:851-864. [PMID: 30306864 DOI: 10.2174/1389557518666181009141924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/15/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND A series of 5-(2-amino-6-(3/4-bromophenyl)pyrimidin-4-yl)benzene-1,3-diol scaffolds was synthesized by Claisen-Schmidt condensation and characterized by NMR, IR, Mass and elemental analyses. METHODS The synthesized pyrimidine scaffolds were screened for their antimicrobial activity by tube dilution method as well for antiproliferative activity (human colorectal (HCT116) cancer cell line) by SRB assay. RESULTS The antimicrobial screening results demonstrated that compounds, k6, k12, k14 and k20 were found to be the most potent ones against selected microbial species. The anticancer screening results indicated that compounds, k8 and k14 displayed potent anticancer activity against cancer cell line (HCT116). CONCLUSION Further, the molecular docking study carried to find out the interaction between active pyrimidine compounds with CDK-8 protein indicated that compound k14 showed best dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, India
| | | | - Siong Meng Lim
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|