1
|
Brand A, Silva A, Andriolo C, Mellinger C, Uekane T, Garrett R, Rezende C. Bioaccessibility of Cafestol from Coffee Brew: A Metabolic Study Employing an In Vitro Digestion Model and LC-HRMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27876-27883. [PMID: 39630117 DOI: 10.1021/acs.jafc.4c06411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cafestol is an ent-kaurene skeleton diterpene that is present in coffee beans and brews. Although several biological activities have been described in the literature for cafestol, such as hypercholesterolemic, anti-inflammatory, anticerous, and antidiabetic effects, its metabolism within the human body remains poorly understood. Therefore, this study aimed to quantify cafestol in boiled coffee brew, assess its bioaccessibility using a static in vitro digestion model, and investigate the metabolites formed during the digestion process using liquid chromatography coupled to high-resolution mass spectrometry. Cafestol content in the boiled coffee brew ranged from 127.47 to 132.65 mg L-1. The bioaccessibility of cafestol from boiled coffee brew using the in vitro digestion model was 93.65%; additionally, in the intestinal phase, cafestol was mainly found in its alcohol form. Additionally, a novel carboxylic acid derivative metabolite from cafestol with m/z 331.1909 [M + H]+ formed in the oral digestion phase is proposed. This metabolite was also detected in other digestion phases. Thus, this is the first article to investigate the metabolism of cafestol during digestion using an in vitro digestion model. The results indicate that cafestol is bioaccessible, is available to absorption, in its alcohol form, and suffers an oxidation reaction during the oral phase of digestion.
Collapse
Affiliation(s)
- Ana Brand
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | - Ana Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | | | | | - Thaís Uekane
- Departamento de Bromatologia, Escola de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24241-002, Brasil
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| | - Claudia Rezende
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil
| |
Collapse
|
2
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
3
|
Ahmad S, Arsalan A, Hashmi A, Khan MA, Siddiqui WA, Younus H. A comparative study based on activity, conformation and computational analysis on the inhibition of human salivary aldehyde dehydrogenase by phthalate plasticizers: Implications in assessing the safety of packaged food items. Toxicology 2021; 462:152947. [PMID: 34534558 DOI: 10.1016/j.tox.2021.152947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022]
Abstract
Phthalate plasticizers are commonly used in various consumer-end products. Human salivary aldehyde dehydrogenase (hsALDH) is a detoxifying enzyme which defends us from the toxic aldehydes. Here, the effect of phthalates [Di-2-ethylhexyl phthalate (DEHP), Diethyl phthalate (DEP) and Dibutyl phthalate (DBP)] on hsALDH has been investigated. These plasticizers inhibited hsALDH, and the IC50 values were 0.48 ± 0.04, 283.20 ± 0.09 and 285.00 ± 0.14 μM for DEHP, DEP and DBP, respectively. DEHP was the most potent inhibitor among the three plasticizers. They exhibited mixed-type linear inhibition with inclination towards competitive-non-competitive inhibition. They induced both tertiary and secondary structural changes in the enzyme. Quenching of intrinsic hsALDH fluorescence in a constant manner was observed with a binding constant (Kb) of 8.91 × 106, 2.80 × 104, and 1.31 × 105 M-1, for DEHP, DEP and DBP, respectively. Computational analysis showed that these plasticizers bind stably in the proximity of hsALDH catalytic site, reciprocating via non-covalent interactions with some of the amino acids which are evolutionary conserved. Therefore, exposure to these plasticizers inhibits hsALDH which increases the risk of aldehyde induced toxicity, adversely affecting oral health. The study has implications in assessing the safety of packaged food items which utilize phthalates.
Collapse
Affiliation(s)
- Sumbul Ahmad
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Abdullah Arsalan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Waseem Ahmad Siddiqui
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
4
|
Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH. The Biochemical and Clinical Perspectives of Lactate Dehydrogenase: An Enzyme of Active Metabolism. Endocr Metab Immune Disord Drug Targets 2021; 20:855-868. [PMID: 31886754 DOI: 10.2174/1871530320666191230141110] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lactate dehydrogenase (LDH) is a group of oxidoreductase isoenzymes catalyzing the reversible reaction between pyruvate and lactate. The five isoforms of this enzyme, formed from two subunits, vary in isoelectric points and these isoforms have different substrate affinity, inhibition constants and electrophoretic mobility. These diverse biochemical properties play a key role in its cellular, tissue and organ specificity. Though LDH is predominantly present in the cytoplasm, it has a multi-organellar location as well. OBJECTIVE The primary objective of this review article is to provide an update in parallel, the previous and recent biochemical views and its clinical significance in different diseases. METHODS With the help of certain inhibitors, its active site three-dimensional view, reactions mechanisms and metabolic pathways have been sorted out to a greater extent. Overexpression of LDH in different cancers plays a principal role in anaerobic cellular metabolism, hence several inhibitors have been designed to employ as novel anticancer agents. DISCUSSION LDH performs a very important role in overall body metabolism and some signals can induce isoenzyme switching under certain circumstances, ensuring that the tissues consistently maintain adequate ATP supply. This enzyme also experiences some posttranslational modifications, to have diversified metabolic roles. Different toxicological and pathological complications damage various organs, which ultimately result in leakage of this enzyme in serum. Hence, unusual LDH isoform level in serum serves as a significant biomarker of different diseases. CONCLUSION LDH is an important diagnostic biomarker for some common diseases like cancer, thyroid disorders, tuberculosis, etc. In general, LDH plays a key role in the clinical diagnosis of various common and rare diseases, as this enzyme has a prominent role in active metabolism.
Collapse
Affiliation(s)
- Amjad A Khan
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia,Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Sivakumar J T Gowder
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City,
Vietnam,Faculty of Applied Sciences, Ton Duc Thang University, Vietnam
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| |
Collapse
|
5
|
Schwartz M, Neiers F, Feron G, Canon F. The Relationship Between Salivary Redox, Diet, and Food Flavor Perception. Front Nutr 2021; 7:612735. [PMID: 33585536 PMCID: PMC7876224 DOI: 10.3389/fnut.2020.612735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
The mouth is the gateway for entrance of food and microorganisms into the organism. The oral cavity is bathed by saliva, which is thus the first fluid that food and microorganisms will face after their entrance. As a result, saliva plays different functions, including lubrication, predigestion, protection, detoxification, and even transport of taste compounds to chemoreceptors located in the taste buds. To ensure its function of protection, saliva contains reactive harmful compounds such as reactive oxygen species that are controlled and neutralized by the antioxidant activity of saliva. Several antioxidant molecules control the production of molecules such as reactive oxygen compounds, neutralize them and/or repair the damage they have caused. Therefore, a balance between reactive oxidant species and antioxidant compounds exists. At the same time, food can also contain antioxidant compounds, which can participate in the equilibrium of this balance. Numerous studies have investigated the effects of different food components on the antioxidant capacity of saliva that correspond to the ability of saliva to neutralize reactive oxygen species. Contradictory results have sometimes been obtained. Moreover, some antioxidant compounds are also cofactors of enzymatic reactions that affect flavor compounds. Recent studies have considered the salivary antioxidant capacity to explain the release of flavor compounds ex vivo or in vivo. This article aims to review the effect of food on the antioxidant capacity of saliva and the impact of salivary antioxidant capacity on flavor perception after a brief presentation of the different molecules involved.
Collapse
Affiliation(s)
| | | | | | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS Université de Bourgogne, Dijon, France
| |
Collapse
|
6
|
Younus H, Ahmad S, Alam MF. Correlation between the Activity of Aldehyde Dehydrogenase and Oxidative Stress Markers in the Saliva of Diabetic Patients. Protein Pept Lett 2020; 27:67-73. [PMID: 31577196 PMCID: PMC6978645 DOI: 10.2174/0929866526666191002115121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Reactive aldehydes are involved in diseases associated with oxidative stress, including diabetes. Human salivary aldehyde dehydrogenase (hsALDH) presumably protects us from many toxic ingredient/contaminant aldehydes present in food. OBJECTIVE This study aimed to probe the activity of hsALDH in patients with diabetes and than to correlate it with various oxidative stress markers in the saliva. METHODS The saliva samples were collected from total 161 diabetic patients from Rajiv Gandhi Centre for Diabetes, Jawaharlal Nehru Medical College (JNMC), AMU, Aligarh, (India). HsALDH activity and markers of oxidative stress [8-hydroxydeoxyguanosine (8-OHDG), malondialdehyde (MDA) and advanced glycation end products (AGEs)] were measured in the saliva samples. RESULTS Patients with early stage of diabetes had higher activity of hsALDH when compared with the control group. As the history of diabetes increases, the activity of the enzyme decreases and also higher oxidative stress markers (8-OHDG, MDA and AGEs) are detected in the saliva samples. Negative significant correlation between hsALDH activity and oxidative stress markers were observed (p <0.0001). CONCLUSION The activity of hsALDH increases in early stages of diabetes most probably to counter the increased oxidative stress associated with diabetes. However, in later stages of diabetes, the activity of the enzyme decreases, possibly due to its inactivation resulting from glycation.
Collapse
Affiliation(s)
- Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India,Address correspondence to this author at the Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India; Tel: +91 571 2720388; Fax: +91 571 2721776; E-mails: ;
| | - Sumbul Ahmad
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Md. Fazle Alam
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
7
|
Schwartz M, Neiers F, Feron G, Canon F. Activités oxydo-réductrices dans la salive : modulation par l’alimentation et importance pour la perception sensorielle des aliments. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2020. [DOI: 10.1016/j.cnd.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Younus H, Arsalan A, Alam MF. Arsenic inhibits human salivary aldehyde dehydrogenase: Mechanism and a population-based study. CHEMOSPHERE 2020; 243:125358. [PMID: 31759211 DOI: 10.1016/j.chemosphere.2019.125358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Human salivary aldehyde dehydrogenase (hsALDH) is an important detoxifying enzyme and maintains oral health. Subjects with low hsALDH activity are at a risk of developing oral cancers. Arsenic (As) toxicity causes many health problems in humans. The objective of this population-based study was to correlate As contamination and hence low hsALDH activity with high incidence of cancer cases in Bareilly district of India. Here, it was observed that As inhibited hsALDH (IC50 value: 33.5 ± 2.5 μM), and the mechanism of inhibition was mixed type (in between competitive and non-competitive). Binding of As to hsALDH changed the conformation of the enzyme. A static quenching mechanism was observed between the enzyme and As with a binding constant (Kb) of 9.77 × 104 M-1. There is one binding site for As on hsALDH molecule. Further, the activity of hsALDH in volunteers living in regions of higher As levels in drinking water (Bahroli and Mirganj village of Bareilly district, India), and those living in region having safe levels of As (Aligarh city, India) was determined. The As level in the saliva samples of the volunteers was determined by inductively coupled plasma mass spectroscopy (ICP-MS). Low hsALDH activity was found in volunteers living in the region of higher As levels. The activity of hsALDH and As concentration in the saliva was found to be negatively correlated (r = - 0.427, p < 0.0001). Therefore, we speculate that the high incidence of cancer cases reported in Bareilly district may be due to higher As contamination.
Collapse
Affiliation(s)
- Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abdullah Arsalan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Md Fazle Alam
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
9
|
Citral Inhibition of Human Salivary Aldehyde Dehydrogenase. Cell Biochem Biophys 2019; 78:31-42. [PMID: 31732914 DOI: 10.1007/s12013-019-00891-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/17/2019] [Indexed: 01/07/2023]
Abstract
Human salivary aldehyde dehydrogenase (hsALDH) protects us from the toxic effect of aldehydes. It has both diagnostic and therapeutic importance. Citral possesses many biological and pharmacological properties. The aim of this work was to investigate the inhibitory effect and the mechanism of inhibition of citral on hsALDH. Citral inhibits the dehydrogenase activity of hsALDH. It decreased the substrate affinity and to a lesser extent, the catalytic efficiency of hsALDH. Citral showed linear mixed-type inhibition with a higher tendency of competitive behavior with little, but significant, non-competitive inhibition. The nucleophilicity of active site Cys residue is not a significant contributing factor in the inhibition process. Citral shows uncompetitive inhibition towards the co-enzyme (NAD+). α-helix and β-sheet content of the enzyme were changed in presence of citral. Biophysical studies showed that citral quenches the intrinsic fluorescence of hsALDH in a static manner by forming complex with the enzyme. Molecular docking study showed that both the isomers of citral bind to the catalytic site of hsALDH interacting with few evolutionary preserved amino acid residues through multiple non-covalent interactions. Ligand efficiency metrics values indicate that citral is an efficient ligand for the enzyme in terms of its physicochemical and pharmacokinetic properties.
Collapse
|
10
|
Laskar AA, Danishuddin, Khan SH, Subbarao N, Younus H. Enhancement in the Catalytic Activity of Human Salivary Aldehyde Dehydrogenase by Alliin from Garlic: Implications in Aldehyde Toxicity and Oral Health. Curr Pharm Biotechnol 2019; 20:506-516. [PMID: 31038061 DOI: 10.2174/1389201020666190416140817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/23/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lower human salivary aldehyde dehydrogenase (hsALDH) activity increases the risk of aldehyde mediated pathogenesis including oral cancer. Alliin, the bioactive compound of garlic, exhibits many beneficial health effects. OBJECTIVE To study the effect of alliin on hsALDH activity. METHODS Enzyme kinetics was performed to study the effect of alliin on the activity of hsALDH. Different biophysical techniques were employed for structural and binding studies. Docking analysis was done to predict the binding region and the type of binding forces. RESULTS Alliin enhanced the dehydrogenase activity of the enzyme. It slightly reduced the Km and significantly enhanced the Vmax value. At 1 µM alliin concentration, the initial reaction rate increased by about two times. Further, it enhanced the hsALDH esterase activity. Biophysical studies indicated a strong complex formation between the enzyme and alliin (binding constant, Kb: 2.35 ± 0.14 x 103 M-1). It changes the secondary structure of hsALDH. Molecular docking study indicated that alliin interacts to the enzyme near the substrate binding region involving some active site residues that are evolutionary conserved. There was a slight increase in the nucleophilicity of active site cysteine in the presence of alliin. Ligand efficiency metrics values indicate that alliin is an efficient ligand for the enzyme. CONCLUSION Alliin activates the catalytic activity of the enzyme. Hence, consumption of alliincontaining garlic preparations or alliin supplements and use of alliin in pure form may lower aldehyde related pathogenesis including oral carcinogenesis.
Collapse
Affiliation(s)
- Amaj A Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Danishuddin
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shaheer H Khan
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
11
|
Ahmed Laskar A, Younus H. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev 2019; 51:42-64. [DOI: 10.1080/03602532.2018.1555587] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amaj Ahmed Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|