1
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2024:10.1007/s10534-024-00647-5. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
2
|
Munir T, Mahmood A, Ali I, Abbas N, Sohail A, Arshia, Khan Y. Investigation of antibacterial and anticancer activities of copper, aluminum and nickel doped zinc sulfide nanoparticles. Sci Rep 2024; 14:19304. [PMID: 39164280 PMCID: PMC11335939 DOI: 10.1038/s41598-024-68631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
First time compared the different metals doped ZnS nanoparticles for antibacterial and liver cancer cell line. In this study, copper, aluminum and nickel doped ZnS NPs were synthesized via co-precipitation method. The XRD analysis was confirmed the presence of cubic crystal structure and crystallite size decreased from 6 to 3 nm with doping elements. While as SEM micro-grains were revealed slightly irregular and agglomerated morphology with the presence of dopant elements. The presence of different dopant elements such as Cu, Al and Ni in ZnS NPs was identified via EDX analysis. The FTIR results demonstrate various vibrational stretching and bending modes attached to the surface of ZnS nanomaterials. After that the well diffusion method was used to conduct in-vitro bioassays for evaluation of antibacterial and anticancer activities against E.coli and B.cereus, as well as HepG2 liver cancer cell line. Our findings unveil exceptional results with maximum inhibition zone of approximately 9 to 23 mm observed against E.coli and 12 to 27 mm against B.cereus, respectively. In addition, the significant reduction in cell viability was achieved against the HepG2 liver cancer cell line. These favorable results highlight the potential of Ni doped ZnS NPs for various biomedical applications. In future, the doped ZnS nanomaterials will be suitable for hyperthermia therapy and wound healing process.
Collapse
Affiliation(s)
- Tariq Munir
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Arslan Mahmood
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Irfan Ali
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Numan Abbas
- College of Physics and Information Technology, Shaanxi Normal University, 710119, Xian, Shaanxi, People's Republic of China
| | - Amjad Sohail
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Arshia
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Yasin Khan
- Department of Electrical Engineering, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Guirguis H, Youssef N, William M, Abdel-Dayem D, El-Sayed MM. Bioinspired Stevia rebaudiana Green Zinc Oxide Nanoparticles for the Adsorptive Removal of Antibiotics from Water. ACS OMEGA 2024; 9:12881-12895. [PMID: 38524454 PMCID: PMC10955700 DOI: 10.1021/acsomega.3c09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Green zinc oxide nanoparticles (ZnO NPs) synthesized using Stevia rebaudiana as a reducing agent were investigated as ecofriendly adsorbents for the removal of the antibiotics ciprofloxacin (CIP) and tetracycline (TET) from water. Green ZnO NPs were synthesized using a rapid novel approach that did not require annealing or calcination at high temperatures to produce mesoporous NPs with a size range of 37.36-71.33 nm, a specific surface area of 15.28 m2/g, and a negative surface charge of -15 mV at pH 5. The green ZnO NPs exhibited an antioxidant activity of 85.57% at 250 μg/mL and an antibacterial activity with MIC and MBC of 50 and 100 mg/mL, respectively, against both Escherichia coli and Staphylococcus aureus. The best adsorption performance was achieved using a 4 g/L dose and pH 5, yielding, respectively, 86.77 ± 0.82% removal and 27.07 ± 0.26 mg/g adsorption capacity for CIP at 10 mg/L and 67.86 ± 3.41% and 15.88 ± 0.37 mg/g for TET at 25 mg/L. The green ZnO NPs achieved 79.71% ± 0.28 and 61.55% ± 0.53 removal of 10 mg/L CIP and 25 mg/L TET, respectively, in a spiked tap water binary system of the two contaminants. Adsorption of CIP and TET occurred mainly via electrostatic interactions, whereby CIP was bound more strongly than TET by virtue of its charge and size. The synthesis and adsorption processes were evaluated by a stepwise regression statistical model to optimize their parameters. Lastly, the green ZnO NPs were regenerated and reused for 5 cycles, indicating their functionality as simple, reusable, and low-cost adsorbents for the removal of CIP and TET from wastewater, in accordance with SDGs #6 and 12 for the sustainable management of water.
Collapse
Affiliation(s)
- Hania
A. Guirguis
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Noha Youssef
- Mathematics
and Actuarial Science Department, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Mariam William
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Dania Abdel-Dayem
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Mayyada M.H. El-Sayed
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| |
Collapse
|
4
|
K L N, Pandey MK, Albeshr MF, Alrefaei AF, Bharathi D, Lee J, Raghavendra VB. The implementation of ZnS-SnS BM NPs for phenanthrene degradation: An adsorptive photocatalyst approach and its toxicity studies in adult zebrafish. CHEMOSPHERE 2024; 349:140860. [PMID: 38052312 DOI: 10.1016/j.chemosphere.2023.140860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Phenanthrene is a persistent organic pollutant released by numerous industries. The purpose of the study is to construct a batch reactor for phenanthrene degradation using a bimetallic (BM) ZnS-SnS nanoparticle as a photocatalyst. ZnS-SnS BM NPs were used as a photocatalyst, employed from precursors Zinc acetate dihydrate and tin (II) chloride dihydrate, with crystalline cubic-shaped particle sizes. ZnS-SnS BM NPs were utilized in batch adsorption assays to assess the impact of phenanthrene degradation parameters on various PAHs (Polycyclic aromatic hydrocarbons) concentrations, pH levels, and irradiation sources. Adsorption kinetic and isotherm tests revealed that the pseudo-first order kinetic model, pseudo-second order kinetic model, and Langmuir isotherm model all fit effectively with the effective phenanthrene degradation using ZnS-SnS BM NPs. The degraded product were analyzed for GC-MS, revealing that organic pollutant phenanthrene was converted into harmless by-products like n-hexadecenoic acid, oleic acid, and octadecanoic acid. The toxicity of phenanthrene was observed to decrease with an increase in ZnS-SnS BM NPs concentration. ZnS-SnS BM NP concentration of 150 μg/mL, the zone of inhibition values was recorded highest zone of inhibition (19 ± 1.2 mm) against the strains S. epidermis followed by B. cereus and Clostridium spp. Further adult zebrafish were found to be less toxic to ZnS-SnS BM NPs after 96 h of exposure, with an LD50 of 100 μg/L. The toxicity escalated as concentrations increased. Behavior test showed normal swimming, learning, and memory in open tank and T-maze tests, while 100 μg/L showed pausing/frozen time in zebra fish therefore low doses are considered safe. Hence by employing ZnS-SnS BM NPs can be engaged in waste water treatment for PAH degradation.
Collapse
Affiliation(s)
- Nityashree K L
- Department of Clinical Psychology, JSS Medical College and Hospital, JSS AHER, Mysuru, 570 015, Karnataka, India
| | - Manoj K Pandey
- Department of Clinical Psychology, JSS Medical College and Hospital, JSS AHER, Mysuru, 570 015, Karnataka, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Vinay B Raghavendra
- P.G. Department of Biotechnology, Teresian College, Siddarthanagar, Mysore, 570011, India.
| |
Collapse
|
5
|
Somaghian SA, Mirzaei SZ, Shakib MEK, Marzban A, Alsallameh S, Lashgarian HE. Biogenic zinc selenide nanoparticles fabricated using Rosmarinus officinalis leaf extract with potential biological activity. BMC Complement Med Ther 2024; 24:20. [PMID: 38178178 PMCID: PMC10768302 DOI: 10.1186/s12906-023-04329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024] Open
Abstract
Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods. As a novel facet of these NPs, plant-based ZnSe NPs were fabricated from an aqueous extract of Rosmarinus officinalis L. (RO extract). Physiochemical analyses such as UV-visible and FTIR spectroscopy, SEM-EDX and TEM Imaging, XRD and DLS-Zeta potential analyses confirmed the biological fabrication of RO-ZnSe NPs. Additionally, Ro-ZnSe NPs were investigated for their bioactivity. There was an apparent peak in the UV-visible spectrum at 398 nm to confirm the presence of ZnSe NPs. FTIR analysis confirmed RO-extract participation in ZnSe NPs synthesis by identifying putative functional groups associated with biomolecules. TEM and SEM analyses revealed that RO-ZnSe NPs have spherical shapes in the range of 90-100 nm. According to XRD and EDX analysis, RO-ZnSe NPs had a crystallite size of 42.13 nm and contain Se and Zn (1:2 ratio). These NPs demonstrated approximately 90.6% antioxidant and antibacterial activity against a range of bacterial strains at 100 µg/ml. Antibiofilm activity was greatest against Candida glabrata and Pseudomonas aeruginosa at 100 g/ml. Accordingly, the IC50 values for anticancer activity against HTB-9, SW742, and HF cell lines were 14.16, 8.03, and 35.35 g/ml, respectively. In light of the multiple applications for ZnSe NPs, our research indicates they may be an excellent option for biological and therapeutic purposes in treating cancers and infections. Therefore, additional research is required to determine their efficacy.
Collapse
Affiliation(s)
- Shahram Ahmadi Somaghian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyedeh Zahra Mirzaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Sarah Alsallameh
- Department of Medical Laboratories Techniques, College of Health and Medical Techniques, Gilgamesh Ahliya University Gau, Baghdad, 10022, Iraq
| | - Hamed Esmaeil Lashgarian
- Department of Medical Biotechnology, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
6
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Qaiyum MA, Samal PP, Dutta S, Dey B, Dey S. Non-conventional, burnt Shorea robusta leaf extract mediated green synthesis of zinc oxide nanoparticles and facile removal of eriochrome black T dye from water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:594-607. [PMID: 37723603 DOI: 10.1080/15226514.2023.2256903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The present study evaluates the synthesis of zinc oxide nanoparticles (ZnO NPs) using water extract of Sal leaves (Shorea Robusta) for efficient removal of Eriochrome black-T from the water and wastewater. The material is characterized using FESEM, FTIR, EDX, pHzpc, XRD, BET, and TGA analysis. XRD confirmed the synthesis of ZnO with an average crystallite size of 35.24 nm a surface area of 95.939 m2/g and a pore volume of 0.280 cm3/g. The pHzpc of the material is 7.45. The study evaluates the effects of contact time (0-100 min), pH (3-10), concentration (10-50 mg/L), and temperature (298-328K). The Langmuir isotherm model (R2 = 0.993) and pseudo-second-order kinetic model (R2 = 0.998) were found to be the best-fit models. The maximum uptake capacity is 265.554 mg/g. The interaction is spontaneous (ΔG° -12.889 to-14.898 kJ/mol), endothermic ΔH° (4.290-14.216 kJ/mol) with an increase in spontaneity at the solid-liquid junction. The dye-loaded ZnO NPs were successfully regenerated in dilute NaOH solution and 1:1 methanol water, achieving regeneration efficiencies of 78% and 60%, respectively. The reusability of the ZnO NPs was ascertained for up to three consecutive cycles.
Collapse
Affiliation(s)
- Md Atif Qaiyum
- Environmental Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Brambe, India
| | - Priyanka Priyadarsini Samal
- Environmental Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Brambe, India
| | - Subhashri Dutta
- Environmental Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Brambe, India
| | - Banashree Dey
- Department of Chemistry, The Graduate School College for Women, Jamshedpur, India
| | - Soumen Dey
- Environmental Protection Laboratory, Department of Chemistry, Central University of Jharkhand, Brambe, India
| |
Collapse
|
8
|
Shah ZM, Naz R, Naz S, Zahoor S, Nosheen A, Shahid M, Anwar Z, Keyani R. Incorporation of zinc sulfide nanoparticles, Acinetobacter pittii and Bacillus velezensis to improve tomato plant growth, biochemical attributes and resistance against Rhizoctoniasolani. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107909. [PMID: 37632995 DOI: 10.1016/j.plaphy.2023.107909] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/05/2023] [Accepted: 07/24/2023] [Indexed: 08/28/2023]
Abstract
Green nanobiotechnology and beneficial bacterial strains as biofertilizers are crucial in agriculture to achieve food security. Both these strategies have been individually studied in improving plant resistance against phytopathogens along with enhancing plant productivity. Therefore, objective of this study was to explore the eco-friendly and cost-effective approach of utilizing plant growth promoting and disease suppressing bacterial strains and nanoparticles, individually as well as in combination, as bio-stimulants to improve plant growth, antioxidant defense system, nutrition and yield of tomato. A pot experiment was conducted to investigate the zinc sulfide nanoparticles (ZnS NPs) synthesized by using Jacaranda mimosifolia flower extracts (JFE), Acinetobacter pittii and Bacillus velezensis either individually or in combinations to check their potential against Rhizoctonia solani in tomato to suppress root rot infection and improve growth and yield. Among all the combinations the JFE-ZnS NPs + B. velezensis compared to untreated infected plants showed minimum disease incidence and maximum significant protection (66%) against R. solani instigated root rot that was followed by JFE-ZnS NPs + A. pittii and individual application of JFE-ZnS NPs by 58%. The same treatment showed maximum significant increase in plant fresh and dry biomass. B. velezensis significantly increased the photosynthetic pigments when applied individually. However, JFE-ZnS NPs alone and in mixed treatments with B. velezensis efficiently improved total soluble protein, sugar and phenolic contents. The same interactive application of JFE-ZnS NPs + B. velezensis improved the tomato plant nutrition (silicon (Si), magnesium (Mg), calcium (Ca) and potassium (K)) and redox quenching status by improving the activity of antioxidant defense enzymes. Overall, the interactive use of JFE-ZnS NPs with A. pittii and B. velezensis very appropriately prepared the host plant to fight against the negative effects of root rot pathogen in tomato. Advancements in interactively investigating the nanoparticles with beneficial plant growth promoting bacterial strains importantly can contribute in resolving the challenges of food security. According to our information, this is a pioneer report for implying JFE-ZnS NPs in synergism with A. pittii and B. velezensis to hinder the root rot in tomatoes.
Collapse
Affiliation(s)
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Pakistan.
| | - Sidra Naz
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Sidra Zahoor
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Zahid Anwar
- Department of Computer Science, COMSATS University Islamabad, Vehari Campus, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| |
Collapse
|
9
|
Segura A, Rodriguez A, Hernández P, Pesenti H, Hernández-Montelongo J, Arranz A, Benito N, Bitencourt J, Vergara-González L, Nancucheo I, Recio-Sánchez G. Sulfidogenic Bioreactor-Mediated Formation of ZnS Nanoparticles with Antimicrobial and Photocatalytic Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:935. [PMID: 36903813 PMCID: PMC10004825 DOI: 10.3390/nano13050935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The use of sulfidogenic bioreactors is a biotechnology trend to recover valuable metals such as copper and zinc as sulfide biominerals from mine-impacted waters. In the present work, ZnS nanoparticles were produced using "green" H2S gas generated by a sulfidogenic bioreactor. ZnS nanoparticles were physico-chemically characterized by UV-vis and fluorescence spectroscopy, TEM, XRD and XPS. The experimental results showed spherical-like shape nanoparticles with principal zinc-blende crystalline structure, a semiconductor character with an optical band gap around 3.73 eV, and fluorescence emission in the UV-visible range. In addition, the photocatalytic activity on the degradation of organic dyes in water, as well as bactericidal properties against several bacterial strains, were studied. ZnS nanoparticles were able to degrade methylene blue and rhodamine in water under UV radiation, and also showed high antibacterial activity against different bacterial strains including Escherichia coli and Staphylococcus aureus. The results open the way to obtain valorous ZnS nanoparticles from the use of dissimilatory reduction of sulfate using a sulfidogenic bioreactor.
Collapse
Affiliation(s)
- Aileen Segura
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4030000, Chile
| | - Araceli Rodriguez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4030000, Chile
| | - Pedro Hernández
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4030000, Chile
| | - Hector Pesenti
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Jacobo Hernández-Montelongo
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Antonio Arranz
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Noelia Benito
- Departamento de Física, Universidad de Concepción, Concepción 4030000, Chile
| | | | - Luis Vergara-González
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción 4030000, Chile
| | - Iván Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4030000, Chile
| | - Gonzalo Recio-Sánchez
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4030000, Chile
| |
Collapse
|
10
|
Haque M, Konthoujam I, Lyndem S, Koley S, Aguan K, Singha Roy A. Formation of ZnS quantum dots using green tea extract: applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J Mater Chem B 2023; 11:1998-2015. [PMID: 36752685 DOI: 10.1039/d2tb02265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Biocompatible quantum dots (QDs) have attracted a lot of attention due to their potential biological applications (drug delivery, sensing and diagnosis). Here, we have synthesized 2-4 nm sized biocompatible zinc sulphide (ZnS) QDs using a plant leaf extract as an immobilizing and stabilizing agent via a green route. We have investigated the biological effects of ZnS QDs in a variety of applications, including (1) anti-bacterial activity, (2) cell cytotoxicity, (3) bio-sensing and (4) protein binding. Studies on the anti-bacterial activity of the as-synthesized ZnS QDs against E. coli and E. faecalis inhibited bacterial growth effectively and showed a cytotoxic effect on the HeLa cell line. The biosynthesized ZnS QDs act as a fluorescence probe to detect bilirubin and rifampicin (RFP) with a wide linear range, high sensitivity, good selectivity, and a low limit of detection (LOD), with LOD values of 22.12 ± 0.25 ng mL-1 and 122.37 ± 0.42 ng mL-1, respectively. In a biological matrix, the QDs can form a complex with biomacromolecules; therefore, we studied the interaction between a carrier protein (HSA) and the as-synthesized ZnS QDs. The surface functionalized and nano-sized ZnS-GT QDs were observed to form complexes with the human serum albumin (HSA) protein and quenched the intrinsic fluorescence of HSA through static and dynamic quenching modes. The binding affinity was observed to be of the order of 105 M-1 for the HSA-ZnS-GT QD interactions, which can be considered as a reversible mode of binding. The effect of the ZnS QDs on other ligands and protein interactions was also studied. Enhanced binding affinities for HSA-quercetin ((5.994 ± 0.139) × 105 M-1) and HSA-luteolin ((3.068 ± 0.127) × 105 M-1) interactions were also observed in the presence of ZnS-GT QDs.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Ibemhanbi Konthoujam
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Sudipta Koley
- Department of Physics, Amity University, Kolkata 700135, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India.
| |
Collapse
|
11
|
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CJK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. INSECTS 2023; 14:221. [PMID: 36975906 PMCID: PMC10059804 DOI: 10.3390/insects14030221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Entomology, Uganda Virus Research Institute, Plot 51/59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Stephen Kigozi
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Rebecca M. Sikumbili
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa B.P. 190, Democratic Republic of the Congo
| | - Claude-Josué K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Sébastien N. Wendji
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aristote B. Buya
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Martha A. Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
12
|
Bora KA, Hashmi S, Zulfiqar F, Abideen Z, Ali H, Siddiqui ZS, Siddique KHM. Recent progress in bio-mediated synthesis and applications of engineered nanomaterials for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:999505. [PMID: 36262650 PMCID: PMC9574372 DOI: 10.3389/fpls.2022.999505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing demand for agricultural food products, medicine, and other commercial sectors requires new technologies for agricultural practices and promoting the optimum utilization of natural resources. The application of engineered nanomaterials (ENMs) enhance the biomass production and yield of food crop while resisting harmful environmental stresses. Bio-mediated synthesis of ENMs are time-efficient, low-cost, environmentally friendly, green technology. The precedence of using a bio-mediated route over conventional precursors for ENM synthesis is non-toxic and readily available. It possesses many active agents that can facilitate the reduction and stabilization processes during nanoparticle formation. This review presents recent developments in bio-mediated ENMs and green synthesis techniques using plants, algae, fungi, and bacteria, including significant contributions to identifying major ENM applications in agriculture with potential impacts on sustainability, such as the role of different ENMs in agriculture and their impact on different plant species. The review also covers the advantages and disadvantages of different ENMs and potential future research in this field.
Collapse
Affiliation(s)
- Kainat Amin Bora
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
| | - Saud Hashmi
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Haibat Ali
- Department of Environmental Sciences, Karakorum International University, Gilgit, Pakistan
| | | | | |
Collapse
|
13
|
Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements. Bioengineering (Basel) 2022; 9:bioengineering9070320. [PMID: 35877371 PMCID: PMC9311542 DOI: 10.3390/bioengineering9070320] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. However, these products were designed initially for generic anticancer purposes and not specifically for BC treatment. With a better understanding of the molecular biology of BC, several novel and promising nanotherapeutic strategies and devices have been developed in recent years. In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes against BC. Selective targeting of BC cells results in the activation of programmed cell death in BC cells and can be considered a promising strategy for managing triple-negative BC. Currently, conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT), ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable, biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or in conjunction with numerous molecules. This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors. Researchers may gain insight from these strategies to design and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity, antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 54000, Pakistan;
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); or (S.P.)
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Shirin Shojaei
- Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (A.R.); or (S.P.)
| |
Collapse
|
14
|
Priyanka U, Lens PNL. Light driven Aspergillus niger-ZnS nanobiohybrids for degradation of methyl orange. CHEMOSPHERE 2022; 298:134162. [PMID: 35302000 DOI: 10.1016/j.chemosphere.2022.134162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Inorganic-microbial hybrid systems have potential to be sustainable, efficient and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with microbial cells. Here, we demonstrate light-driven photocatalytic semiconducting Aspergillus niger cells-ZnS nanoparticles for enhanced removal of the dye methyl orange. Chemically synthesized ZnS nanoparticles exhibited a zinc blende pattern in X-ray diffraction, had a dimension of 20-90 nm with a band gap (Ebg) of 3.4 eV at 1.83 × 1018 photons/second. Biologically synthesized ZnS nanoparticles of 40-90 nm showed a hexagonal pattern in the X-ray powder diffraction spectra with an Ebg 3.7 eV at 1.68 × 1018 photons/second. At a methyl orange (MO) concentration of 100 mg/L, dosage of 0.5 × 105 mol catalyst and pH 4, a 97.5% and 98% removal efficiency of MO was achieved in 90 min and 60 min for, respectively, chemically and biologically synthesized ZnS nanobiohybrids in the presence of UV-A light. The major degradation products of photocatalysis for chemically synthesized ZnS nanobiohybrids were naphtholate (C10H7O m/z 143) and hydroquinone (C9H5m/z 113). For the biologically synthesized ZnS nanobiohybrids, the degradation products were hydroquinone (C9H5m/z 113) and 2-phenylphenol (C12H10O m/z 170).
Collapse
Affiliation(s)
| | - Piet N L Lens
- National University of Ireland, University Road, Galway, Ireland.
| |
Collapse
|
15
|
Moghadam NCZ, Jasim SA, Ameen F, Alotaibi DH, Nobre MAL, Sellami H, Khatami M. Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans. Bioprocess Biosyst Eng 2022; 45:1201-1210. [PMID: 35704072 DOI: 10.1007/s00449-022-02736-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022]
Abstract
Dental decay is known in the world as the most common human infectious disease. Ascending process of dental caries index in the world shows the failure of oral disease prevention. Streptococcus mutans bacteria cause acid damage and tooth decay by producing acid over time. Nanomaterials with suitable functionality, high permeability, extremely large surface area, significant reactivity, unique mechanical features, and non-bacterial resistance can be considered as promising agents for antimicrobial and antiviral applications. In this study, nickel oxide (NiO) nanoparticles with size range from 2 to 16 nm containing Stevia natural sweetener were eco-friendly synthesized via a simple method. Additionally, their various concentrations were evaluated on S. mutans bacteria by applying the broth dilution method. The results demonstrated that these spherical NiO nanoparticles had efficient bacteriostatic activity on this gram-positive coccus.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Dalal H Alotaibi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, 11545, Saudi Arabia
| | - Marcos A L Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil
| | - Hanen Sellami
- Water Research and Technologies Center (CERTE), Borj-Cedria Technopark, University of Carthage, 8020, Soliman, Tunisia
| | - Mehrdad Khatami
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang, China.
| |
Collapse
|
16
|
Kokila GN, Mallikarjunaswamy C, Ranganatha VL. A review on synthesis and applications of versatile nanomaterials. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- G. N. Kokila
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | - C. Mallikarjunaswamy
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | | |
Collapse
|
17
|
Ullah A, Lim SI. Plant Extract-Based Synthesis of Metallic Nanomaterials, Their Applications, and Safety Concerns. Biotechnol Bioeng 2022; 119:2273-2304. [PMID: 35635495 DOI: 10.1002/bit.28148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Nanotechnology has attracted the attention of researchers from different scientific fields because of the escalated properties of nanomaterials compared with the properties of macromolecules. Nanomaterials can be prepared through different approaches involving physical and chemical methods. The development of nanomaterials through plant-based green chemistry approaches is more advantageous than other methods from the perspectives of environmental safety, animal, and human health. The biomolecules and metabolites of plants act as reducing and capping agents for the synthesis of metallic green nanomaterials. Plant-based synthesis is a preferred approach as it is not only cost-effective, easy, safe, clean, and eco-friendly but also provides pure nanomaterials in high yield. Since nanomaterials have antimicrobial and antioxidant potential, green nanomaterials synthesized from plants can be used for a variety of biomedical and environmental remediation applications. Past studies have focused mainly on the overall biogenic synthesis of individual or combinations of metallic nanomaterials and their oxides from different biological sources, including microorganisms and biomolecules. Moreover, from the viewpoint of biomedical applications, the literature is mainly focusing on synthetic nanomaterials. Herein, we discuss the extraction of green molecules and recent developments in the synthesis of different plant-based metallic nanomaterials, including silver, gold, platinum, palladium, copper, zinc, iron, and carbon. Apart from the biomedical applications of metallic nanomaterials, including antimicrobial, anticancer, diagnostic, drug delivery, tissue engineering, and regenerative medicine applications, their environmental remediation potential is also discussed. Furthermore, safety concerns and safety regulations pertaining to green nanomaterials are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
18
|
Emerging Roles of Green-Synthesized Chalcogen and Chalcogenide Nanoparticles in Cancer Theranostics. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/6176610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The last few decades have seen an overwhelming increase in the amount of research carried out on the use of inorganic nanoparticles. More fascinating is the tremendous progress made in the use of chalcogen and chalcogenide nanoparticles in cancer theranostics. These nanomaterials, which were initially synthesized through chemical methods, have now been efficiently produced using different plant materials. The paradigm shift towards the biogenic route of nanoparticle synthesis stems from its superior advantages of biosafety, eco-friendliness, and simplicity, among others. Despite a large number of reviews available on inorganic nanoparticle synthesis through green chemistry, there is currently a dearth of information on the green synthesis of chalcogens and chalcogenides for cancer research. Nanoformulations involving chalcogens such as sulfur, selenium, and tellurium and their respective chalcogenides have recently emerged as promising tools in cancer therapeutics and diagnosis. Similar to other inorganic nanoparticles, chalcogens and chalcogenides have been synthesized using plant extracts and their purified biomolecules. In this review, we provide an up-to-date discussion of the recent progress that has been made in the plant-mediated synthesis of chalcogens and chalcogenides with a special focus on their application in cancer theranostics.
Collapse
|
19
|
Samanta D, Basnet P, Jha S, Chatterjee S. Proficient Route in Synthesis of Glucose Stabilized Ag Modified ZnS Nanospheres for Mechanistic Understandings of Commercially used Dyes Degradation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Iatridis N, Kougioumtzi A, Vlataki K, Papadaki S, Magklara A. Anti-Cancer Properties of Stevia rebaudiana; More than a Sweetener. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041362. [PMID: 35209150 PMCID: PMC8874712 DOI: 10.3390/molecules27041362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 01/03/2023]
Abstract
Stevia rebaudiana Bertoni is a perennial shrub from Paraguay that is nowadays widely cultivated, since it is increasingly being utilized as a sugar substitute in various foodstuffs due to its sweetness and minimal caloric content. These properties of the plant’s derivatives have spurred research on their biological activities revealing a multitude of benefits to human health, including antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor actions. To our knowledge, no recent reviews have surveyed and reported published work solely on the latter. Consequently, our main objective was to present a concise, literature-based review of the biological actions of stevia derivatives in various tumor types, as studied in in vitro and in vivo models of the disease. With global cancer estimates suggesting a 47% increase in cancer cases by 2040 compared to 2020, the data reviewed in this article should provide a better insight into Stevia rebaudiana and its products as a means of cancer prevention and therapy within the context of a healthy diet.
Collapse
Affiliation(s)
- Nikos Iatridis
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
| | - Anastasia Kougioumtzi
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
- Biomedical Research Insitute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Katerina Vlataki
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
| | - Styliani Papadaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
| | - Angeliki Magklara
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
- Biomedical Research Insitute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
- Correspondence:
| |
Collapse
|
21
|
Hetero-aggregation behaviour of green copper nanoparticles: Course interactions with environmental components. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Qindeel M, Sargazi S, Hosseinikhah SM, Rahdar A, Barani M, Thakur VK, Pandey S, Mirsafaei R. Porphyrin‐Based Nanostructures for Cancer Theranostics: Chemistry, Fundamentals and Recent Advances. ChemistrySelect 2021. [DOI: 10.1002/slct.202103418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maimoona Qindeel
- Hamdard Institute of Pharmaceutical Sciences Hamdard University Islamabad Campus Islamabad Pakistan
- Department of Pharmacy Quaid-i-Azam University Islamabad Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 9816743463 Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Abbas Rahdar
- Department of Physics Faculty of Science University of Zabol Zabol Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center Kerman University of Medical Sciences Kerman 7616913555 Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College Scotland Edinburgh EH9 3JG United Kingdom
- School of Engineering University of Petroleum & Energy Studies (UPES) Dehradun 248007 Uttarakhand India
| | - Sadanand Pandey
- Particulate Matter Research Center Research Institute of Industrial Science & Technology (RIST) 187-12, Geumho-ro Gwangyang-si Jeollanam-do 57801, Republic of Korea
| | - Razieh Mirsafaei
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics School of Pharmacy Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
23
|
Sargazi S, Hosseinikhah SM, Zargari F, Chauhana NPS, Hassanisaadi M, Amani S. pH-responsive cisplatin-loaded niosomes: synthesis, characterization, cytotoxicity study and interaction analyses by simulation methodology. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Cisplatin (Cis) is an effective cytotoxic agent, but its administration has been challenged by kidney problems, reduced immunity system, chronic neurotoxicity, and hemorrhage. To address these issues, pH-responsive non-ionic surfactant vesicles (niosomes) by Span 60 and Tween 60 derivatized by cholesteryl hemisuccinate (CHEMS), a pH-responsive agent, and Ergosterol (helper lipid), were developed for the first time to deliver Cis. The drug was encapsulated in the niosomes with a high encapsulation efficiency of 89%. This system provided a responsive release of Cis in pH 5.4 and 7.4, thereby improving its targeted anticancer drug delivery. The noisome bilayer model was studied by molecular dynamic simulation containing Tween 60, Span 60, Ergosterol, and Cis molecules to understand the interactions between the loaded drug and noisome constituents. We found that the platinum and chlorine atoms in Cis are critical factors in distributing the drug between water and bilayer surface. Finally, the lethal effect of niosomal Cis was investigated on the MCF7 breast cancer cell line using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results from morphology monitoring and cytotoxic assessments suggested a better cell-killing effect for niosomal Cis than standard Cis. Together, the synthesis of stimuli-responsive niosomes could represent a promising delivery strategy for anticancer drugs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases , Zahedan University of Medical Sciences , Zahedan 9816743463, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farshid Zargari
- Pharmacology Research Center , Zahedan University of Medical Sciences , Zahedan 9816743463, Iran ; Department of Chemistry, Faculty of Science , University of Sistan and Baluchestan , Zahedan 98135674, Iran
| | - Narendra Pal Singh Chauhana
- Department of Chemistry, Faculty of Science , Bhupal Nobles’ university , Udaipur , 313002, Rajasthan , India
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection , Shahid Bahonar University of Kerman , Postal Code: 7618411764, Kerman, Iran
| | - Soheil Amani
- Department of chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan , Iran
| |
Collapse
|
24
|
Barani M, Hajinezhad MR, Sargazi S, Rahdar A, Shahraki S, Lohrasbi-Nejad A, Baino F. In vitro and in vivo anticancer effect of pH-responsive paclitaxel-loaded niosomes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:147. [PMID: 34862910 PMCID: PMC8643297 DOI: 10.1007/s10856-021-06623-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/06/2021] [Indexed: 05/11/2023]
Abstract
In this study, paclitaxel (PTX)-loaded pH-responsive niosomes modified with ergosterol were developed. This new formulation was characterized in terms of size, morphology, encapsulation efficiency (EE), and in vitro release at pH 5.2 and 7.4. The in vitro efficacy of free PTX and niosome/PTX was assessed using MCF7, Hela, and HUVEC cell lines. In order to evaluate the in vivo efficacy of niosomal PTX in rats as compared to free PTX, the animals were intraperitoneally administered with 2.5 mg/kg and 5 mg/kg niosomal PTX for two weeks. Results showed that the pH-responsive niosomes had a nanometric size, spherical morphology, 77% EE, and pH-responsive release in pH 5.2 and 7.4. Compared with free PTX, we found markedly lower IC50s when cancer cells were treated for 48 h with niosomal PTX, which also showed high efficacy against human cancers derived from cervix and breast tumors. Moreover, niosomal PTX induced evident morphological changes in these cell lines. In vivo administration of free PTX at the dose of 2.5 mg/kg significantly increased serum biochemical parameters and liver lipid peroxidation in rats compared to the control rats. The situation was different when niosomal PTX was administered to the rats: the 5 mg/kg dosage of niosomal PTX significantly increased serum biochemical parameters, but the group treated with the 2.5 mg/kg dose of niosomal PTX showed fewer toxic effects than the group treated with free PTX at the same dosage. Overall, our results provide proof of concept for encapsulating PTX in niosomal formulation to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran.
| | - Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary Faculty, University of Zabol, Zabol, 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan, 9816743463, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98613-35856, Iran.
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan, 9816743463, Iran
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| |
Collapse
|
25
|
Environmental remediation potentialities of metal and metal oxide nanoparticles: Mechanistic biosynthesis, influencing factors, and application standpoint. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021. [DOI: 10.1016/j.eti.2021.101851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Green Synthesis of Metal and Metal Oxide Nanoparticles: Principles of Green Chemistry and Raw Materials. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110145] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased request for metal and metal oxide nanoparticles nanoparticles has led to their large-scale production using high-energy methods with various toxic solvents. This cause environmental contamination, thus eco-friendly “green” synthesis methods has become necessary. An alternative way to synthesize metal nanoparticles includes using bioresources, such as plants and plant products, bacteria, fungi, yeast, algae, etc. “Green” synthesis has low toxicity, is safe for human health and environment compared to other methods, meaning it is the best approach for obtaining metal and metal oxide nanoparticles. This review reveals 12 principles of “green” chemistry and examples of biological components suitable for “green” synthesis, as well as modern scientific research of eco-friendly synthesis methods of magnetic and metal nanoparticles. Particularly, using extracts of green tea, fruits, roots, leaves, etc., to obtain Fe3O4 NPs. The various precursors as egg white (albumen), leaf and fruit extracts, etc., can be used for the „green” synthesis of spinel magnetic NPs. “Green” nanoparticles are being widely used as antimicrobials, photocatalysts and adsorbents. “Green” magnetic nanoparticles demonstrate low toxicity and high biocompatibility, which allows for their biomedical application, especially for targeted drug delivery, contrast imaging and magnetic hyperthermia applications. The synthesis of silver, gold, platinum and palladium nanoparticles using extracts from fungi, red algae, fruits, etc., has been described.
Collapse
|
27
|
Li SN, Wang R, Ho SH. Algae-mediated biosystems for metallic nanoparticle production: From synthetic mechanisms to aquatic environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126625. [PMID: 34329084 DOI: 10.1016/j.jhazmat.2021.126625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Driven by the growing impetus of green chemistry and environmental protection, the use of bio-based systems to produce green metallic nanomaterials used for environmental remediation has thus developed urgently. It is proposed that using algae as a living cell factory or algal extract as a natural reducing agent is a green and clean way to efficiently synthesize various metallic nanomaterials. However, studies on algal-based biological synthesis of metallic nanomaterials and their applications towards removal of toxic pollutants from wastewater are still limited, which largely discourage the sustainability. Herein, this review aims to introduce the recent advances on algae-mediated nanomaterial-producing biosystems. The corresponding synthetic mechanisms, operation parameters, and case studies on various algae-synthesized metallic nanoparticles are comprehensively discussed and summarized. More importantly, the applicability of algae-synthesized metallic nanoparticles on water treatment is introduced in-depth. To improve economic viability, the challenges and future perspectives are also considered. Taken together, this review systematically presents the achievements and current progress of algae-mediated metallic nanoparticle biosynthesis towards the aquatic pollutants treatment, which can provide new insights on promoting the algae-based nanomaterial production yield and environmental application potential.
Collapse
Affiliation(s)
- Sheng-Nan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
28
|
Bharathi DS, Boopathyraja A, Nachimuthu S, Kannan K. Green Synthesis, Characterization and Antibacterial Activity of SiO2–ZnO Nanocomposite by Dictyota bartayresiana Extract and Its Cytotoxic Effect on HT29 Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Okey‐Onyesolu CF, Hassanisaadi M, Bilal M, Barani M, Rahdar A, Iqbal J, Kyzas GZ. Nanomaterials as Nanofertilizers and Nanopesticides: An Overview. ChemistrySelect 2021. [DOI: 10.1002/slct.202102379] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection Faculty of Agriculture Shahid Bahonar University of Kerman
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center Kerman University of Medical Sciences Kerman 7616913555 Iran
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol, P. O. Box. 35856-98613 Islamic Republic of Iran
| | - Javed Iqbal
- Department of Botany Bacha Khan University Charsadda, khyber Pakhtunkhwa Pakistan
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
30
|
Haghighat M, Naroie A, Rezvani A, Hakimi M, Saravani H, Darroudi M, Amini A, Sabaghan M, Khatami M. Anticancer Property of Lanthanide Sulfate Nanostructure Against Neuroblastoma-Neuro2a Cell Line. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00887-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Ruiz-Pulido G, Medina DI, Barani M, Rahdar A, Sargazi G, Baino F, Pandey S. Nanomaterials for the Diagnosis and Treatment of Head and Neck Cancers: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3706. [PMID: 34279276 PMCID: PMC8269895 DOI: 10.3390/ma14133706] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Head and neck cancer (HNC) is a category of cancers that typically arise from the nose-, mouth-, and throat-lining squamous cells. The later stage of HNC diagnosis significantly affects the patient's survival rate. This makes it mandatory to diagnose this cancer with a suitable biomarker and imaging techniques at the earlier stages of growth. There are limitations to traditional technologies for early detection of HNC. Furthermore, the use of nanocarriers for delivering chemo-, radio-, and phototherapeutic drugs represents a promising approach for improving the outcome of HNC treatments. Several studies with nanostructures focus on the development of a targeted and sustained release of anticancer molecules with reduced side effects. Besides, nanovehicles could allow co-delivering of anticancer drugs for synergistic activity to counteract chemo- or radioresistance. Additionally, a new generation of smart nanomaterials with stimuli-responsive properties have been developed to distinguish between unique tumor conditions and healthy tissue. In this light, the present article reviews the mechanisms used by different nanostructures (metallic and metal oxide nanoparticles, polymeric nanoparticles, quantum dots, liposomes, nanomicelles, etc.) to improve cancer diagnosis and treatment, provides an up-to-date picture of the state of the art in this field, and highlights the major challenges for future improvements.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-14115, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Science, Bam 76617-71967, Iran
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
32
|
Khatamifar M, Fatemi SJ, Torkzadeh-Mahani M, Mohammadi M, Hassanshahian M. Green and eco-friendly synthesis of silver nanoparticles by Quercus infectoria galls extract: thermal behavior, antibacterial, antioxidant and anticancer properties. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1941455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marzieh Khatamifar
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - S. Jamilaldin Fatemi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Meisam Mohammadi
- Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
33
|
Green synthesis, characterization and hepatoprotective activity of silver nanoparticles synthesized from pre-formulated Liv-Pro-08 poly-herbal formulation. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01945-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Yu Z, Gao L, Chen K, Zhang W, Zhang Q, Li Q, Hu K. Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. NANOSCALE RESEARCH LETTERS 2021; 16:88. [PMID: 34014432 PMCID: PMC8137776 DOI: 10.1186/s11671-021-03489-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/27/2021] [Indexed: 05/07/2023]
Abstract
Traditional cancer therapeutics have been criticized due to various adverse effects and insufficient damage to targeted tumors. The breakthrough of nanoparticles provides a novel approach for upgrading traditional treatments and diagnosis. Actually, nanoparticles can not only solve the shortcomings of traditional cancer diagnosis and treatment, but also create brand-new perspectives and cutting-edge devices for tumor diagnosis and treatment. However, most of the research about nanoparticles stays in vivo and in vitro stage, and only few clinical researches about nanoparticles have been reported. In this review, we first summarize the current applications of nanoparticles in cancer diagnosis and treatment. After that, we propose the challenges that hinder the clinical applications of NPs and provide feasible solutions in combination with the updated literature in the last two years. At the end, we will provide our opinions on the future developments of NPs in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zhongyang Yu
- Beijing University of Chinese Medicine, 11 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Lei Gao
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Qihang Zhang
- Department of Management, Fredericton Campus, University of New Brunswick, 3 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
35
|
Elsi S, Pushpanathan K. Room temperature ferromagnetism in ZnS and ZnO nanoparticles. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1799405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Senthilkumar Elsi
- Department of Physics, Arignar Anna Government Arts College, Attur, India
- Nanomaterials Research Laboratory, Department of Physics, Government Arts College, Karur, India
| | - Kuppusamy Pushpanathan
- Nanomaterials Research Laboratory, Department of Physics, Government Arts College, Karur, India
| |
Collapse
|
36
|
Morphological, structural and cytotoxic behavior of starch/silver nanocomposites with synthesized silver nanoparticles using Stevia rebaudiana extracts. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03184-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Maity S, Adhikari M, Banerjee S, Guchhait R, Chatterjee A, Pramanick K. Critical analysis of biophysicochemical parameters for qualitative improvement of phytogenic nanoparticles. Biotechnol Prog 2020; 37:e3114. [PMID: 33345468 DOI: 10.1002/btpr.3114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022]
Abstract
Conventional chemical approaches for synthesizing nanoparticles (NPs) may restrict their applicability as they are not eco-friendly, energetically efficient and often involve toxic reducing/capping agents; but phytonanotechnology enabled the synthesis of safe, inexpensive, highly biocompatible NPs. In this regard, thorough understanding of green components and the modulatory effects of different reaction conditions on the physicochemical parameters of green synthesized NPs would be a prerequisite, which is not depicted elsewhere. This review critically analyzes the relevant reaction conditions from their mechanistic viewpoints in plant-based synthesis of NPs arising fundamental issues which need to be determined carefully. The size, stability and surface chemistry of phytogenic NPs may be fabricated as a function of multiple interconnected reaction parameters and the plant species used. The therapeutic potential of phytogenic NPs may depend on the plant species used; and so the meticulous understanding of physicochemical parameters and the family wise shorting of elite plant species may potentially benefit the theranostic future of plant-based NPs.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Sambuddha Banerjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
38
|
Jeevanandam J, Kulabhusan PK, Sabbih G, Akram M, Danquah MK. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech 2020; 10:535. [PMID: 33224704 PMCID: PMC7669941 DOI: 10.1007/s13205-020-02516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are the well-known sources for the hyper-accumulation and reduction of metallic ions. Analysis of various plant extracts has justified the presence of different types of phytochemicals that possess the stabilization and reduction functionalities of precursors to form nanoparticles. Such characteristics make plants as an attractive source for synthesizing eco-friendly nanoparticles (NPs) with potentially less toxicity to the body. Recently, phytosynthesized nanoparticles have been explored for targeted inhibition and diagnosis of cancer cells without affecting non-cancerous healthy cells. The aim of this review is to discuss the characteristic performance of NPs synthesized from various plant sources for the diagnosis and inhibition of cancer. The mode of action of phytosynthesized nanoparticles for anti-cancer applications are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Prabir Kumar Kulabhusan
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, 38000 Pakistan
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
39
|
Sakthivel P, Kavi Rasu K, Prasanna Venkatesan GKD, Viloria A. Influence of Ag + and Mn 2+ ions on structural, optical and photoluminescence features of ZnS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118666. [PMID: 32650246 DOI: 10.1016/j.saa.2020.118666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The current study deals with the structural, morphological, elemental, optical and photoluminescence behaviors of Ag+, Mn2+ dual doped ZnS quantum dots (QDs). The X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) studies confirmed the cubic structure and size of the crystallites (~2 nm). The Scanning Electron Microscope (SEM) photographs portrayed the surface and morphological structure of prepared samples. Energy dispersive X-ray (EDX) and Fourier Transform Infrared Spectra (FTIR) ensured the presence of Zn, Ag, Mn and, S in the samples as per the anticipated stoichiometry ratio. The UV-visible spectra showed a red shift in optical absorption and band gap gets narrowed due to the incorporation of Ag+ ions. The size effect has overcome the quantum confinement effect in this case. Through photoluminescence (PL) studies, a weak UV emission and strong red wavelength emissions were received and discussed on the basis of sulfur vacancies. This red emission was dealt in terms of d-electrons transition between host and dopant ions.
Collapse
Affiliation(s)
- P Sakthivel
- Department of Physics, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamilnadu, India.
| | - K Kavi Rasu
- Department of Physics, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamilnadu, India
| | - G K D Prasanna Venkatesan
- Department of Electronics and Communication Engineering, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamilnadu, India
| | | |
Collapse
|
40
|
Gamma radiation and Polyvinyl pyrrolidone mediated synthesis of Zinc oxide /Zinc sulfide nanoparticles and evaluation of their antifungal effect on pre and post harvested orange and pomegranate fruits. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Laser pyrolysis synthesis of zinc-containing nanomaterials using low-cost ultrasonic spray delivery of precursors. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Alijani HQ, Pourseyedi S, Torkzadeh-Mahani M, Seifalian A, Khatami M. Bimetallic nickel-ferrite nanorod particles: greener synthesis using rosemary and its biomedical efficiency. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:242-251. [PMID: 31851843 DOI: 10.1080/21691401.2019.1699830] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nickel-ferrite (NiFe2O4) nanorods particles (NRP) was biosynthesised for the first time by the Rosemary Extract. The NRP was fully characterised, including the type, nanostructure and physicochemical properties of using XRD, HRTEM, FeSEM, XPS, FTIR and VSM. TEM confirmed rod-shaped nano-sized particles with average sizes ranging from 10 nm to 28 nm. The EDAX Analysis showed the presence of iron, nickel, oxygen, and carbon. XRD analysis confirmed the synthesis of NiFe2O4 crystals. XPS curves showed photoelectron for iron, oxygen and nickel. EDS showed the atomic, weight percentages ratios of Ni(12%): Fe(24%) and: O(48) are close to the theoretical value (Ni: Fe:O = 1:2:4), of bimetallic magnetic NiFe2O4 NRP. NiFe2O4 NRP had cytotoxicity effect on MCF-7 cells survival which suggests that NiFe2O4 NRP can be used as a new class of anticancer agent in design novel cancer therapy research.
Collapse
Affiliation(s)
- Hajar Q Alijani
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Shahram Pourseyedi
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London, United Kingdom
| | - Mehrdad Khatami
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
43
|
Yılmaz Öztürk B, Yenice Gürsu B, Dağ İ. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Fierascu I, Fierascu IC, Brazdis RI, Baroi AM, Fistos T, Fierascu RC. Phytosynthesized Metallic Nanoparticles-between Nanomedicine and Toxicology. A Brief Review of 2019's Findings. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E574. [PMID: 31991830 PMCID: PMC7040630 DOI: 10.3390/ma13030574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Phytosynthesized nanoparticles represent a continuously increasing field of research, with numerous studies published each year. However, with the emerging interest in this area, the quality of the published works is also continuously increasing, switching from routine antioxidant or antimicrobial studies on trivial microbial lines to antibiotic-resistant strains or antitumoral studies. However, this increasing interest has not been not reflected in the studies regarding the toxicological effects of nanoparticles (NPs); this should be a subject of greatest interest, as the increasing administration of NPs in general (and phytosynthesized NPs in particular) could lead to their accumulation in the environment (soil, water and living organisms). The present review aims to present the most recent findings in the application of phytosynthesized NPs as antimicrobial and antitumoral agents, as well as the results regarding their toxicological potential.
Collapse
Affiliation(s)
- Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Ioana Catalina Fierascu
- University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Zentiva Romania S.A., 50 Theodor Pallady Blvd., 032266 Bucharest, Romania
| | - Roxana Ioana Brazdis
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| |
Collapse
|
45
|
Sathiyaraj E, Thirumaran S. Structural, morphological and optical properties of iron sulfide, cobalt sulfide, copper sulfide, zinc sulfide and copper-iron sulfide nanoparticles synthesized from single source precursors. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136972] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Mintcheva N, Gicheva G, Panayotova M, Kulinich SA. Room-Temperature Synthesis of ZnS Nanoparticles Using Zinc Xanthates as Molecular Precursors. MATERIALS 2020; 13:ma13010171. [PMID: 31906355 PMCID: PMC6981999 DOI: 10.3390/ma13010171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/30/2023]
Abstract
Molecular precursors are suitable starting compounds for preparation of semiconductor nanoparticles (NPs), which allow for control of atomic ratio, composition, monodispersity, and particle size of nanoscaled metal sulfides/oxides. In the present study, we carried out a one-pot synthesis of ZnS NPs in aqueous triethanolamine medium at room temperature, from molecular precursor zinc xanthate as a source of both Zn2+ and S2- ions. Furthermore, we compared the products obtained from zinc ethylxanthate (Zn(C2H5OCS2)2) and zinc amylxanthate (Zn(C5H11OCS2)2). The as-prepared ZnS NPs were found to crystallize in cubic phase, which usually forms at low temperatures, with the dimension dependent on the xanthate precursor used. The long carbon-chain xanthate Zn(C5H11OCS2)2 gave spherically shaped NPs with an average diameter of 19 nm, while the NPs that originated from zinc ethylxanthate had a mean size of ~26 nm. Both nanomaterials had surface sulfur vacancies that extended their absorption spectra toward the visible region and reduced the band gap. This allowed both materials to demonstrate photocatalytic performance under visible-light irradiation. Photodegradation of methylene blue over newly prepared ZnS NPs was tested under visible light, demonstrating efficiency of 50%-60% after 180 min.
Collapse
Affiliation(s)
- Neli Mintcheva
- Department of Chemistry, University of Mining and Geology, Sofia 1700, Bulgaria; (G.G.); (M.P.)
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
- Correspondence: (N.M.); (S.A.K.)
| | - Gospodinka Gicheva
- Department of Chemistry, University of Mining and Geology, Sofia 1700, Bulgaria; (G.G.); (M.P.)
| | - Marinela Panayotova
- Department of Chemistry, University of Mining and Geology, Sofia 1700, Bulgaria; (G.G.); (M.P.)
| | - Sergei A. Kulinich
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
- Correspondence: (N.M.); (S.A.K.)
| |
Collapse
|
47
|
Green Biological Synthesis of Nanoparticles and Their Biomedical Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020. [DOI: 10.1007/978-3-030-44176-0_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Green Synthesis of Zinc Sulfide Nanoparticles Using Abrus precatorius and Its Effect on Coelomic Fluid Protein Profile and Enzymatic Activity of the Earthworm, Eudrilus eugeniae. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00694-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Ghanaatian Jobzari H, Iranmanesh P, Sabet M, Saeednia S. Effect of synthesis method and chemical reagents on the structural parameters, particle size, and optical and photoluminescence properties of ZnS nanostructures. LUMINESCENCE 2019; 34:689-698. [DOI: 10.1002/bio.3650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/11/2019] [Accepted: 05/04/2019] [Indexed: 11/11/2022]
Affiliation(s)
| | - Parvaneh Iranmanesh
- Department of Physics, Faculty of ScienceVali‐e‐Asr University of Rafsanjan Rafsanjan Iran
| | - Mohammad Sabet
- Department of Chemistry, Faculty of ScienceVali‐e‐Asr University of Rafsanjan Rafsanjan Iran
| | - Samira Saeednia
- Department of Chemistry, Faculty of ScienceVali‐e‐Asr University of Rafsanjan Rafsanjan Iran
| |
Collapse
|
50
|
Jayabalan J, Mani G, Krishnan N, Pernabas J, Devadoss JM, Jang HT. Green biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its In vitro antibacterial and anti-biofilm activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101327] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|