1
|
Hassoon AA, Smith SJ, Harrison RG. Cadmium and silver complexes of a pyridine containing ligand: syntheses, structural studies, biological activity and docking studies. RSC Adv 2024; 14:31850-31860. [PMID: 39380643 PMCID: PMC11459448 DOI: 10.1039/d4ra05305b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
The current study aimed to synthesize seven new metal coordination complexes (Q1-Q7) with potential biomedical applications. Novel mononuclear, polynuclear and mixed-ligand coordination compounds of the elements, cadmium(ii) and silver(i) derived from a pyridine containing ligand (2,4,6-tris-(2-pyridyl)-1,3,5-triazine (TPT)) have been synthesized successfully with the general formulae [Cd(TPT)Cl6]·H2O and [Ag x (TPT) y (L)2(ClO4)](ClO4) z (x = 1,2,3, y = 1,2,3, L = PPh3 or phen, z = 1,2). The structural features were fully characterized using various spectroscopic techniques, such as infrared, ultraviolet-visible spectroscopy, 1D and 2D-NMR (1H, 13C, 31P, 1H-1H COSY and 1H-13C HSQCAD), CHN analysis, molar conductance (Λ), thermogravimetric analysis (TGA), and powder X-ray diffraction analysis. The structure of complex Q6 was also confirmed by single-crystal X-ray analysis. The luminescence and electrochemical properties of complexes, in solution, have been studied. X-ray crystallographic determination of the [Ag(TPT)(PPh3)2]ClO4·EtOH (Q6) complex shows that the Ag+ cation is bonded to one tridentate TPT ligand through NNN set of donor atoms and two triphenylphosphine ligands, giving the Ag+ a distorted trigonal bipyramidal geometry. X-ray powder diffraction analysis showed that metal complexes Q3, Q6 and Q7 display crystalline peaks. The complexes were evaluated for their in vitro antibacterial efficacy against various bacterial and fungal species. The in vitro efficacy against the MCF-7 human breast cancer cell line was assessed to determine the anticancer activities. The tri-nuclear silver complex Q3 shows great potential as a therapeutic candidate for treating breast cancer, since it exhibits a half-maximal inhibition concentration (IC50) of 13.45 ± 0.9 μM. Molecular docking simulations were also carried out to evaluate the interaction strength and properties of the metal complexes with selected cancer and bacteria relevant proteins namely cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 6 (CDK6), signal transducer and activator of transcription 3 (STAT3), and beta-lactamases from Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Azza A Hassoon
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Stacey J Smith
- Department of Chemistry & Biochemistry, Brigham Young University USA
| | - Roger G Harrison
- Department of Chemistry & Biochemistry, Brigham Young University USA
| |
Collapse
|
2
|
Ma FJ, Huang X, Li XY, Tang SL, Li DJ, Cheng YZ, Azam M, Zhang LP, Sun D. Synthesis, structure and biological activity of silver(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands. J Inorg Biochem 2023; 250:112404. [PMID: 39492372 DOI: 10.1016/j.jinorgbio.2023.112404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Two Ag(I) complexes containing triphenylphosphine and non-steroidal anti-inflammatory drug ligands were synthesized and investigated using various spectroscopic studies and single crystal X-ray crystallography. The binding properties of tolfenamic acid, ibuprofen and the two complexes with DNA and BSA were investigated using UV or fluorescence spectroscopy. The results showed that two Ag(I) complexes bound to DNA by the intercalation mode and interacted with BSA using a static quenching procedure. Furthermore, the results of fluorescence titration suggested that the complexes had good affinity for BSA and one binding site close to BSA. The in vitro cytotoxicity of tolfenamic acid, ibuprofen, and the two complexes against four human carcinoma cell lines (MCF-7, HepG-2, A549, and HeLa cells) was tested using an MTT assay. Complex 1 had higher cytotoxicity against HeLa cells. The intracellular reactive oxygen species (ROS) assay showed complex 1 induced the ROS generation in HeLa cells in a concentration dependent manner. Flow cytometry analysis showed complex 1 could suppress the HeLa cells growth during the G0/G1 phase and induce apoptosis in dose-depended manner.
Collapse
Affiliation(s)
- Feng-Jie Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xiang Huang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xue-Ying Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Shi-Li Tang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - De-Jun Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Li-Ping Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, PR China.
| |
Collapse
|
3
|
Chalkappa PKB, Aralihalli S, Sudileti M, Aithal SJ, Praveen BM, Birjadar K. The medicinal panorama of benzimidazoles and their scaffolds as anticancer and antithrombotic agents: A review. Arch Pharm (Weinheim) 2023; 356:e2300206. [PMID: 37440107 DOI: 10.1002/ardp.202300206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Nitrogen-containing heterocyclic scaffolds have become a prospective pharmacophore with therapeutic importance due to their biological similarities with natural and synthetic drugs. Among all nitrogen heterocyclic compounds, benzimidazoles and their derivatives are privileged molecules structurally akin to naturally available nucleotides, enabling them to intercommunicate with numerous biopolymers in biological systems. This reason enlightens modern researchers worldwide to assess their potential significance in the context of synthetic and biological chemistry. Therefore, it is crucial to merge the latest data with the prior documentation to apprehend the ongoing situation of the benzimidazole moiety in various therapeutic zones of research. The current work displays that the benzimidazole center is a versatile nucleus that offers the necessary data of synthetic alterations for pre-existing compounds to provide new scaffolds to resist numerous therapeutic sectors, including those associated with anticancer and antithrombosis. Due to the potential significance of benzimidazoles, this review aims to emphasize the latest innovations in synthesizing several other notable benzimidazole substrates and their significant pharmacological prospects for the future, including anticancer and antithrombosis.
Collapse
Affiliation(s)
| | - Sudhakara Aralihalli
- Department of Chemistry, RajaRajeswari College of Engineering, Banglore, Karnataka, India
| | - Murali Sudileti
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | | | - Kedarnath Birjadar
- Department of Chemistry, Srinivas University, Mangaluru, Karnataka, India
| |
Collapse
|
4
|
Belhi Z, Karci H, Dündar M, Gürbüz N, Özdemir İ, Koç A, Cheriti A, Özdemir İ. Novel benzimidazolium salts and their silver(I)- N-heterocyclic carbene complexes: synthesis, characterization and their biological properties. J COORD CHEM 2023. [DOI: 10.1080/00958972.2022.2164191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zeyneb Belhi
- Phytochemistry and Organic Synthesis Laboratory, Tahri Mohamed University, Bechar, Algeria
| | - Hüseyin Karci
- Drug Application and Research and Center, İnönü University, Malatya, Türkiye
- Catalysis Research and Application Center, İnönü University, Malatya, Türkiye
| | - Muhammet Dündar
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Türkiye
| | - Nevin Gürbüz
- Drug Application and Research and Center, İnönü University, Malatya, Türkiye
- Catalysis Research and Application Center, İnönü University, Malatya, Türkiye
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Türkiye
| | - İlknur Özdemir
- Drug Application and Research and Center, İnönü University, Malatya, Türkiye
- Catalysis Research and Application Center, İnönü University, Malatya, Türkiye
| | - Ahmet Koç
- Drug Application and Research and Center, İnönü University, Malatya, Türkiye
- Medical School, Department of Genetics, İnönü University, Malatya, Türkiye
| | - Abdelkrim Cheriti
- Phytochemistry and Organic Synthesis Laboratory, Tahri Mohamed University, Bechar, Algeria
- Department of Molecular Biology and Genetics, Faculty of Science and Art, İnönü University, Malatya, Türkiye
| | - İsmail Özdemir
- Drug Application and Research and Center, İnönü University, Malatya, Türkiye
- Catalysis Research and Application Center, İnönü University, Malatya, Türkiye
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Türkiye
| |
Collapse
|
5
|
A chiral cylinder-like metallomacrocycles bis tri-N-heterocyclic carbene silver(I): Synthesis, characterization and anticancer study. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Hkiri S, Coşkun KA, Üstün E, Samarat A, Tutar Y, Şahin N, Sémeril D. Silver(I) Complexes Based on Oxadiazole-Functionalized α-Aminophosphonate: Synthesis, Structural Study, and Biological Activities. Molecules 2022; 27:8131. [PMID: 36500224 PMCID: PMC9738469 DOI: 10.3390/molecules27238131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Two silver(I) complexes, bis{diethyl[(5-phenyl-1,3,4-oxadiazol-2-yl-κN3:κN4-amino) (4-trifluoromethylphenyl)methyl]phosphonate-(tetrafluoroborato-κF)}-di-silver(I) and tetrakis-{diethyl[(5-phenyl-1,3,4-oxadiazol-2-yl-κN3-amino)(4-trifluoromethylphenyl)methyl]phosphonate} silver(I) tetrafluoroborate, were prepared starting from the diethyl[(5-phenyl-1,3,4-oxadiazol-2-yl-amino)(4-trifluoromethylphenyl)methyl]phosphonate (1) ligand and AgBF4 salt in Ag/ligand ratios of 1/1 and 1/4, respectively. The structure, stoichiometry, and geometry of the silver complexes were fully characterized by elemental analyses, infrared, single-crystal X-ray diffraction studies, multinuclear NMR, and mass spectroscopies. The binuclear complex ([Ag2(1)2(BF4)2]; 2) crystallizes in the monoclinic asymmetric space group P21/c and contains two silver atoms adopting a {AgN2F} planar trigonal geometry, which are simultaneously bridged by two oxadiazole rings of two ligands, while the mononuclear complex ([Ag(1)4]BF4; 3) crystallizes in the non-usual cubic space group Fd-3c in which the silver atom binds to four distinct electronically enriched nitrogen atoms of the oxadiazole ring, in a slightly distorted {AgN4} tetrahedral geometry. The α-aminophosphonate and the monomeric silver complex were evaluated in vitro against MCF-7 and PANC-1 cell lines. The silver complex is promising as a drug candidate for breast cancer and the pancreatic duct with half-maximal inhibitory concentration (IC50) values of 8.3 ± 1.0 and 14.4 ± 0.6 μM, respectively. Additionally, the interactions of the ligand and the mononuclear complex with Vascular Endothelial Growth Factor Receptor-2 and DNA were evaluated by molecular docking methods.
Collapse
Affiliation(s)
- Shaima Hkiri
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, University of Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Kübra Açıkalın Coşkun
- Department of Medical Biology and Genetics, Faculty of Medicine, University of İstanbul Aydın, Istanbul 34295, Turkey
| | - Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, University of Ordu, Ordu 52200, Turkey
| | - Ali Samarat
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Faculty of Sciences of Bizerte, University of Carthage, Bizerte 7021, Tunisia
| | - Yusuf Tutar
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Health Sciences-Turkey, Istanbul 34668, Turkey
| | - Neslihan Şahin
- Department of Science Education, Faculty of Education, University of Cumhuriyet, Sivas 58140, Turkey
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177, University of Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg, France
| |
Collapse
|
7
|
Şahin N, Çelebi MS, Ayvaz MÇ, Üstün E. Antioxidant Activity, Enzyme Inhibition, Electrochemical and Theoretical Evaluation of Novel PEPPSI Type N-Heterocyclic Carbene Complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
New Achievements for the Treatment of Triple-Negative Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous group of malignancies that are often aggressive and associated with a poor prognosis. The development of new TNBC treatment strategies has become an urgent clinical need. Diagnosis and subtyping of TNBC are essential to establish alternative treatments and targeted therapies for every TNBC patient. Chemotherapy, particularly with anthracycline and taxanes, remains the backbone for medical management for both early and metastatic TNBC. More recently, immune checkpoint inhibitors and targeted therapy have revolutionized cancer treatment. Included in the different strategies studied for TNBC treatment is drug repurposing. Despite the numerous medications available, numerous studies in medicinal chemistry are still aimed at the synthesis of new compounds in order to find new antiproliferative agents capable of treating TNBC. Additionally, some supplemental micronutrients, nutraceuticals and functional foods can potentially reduce the risk of developing cancer or can retard the rate of growth and metastases of established malignant diseases. Finally, nanotechnology in medicine, termed nanomedicines, introduces nanoparticles of variable chemistry and architecture for cancer treatment. This review highlights the most recent studies in search of new therapies for the treatment of TNBC, along with nutraceuticals and repositioning of drugs.
Collapse
|
9
|
Neshat A, Akbari-Birgani S, Cheraghi M, Gilanchi S, Reza Yousefshahi M. A novel heteroleptic N-heterocyclic carbene gold(I)-borate complex: synthesis, DFT analysis and cytotoxicity studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Tutar U, Çelik C, Şahin N. Allyl Functionalized Benzimidazolium-Derived Ag(I)-N-Heterocyclic Carbene Complexes: Anti-Biofilm and Antimicrobial Properties. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Türker D, Üstün E, Günal S, Yıldız H, D Düşünceli S, Özdemir İ. Cyanopropyl functionalized benzimidazolium salts and their silver N-heterocyclic carbene complexes: Synthesis, antimicrobial activity, and theoretical analysis. Arch Pharm (Weinheim) 2022; 355:e2200041. [PMID: 35352839 DOI: 10.1002/ardp.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
The reaction of N-substituted benzimidazole with 4-bromobutyronitrile gives the corresponding benzimidazolium salts as N-heterocyclic carbene (NHC) precursors. Silver(I) carbene complexes are synthesized by the reaction of the corresponding benzimidazolium salts with Ag2 O in dichloromethane. These new NHC precursors and Ag-NHC complexes were characterized by spectroscopy techniques and also screened for their antibacterial activities against the standard bacterial strains Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Enterococcus faecalis, and the standard fungal strains Candida albicans and Candida glabrata, and promising results were achieved. The compounds were also analyzed by density functional theory (DFT)/time-dependent DFT and docking methods.
Collapse
Affiliation(s)
- Dilek Türker
- Inorganic Chemistry, Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Elvan Üstün
- Inorganic Chemistry, Department of Chemistry, Faculty of Science and Art, Ordu University, Ordu, Turkey
| | - Selami Günal
- Pharmaceutical Chemistry, Department of Microbiology, Faculty of Medicine, İnonu University, Malatya, Turkey
| | - Hatice Yıldız
- Pharmaceutical Chemistry, Department of Microbiology, Faculty of Medicine, İnonu University, Malatya, Turkey
| | - Serpil D Düşünceli
- Inorganic Chemistry, Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Inorganic Chemistry, Department of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Inorganic Chemistry, Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Inorganic Chemistry, Department of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey
| |
Collapse
|
12
|
Antimicrobial activity, inhibition of biofilm formation, and molecular docking study of novel Ag-NHC complexes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Üstün E, Şahin N, Çelik C, Tutar U, Özdemir N, Gürbüz N, Özdemir İ. Synthesis, characterization, antimicrobial and antibiofilm activity, and molecular docking analysis of NHC precursors and their Ag-NHC complexes. Dalton Trans 2021; 50:15400-15412. [PMID: 34647935 DOI: 10.1039/d1dt02003j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microorganisms attach to surfaces and interfaces and form biofilms which create a sheltered area for host cell response. Therefore, biofilms provide troubles in fields such as medicine, food, and pharmaceuticals. Inhibition of formation of biofilms through hindering of quorum sensing could be a method for the production of new generation antibiotics. In this study, four new benzimidazole type NHC precursors (1-allyl-3-benzyl-5,6-dimethylbenzimidazolium chloride, 1-allyl-3-(2,4,6-trimethylbenzyl)-5,6-dimethylbenzimidazolium chloride, 1-allyl-3-(2,3,5,6-tetramethylbenzyl)-5,6-dimethylbenzimidazolium chloride, and 1-allyl-3-(2,3,4,5,6-pentamethylbenzyl)-5,6-dimethylbenzimidazolium chloride and Ag-NHC complexes of these molecules were synthesized and characterized by elemental analysis, FT-IR spectroscopy, 1H, and 13C{1H} NMR spectroscopy, LC-MS, and single crystal crystallography. Antimicrobial and biofilm formation inhibition activities of the molecules were evaluated. In addition, the activities of the molecules were examined in detail by molecular docking analysis. According to the results obtained, higher activity was achieved with the complex molecules when compared with the benzimidazole derivative ligands.
Collapse
Affiliation(s)
- Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, 52200 Ordu, Turkey
| | - Neslihan Şahin
- Department of Basic Education, Faculty of Education, Cumhuriyet University, 58040, Sivas, Turkey.
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280, Malatya, Turkey
| | - Cem Çelik
- Department of Medical Microbiology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Uğur Tutar
- Department of Botanica, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| | - Namık Özdemir
- Department of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280, Malatya, Turkey
- Drug Application and Research Center, İnönü University, 44280, Malatya, Turkey
| |
Collapse
|
14
|
Sandeli AEK, Khiri-Meribout N, Benzerka S, Gürbüz N, Dündar M, Karcı H, Bensouici C, Mokrani EH, Özdemir İ, Koç A, Özdemir N, Debache A, Özdemir İ. Silver (I)-N-heterocyclic carbene complexes: Synthesis and characterization, biological evaluation of Anti-Cholinesterase, anti-alpha-amylase, anti-lipase, and antibacterial activities, and molecular docking study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Serdaroğlu G, Şahin N, Üstün E, Tahir MN, Arıcı C, Gürbüz N, Özdemir İ. PEPPSI type complexes: Synthesis, x-ray structures, spectral studies, molecular docking and theoretical investigations. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Serdaroğlu G, Şahin N, Şahin-Bölükbaşı S, Üstün E. Novel Ag(I)-NHC complex: synthesis, in vitro cytotoxic activity, molecular docking, and quantum chemical studies. ACTA ACUST UNITED AC 2021; 77:21-36. [PMID: 34225394 DOI: 10.1515/znc-2021-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
The importance of organometallic complexes in cancer biology has attracted attention in recent years. In this paper, we look for the in vitro cytotoxic capability of novel benzimidazole-based N-heterocyclic carbene (NHC) precursor (1) and its Ag(I)-NHC complex (2). For this purpose, these novel Ag(I)-NHC complex (2) was characterized by spectroscopic techniques (1H, 13C{1H} nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FT-IR)). Then, in vitro cytotoxic activities of NHC precursor (1) and Ag(I)-NHC complex (2) were investigated against MCF-7, MDA-MB-231 human breast, DU-145 prostate cancer cells, and L-929 healthy cells using MTT assay for 24, 48, and 72 h incubation times. Ag(I)-NHC complex (2) showed promising in vitro cytotoxic activity against all cell lines for three incubation times, with IC50 values lower than 5 µM. It was also determined that (NHC) precursor (1) were lower in vitro cytotoxic activity than Ag(I)-NHC complex (2) against all cell lines. Selectivity indexes (SIs) of Ag(I)-NHC complex (2) against cancer cells were found higher than 2 for 24 and 48 h incubation time. Besides, the electronic structure and spectroscopic data of the newly synthesized precursor and its Ag-complex have been supported by density functional theory (DFT) calculations and molecular docking analysis. After, the anticancer activity of these compounds has been discussed considering the results of the frontier molecular orbital analysis. We hope that the obtained results from the experiments and computational tools will bring a new perspective to cancer research in terms of supported by quantum chemical calculations.
Collapse
Affiliation(s)
- Goncagül Serdaroğlu
- Math. and Sci. Edu., Faculty of Education, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Neslihan Şahin
- Department of Basic Education, Faculty of Education, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Department of Chemistry, Faculty of Science and Art, İnönü University, 44280 Malatya, Turkey
- Catalysis Research, and Application Center, İnönü University, 44280 Malatya, Turkey
| | - Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Elvan Üstün
- Department of Chemistry, Faculty of Science and Art, Ordu University, 52200 Ordu, Turkey
| |
Collapse
|
17
|
Miao C, Wang Y, Ma Z, Luo Y, Miao Y, Yuan P, Guo J, Chen G, Liu H. Synthesizing Hindered Structure Poly (p‐Phenylenediamine) by Enzymatic Catalysis and Evaluating Its Antioxidation Mechanism in Biodegradable Castor Oils. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Changqing Miao
- College of Chemistry and Chemical Engineering Xinxiang University 191 Jinsui Avenue Xinxiang 453003 China
| | - Yanbo Wang
- College of Chemistry and Chemical Engineering Xinxiang University 191 Jinsui Avenue Xinxiang 453003 China
| | - Zhiying Ma
- Engineering Research Center for Nanomaterials Henan University Jinming Avenue Kaifeng 475000 China
| | - Yang Luo
- College of Chemistry and Chemical Engineering Xinxiang University 191 Jinsui Avenue Xinxiang 453003 China
| | - Yu Miao
- College of Chemistry and Chemical Engineering Xinxiang University 191 Jinsui Avenue Xinxiang 453003 China
| | - Pingfang Yuan
- College of Chemistry and Chemical Engineering Xinxiang University 191 Jinsui Avenue Xinxiang 453003 China
| | - Jiao Guo
- College of Chemistry and Chemical Engineering Xinxiang University 191 Jinsui Avenue Xinxiang 453003 China
| | - Gairong Chen
- College of Chemistry and Chemical Engineering Xinxiang University 191 Jinsui Avenue Xinxiang 453003 China
| | - Hongbo Liu
- College of Materials Science and Engineering Hunan University Lushan Road (S), Yuelu District Changsha Hunan 410082 China
| |
Collapse
|
18
|
Şahin-Bölükbaşı S, Cantürk-Kılıçkaya P, Kılıçkaya O. Silver(I)-N-heterocyclic carbene complexes challenge cancer; evaluation of their anticancer properties and in silico studies. Drug Dev Res 2021; 82:907-926. [PMID: 33978961 DOI: 10.1002/ddr.21822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
Because of the continuous need for efficient therapeutic agents against various kinds of cancers and infectious diseases, the pharmaceutical industry has to find new candidates and strategies to develop novel and efficient drugs. They increasingly use computational tools in R&D stages for screening extensive sets of drug candidates before starting pre-clinical and clinical trials. N-Heterocyclic carbenes (NHCs) can be evaluated as good drug candidates because they offer both anti-cancer and anti-inflammatory features with their general low-toxicity profiles. To date, different kinds of NHCs (Cu, Co, Ni, Au, Ag, Ru, etc.) have been synthesized and their therapeutic uses has been shown. Here, we have reviewed the recent studies focused on Ag(I)-NHC complexes and their anti-cancer activities. Also, existing examples of the usage of density functional theory and structure-activity relationship have been evaluated.
Collapse
Affiliation(s)
- Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Pakize Cantürk-Kılıçkaya
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ozan Kılıçkaya
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
19
|
Ota A, Tajima M, Mori K, Sugiyama E, Sato VH, Sato H. The selective cytotoxicity of silver thiosulfate, a silver complex, on MCF-7 breast cancer cells through ROS-induced cell death. Pharmacol Rep 2021; 73:847-857. [PMID: 33864630 PMCID: PMC8180477 DOI: 10.1007/s43440-021-00260-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Silver is a transition metal that is known to be less toxic than platinum. However, only few studies have reported the anticancer effects of some silver complexes and their possibility as an alternative to platinum complex. This study investigated the anticancer effects of the silver thiosulfate complex (STS), [Ag(S2O3)2]3-, consisting of silver and sodium thiosulfate. METHODS In vitro cytotoxic activity of STS was investigated comparatively in human cancer cell lines (K562 and MCF-7) and normal human cells (mesenchymal stem cells and mammary epithelial cells). For its anticancer effects, cell cycle, mode of cell death, morphological changes, and accumulation of intracellular ROS and GSH were evaluated in MCF-7 to provide mechanistic insights. RESULTS STS showed a concentration-dependent cytotoxicity in MCF-7 cell, which was abolished by pretreatment with N-acetylcysteine, suggesting ROS accumulation by STS. Moreover, STS caused cell cycle arrest at the G1 phase, decrease in the GSH levels, and morphological changes in MCF-7. Direct measurement of ROS demonstrated the elevation of intracellular ROS accumulation in cancer cells treated with STS; however, neither cytotoxicity nor ROS accumulation was observed in normal human cells. CONCLUSION The results obtained here are the first evidence to show that STS exhibited an anticancer activity through ROS-induced mechanisms, and that its cytotoxicity is highly selective to cancer cells. The results of the present study warrant further investigation on the detailed mechanism of STS actions, as well as its in vivo effectiveness and safety for clinical application.
Collapse
Affiliation(s)
- Akira Ota
- Division of Pharmacokinetics and Pharmacodynamics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Masataka Tajima
- Division of Pharmacokinetics and Pharmacodynamics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Erika Sugiyama
- Division of Pharmacokinetics and Pharmacodynamics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Vilasinee Hirunpanich Sato
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Hitoshi Sato
- Division of Pharmacokinetics and Pharmacodynamics, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
20
|
Nayak S, Gaonkar SL. Coinage Metal N-Heterocyclic Carbene Complexes: Recent Synthetic Strategies and Medicinal Applications. ChemMedChem 2021; 16:1360-1390. [PMID: 33277791 DOI: 10.1002/cmdc.202000836] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 12/15/2022]
Abstract
New weapons are constantly needed in the fight against cancer. The discovery of cisplatin as an anticancer drug prompted the search for new metal complexes. The successful history of cisplatin motivated chemists to develop a plethora of metal-based molecules. Among them, metal-N-heterocyclic carbene (NHC) complexes have gained significant attention because of their suitable qualities for efficient drug design. The enhanced applications of coinage metal-NHC complexes have encouraged a gradually increasing number of studies in the fields of medicinal chemistry that benefit from the fascinating chemical properties of these complexes. This review aims to present recent developments in synthetic strategies and medicinal applications of copper, silver and gold complexes supported by NHC ligands.
Collapse
Affiliation(s)
- Swarnagowri Nayak
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
21
|
Dileepan AB, Ganeshkumar A, Ranjith R, Maruthamuthu D, Rajaram R, Rajam S. Killing effects of Candida albicans through alteration of cellular morphology and growth metabolism using Tris-NHC ligand coordinated to AgI and CuI. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Slimani I, Şahin-Bölükbaşı S, Ulu M, Evren E, Gürbüz N, Özdemir İ, Hamdi N, Özdemir İ. Rhodium( i) N-heterocyclic carbene complexes: synthesis and cytotoxic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj00144b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of benzimidazolium salts and their [RhCl(NHC)(COD)] complexes were synthesized. All compounds were screened for in vitro cytotoxic activities against a panel of human cancer cells (HT-29 colon, Ishikawa endometrial, U-87 glioblastoma) using the MTT assay for 48 h incubation time.
Collapse
Affiliation(s)
- Ichraf Slimani
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09)
- Higher Institute of Environmental Sciences and Technology
- University of Carthage
- Hammam-Lif
- Tunisia
| | - Serap Şahin-Bölükbaşı
- Sivas Cumhuriyet University
- Faculty of Pharmacy
- Department of Biochemistry
- 58140 Sivas
- Turkey
| | - Mustafa Ulu
- Sivas Cumhuriyet University
- Faculty of Pharmacy
- Department of Biochemistry
- 58140 Sivas
- Turkey
| | - Enes Evren
- Inönü University
- Catalysis Research and Application Center
- 44280 Malatya
- Turkey
| | - Nevin Gürbüz
- Inönü University
- Catalysis Research and Application Center
- 44280 Malatya
- Turkey
- Inönü University
| | - İlknur Özdemir
- Inönü University
- Faculty of Science and Arts
- Department of Chemistry
- 44280 Malatya
- Turkey
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09)
- Higher Institute of Environmental Sciences and Technology
- University of Carthage
- Hammam-Lif
- Tunisia
| | - İsmail Özdemir
- Inönü University
- Catalysis Research and Application Center
- 44280 Malatya
- Turkey
- Inönü University
| |
Collapse
|
23
|
Patel NJ, Bhatt BS, Vekariya PA, Vaidya FU, Pathak C, Pandya J, Patel MN. Synthesis, characterization, structural-activity relationship and biomolecular interaction studies of heteroleptic Pd(II) complexes with acetyl pyridine scaffold. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Serdaroğlu G, Şahin-Bölükbaşı S, Barut-Celepci D, Sevinçek R, Şahin N, Gürbüz N, Özdemir İ. Synthesis, in vitro anticancer activities, and quantum chemical investigations on 1,3-bis-(2-methyl-2-propenyl)benzimidazolium chloride and its Ag(I) complex. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820950219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1,3- Bis-(2-methyl-2-propenyl)benzimidazolium chloride and its Ag(I) complex are synthesized and the structures are elucidated using spectroscopies techniques. The molecular and crystal structures of the benzimidazolium salt are confirmed by X-ray crystallography. The molecular geometries of the benzimidazolium and its Ag(I) salt are analyzed using the B3LYP functional with the 6–311+G(d,p)/LANL2DZ basis set. The observed Fourier transform infrared and nuclear magnetic resonance isotropic shifts are compared with the calculated values. Besides, the quantum chemical identifiers, significant intramolecular interactions, and molecular electrostatic potential plots are used to show the tendency/site of the chemical reactivity behavior. The three-dimensional Hirshfeld surfaces and the associated two-dimensional fingerprint plots are applied to obtain an insight into the behavior of the interactions in the crystal. Both compounds are tested for their in vitro anticancer activities against DU-145 and MCF-7 cancer cells and L-929 non-cancer cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.
Collapse
Affiliation(s)
- Goncagül Serdaroğlu
- Department of Science Education, Faculty of Education, Sivas Cumhuriyet University, Sivas, Turkey
| | - Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Duygu Barut-Celepci
- Department of Physics, Faculty of Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Neslihan Şahin
- Department of Basic Education, Faculty of Education, Sivas Cumhuriyet University, Sivas, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, Inönü University, Malatya, Turkey
| | - Nevin Gürbüz
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, Inönü University, Malatya, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
- Catalysis Research and Application Center, Inönü University, Malatya, Turkey
| |
Collapse
|
25
|
Mohamed Haziz UF, Haque RA, Al-Ashraf Abdullah A, Razali MR. Mononuclear silver(I)- N-heterocyclic carbene complexes with benzimidazole-2-ylidene ligands: synthesis, crystal structure analyses and comparative antibacterial studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1830381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Rosenani A. Haque
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Amirul Al-Ashraf Abdullah
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd R. Razali
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
26
|
Çevik-Yıldız E, Şahin N, Şahin-Bölükbaşı S. Synthesis, characterization, and investigation of antiproliferative activity of novel Ag (I)-N-Heterocyclic Carbene (NHC) compounds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Şahin N, Şahin-Bölükbaşı S, Marşan H. Synthesis and antitumor activity of new silver(I)-N-heterocyclic carbene complexes. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1697808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Neslihan Şahin
- Department of Basic Education, Faculty of Education, Sivas Cumhuriyet University, Sivas, Turkey
- Department of Chemistry, Faculty of Science and Art, University of İnönü, Malatya, Turkey
- Catalysis Research and Application Center, University of İnönü, Malatya, Turkey
| | - Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Halis Marşan
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
28
|
Bormio Nunes JH, de Paiva PP, Ruiz ALT, de Carvalho JE, Corbi PP. New findings on the antiproliferative activity of the silver(I) complex with 5-fluorouracil against human multi-resistant NCI/ADR-RES ovarian tumor cells. Toxicol In Vitro 2019; 60:359-368. [DOI: 10.1016/j.tiv.2019.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
|
29
|
Synthesis and evaluation of anticancer properties of novel benzimidazole ligand and their cobalt(II) and zinc(II) complexes against cancer cell lines A-2780 and DU-145. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118977] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|