1
|
Li W, Hu J. Photodegradation of the novel herbicide pyraclonil in aqueous solution: Kinetics, identification of photoproducts, mechanism, and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124381. [PMID: 38906402 DOI: 10.1016/j.envpol.2024.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Pyraclonil is a new type of pyrazole herbicide, whose photochemical fate in aqueous solution has not been reported yet. In this study, effects on the photolysis rate such as light source, pH, NO3-, Fe3+, fulvic acid (FA) and riboflavin (RF) were investigated. Pyraclonil photodegraded in pure water under both UV and simulated sunlight with half-lives of 32.29 min and 42.52 h, respectively. Under UV, the degradation rate of pyraclonil in pH 4 solution (0.0299 ± 0.0033 min-1) was about twice higher than that in pH 9 (0.0160 ± 0.0063 min-1). Under simulated sunlight, low concentration (0.1-1 mg/L) of FA, NO3-, Fe3+ and RF noticeably promoted the photodegradation of pyraclonil. Then, with the combination of experimental UPLC-Q-TOF/MS and computational calculation of density functional theory (DFT), fourteen transformation products (TPs) of pyraclonil were identified with possible mechanism of C-N bond cleavage, photorearrangement, demethylation, hydroxylation and oxidation. Additionally, acute toxicity assessment was conducted through ECOSAR prediction and laboratory bioassays. The prediction results indicated that toxicity of TP157 to daphnid and green algae was 1.3 and 1.4 times higher than that of the parent, respectively. The bioassay results indicated that toxicities of TP157 and TP263 to C. vulgaris were about 1.6 and 5.9 times higher than that of the parent, respectively. The results provided a reference for elucidating the potential hazards of pyraclonil to non-target organisms and promoting its rational use.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
2
|
Manakkadan V, Haribabu J, Palakkeezhillam VNV, Rasin P, Vediyappan R, Kumar VS, Garg M, Bhuvanesh N, Sreekanth A. Copper-mediated cyclization of thiosemicarbazones leading to 1,3,4-thiadiazoles: Structural elucidation, DFT calculations, in vitro biological evaluation and in silico evaluation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124117. [PMID: 38461559 DOI: 10.1016/j.saa.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Cancer's global impact necessitates innovative and less toxic treatments. Thiosemicarbazones (TSCs), adaptable metal chelators, offer such potential. In this study, we have synthesized N (4)-substituted heterocyclic TSCs from syringaldehyde (TSL1, TSL2), and also report the unexpected copper-mediated cyclization of the TSCs to form thiadiazoles (TSL3, TSL4), expanding research avenues. This work includes extensive characterization and studies such as DNA/protein binding, molecular docking, and theoretical analyses to demonstrate the potential of the as-prepared TSCs and thiadiazoles against different cancer cells. The DFT results depict that the thiadiazoles exhibit greater structural stability and reduced reactivity compared to the corresponding TSCs. The docking results suggest superior EGFR inhibition for TSL3 with a binding constant value of - 6.99 Kcal/mol. According to molecular dynamics studies, the TSL3-EGFR complex exhibits a lower average RMSD (1.39 nm) as compared to the TSL1-EGFR complex (3.29 nm) suggesting that both the thiadiazole and thiosemicarbazone examined here can be good inhibitors of EGFR protein, also that TSL3 can inhibit EGFR better than TSL1. ADME analysis indicates drug-likeness and oral availability of the thiadiazole-based drugs. The DNA binding experiment through absorption and emission spectroscopy discovered that TSL3 is more active towards DNA which is quantitatively calculated with a Kb value of 4.74 × 106 M-1, Kq value of 4.04 × 104 M-1and Kapp value of 5 × 106 M-1. Furthermore, the BSA binding studies carried out with fluorescence spectroscopy showed that TSL3 shows better binding capacity (1.64 × 105 M-1) with BSA protein. All the compounds show significant cytotoxicity against A459-lung, MCF-7-breast, and HepG2-liver cancer cell lines; TSL3 exhibits the best cytotoxicity, albeit less effective than cisplatin. Thiadiazoles demonstrate greater cytotoxicity than the TSCs. Overall, the promise of TSCs and thiadiazoles in cancer research is highlighted by this study. Furthermore, it unveils unexpected copper-mediated cyclization of the TSCs to thiadiazoles.
Collapse
Affiliation(s)
- Vipin Manakkadan
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile; Chennai Institute of Technology (CIT), Chennai 600069, India
| | | | - Puthiyavalappil Rasin
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Ramesh Vediyappan
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Vaishnu Suresh Kumar
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India; Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani-333031 Rajasthan, India
| | - Mohit Garg
- Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani-333031 Rajasthan, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India.
| |
Collapse
|
3
|
Rezayati S, Morsali A. Functionalization of Magnetic UiO-66-NH 2 with a Chiral Cu(l-proline) 2 Complex as a Hybrid Asymmetric Catalyst for CO 2 Conversion into Cyclic Carbonates. Inorg Chem 2024; 63:6051-6066. [PMID: 38501387 DOI: 10.1021/acs.inorgchem.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In this study, a chiral [Cu(l-proline)2] complex-modified Fe3O4@SiO2@UiO-66-NH2(Zr) metal-organic framework [Fe3O4@SiO2@UiO-66-NH-Cu(l-proline)2] via multifunctionalization strategies was designed and synthesized. One simple approach to chiralize an achiral MOF-structure that cannot be directly chiralized using a chiral secondary agent like 4-hydroxy-l-proline. Therefore, this chiral catalyst was synthesized with a simple and multistep method. Accordingly, Fe3O4@SiO2@UiO-66-NH2 has been synthesized via Fe3O4 modification with tetraethyl orthosilicate and subsequently with ZrCl4 and 2-aminoterephthalic acid. The presence of the silica layer helps to stabilize the Fe3O4 core, while the bonding between Zr4+ and the -OH groups in the silica layer promotes the development of Zr-MOFs on the Fe3O4 surface, and then the surfaces of the synthesized magnetic MOFs composite are functionalized with 1,2-dichloroethane and Cu(II) complex with 4-hydroxy-l-proline, [Cu(l-proline)2] to afford the magnetically chiral nanocatalyst. Multiple techniques were employed to characterize this magnetically chiral nanocatalyst such as Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), powder X-ray diffraction (PXRD), circular dichroism (CD), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analyses. Moreover, a magnetically chiral nanocatalyst shows the asymmetric CO2 fixation reaction under solvent-free conditions at 80 °C and in ethanol under reflux conditions with up to 99 and 98% ee, respectively. Furthermore, the reaction mechanism was illustrated concerning the total energy of the reactant, intermediates and product, and the structural parameters were analyzed.
Collapse
Affiliation(s)
- Sobhan Rezayati
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
4
|
Shafiq N, Shakoor B, Yaqoob N, Parveen S, Brogi S, Mohammad Salamatullah A, Rashid M, Bourhia M. A virtual insight into mushroom secondary metabolites: 3D-QSAR, docking, pharmacophore-based analysis and molecular modeling to analyze their anti-breast cancer potential. J Biomol Struct Dyn 2024:1-22. [PMID: 38299565 DOI: 10.1080/07391102.2024.2304137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
Breast cancer is a major issue of investigation in drug discovery due to its rising frequency and global dominance. Plants are significant natural sources for the development of novel medications and therapies. Medicinal mushrooms have many biological response modifiers and are used for the treatment of many physical illnesses. In this research, a database of 89 macro-molecules with anti-breast cancer activity, which were previously isolated from the mushrooms in literature, has been selected for the three-dimensional quantitative structure-activity relationships (3D-QSAR) studies. The 3D-QSAR model was necessarily used in Pharmacopoeia virtual evaluation of the database to develop novel MCF-7 inhibitors. With the known potential targets of breast cancer, the docking studies were achieved. Using molecular dynamics simulations, the targets' stability with the best-chosen natural product molecule was found. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity of three compounds, resulting after the docking study, were predicted. The compound C1 (Pseudonocardian A) showed the features of effective compounds because it has bioavailability from different coral species and is toxicity-free for the prevention of many dermatological illnesses. C1 is chemically active and possesses charge transfer inside the monomer, as seen by the band gaps of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) electrons. The reactivity descriptors ionization potential, electron affinity, chemical potential (μ), hardness (η), softness (S), electronegativity (χ), and electrophilicity index (ω) have been estimated using the energies of frontier molecular orbitals (HOMO-LUMO). Additionally, molecular electrostatic potential maps were created to show that the C1 is reactive.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Bushra Shakoor
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Nazia Yaqoob
- Green Chemistry Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Simone Brogi
- Department of Pharmacy, Pisa University, Pisa, Italy
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Rashid
- Synthetic and Natural Products Drug Discovery Lab, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca, Morocco
| |
Collapse
|
5
|
Rezayati S, Moghadam MM, Naserifar Z, Ramazani A. Schiff Base Complex of Copper Immobilized on Core-Shell Magnetic Nanoparticles Catalyzed One-Pot Syntheses of Polyhydroquinoline Derivatives under Mild Conditions Supported by a DFT Study. Inorg Chem 2024; 63:1652-1673. [PMID: 38194483 DOI: 10.1021/acs.inorgchem.3c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
We synthesized a stable and reusable Schiff base complex of copper immobilized on core-shell magnetic nanoparticles [Cu(II)-SB/GPTMS@SiO2@Fe3O4] with simple, efficient, and available materials. A variety of characterization analyses including Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectrometry (EDX), and inductively coupled plasma (ICP) confirm that our synthesized nanocatalyst was obtained. The particle size distribution from the TEM image was obtained in the range of 42-55 nm. The existence of cupric species (Cu2+) in the catalyst was determined with XPS analysis and clearly indicated two peaks at 933.7 and 953.7 eV for Cu 2p3/2 and Cu 2p1/2, respectively. BET results showed that our catalyst synthesized with a mesoporous structure and with a specific area of 48.82 m2 g-1. After detailed characterization, the resulting nanocatalyst exhibited excellent catalytic performance for the explored catalytic reactions in the one-pot synthesis of polyhydroquinoline derivatives by the Hantzsch reaction of dimedone, ethyl acetoacetate, ammonium acetate, and various aldehydes under sustainable and mild conditions. The corresponding products 5a-l are achieved in yields of 88-97%. Additionally, density functional theory (DFT) calculations were carried out to investigate the electrostatic potential root (ESP), natural bond orbital (NBO), and molecular orbitals (MOs), drawing the reaction mechanism using the total energy of the reactant and product and the study of structural parameters.
Collapse
Affiliation(s)
- Sobhan Rezayati
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Maryam Manafi Moghadam
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Zahra Naserifar
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| |
Collapse
|
6
|
El-Dash Y, Khalil NA, Ahmed EM, Hassanin SO, Gowifel AMH, Hassan MSA. Synthesis of novel nicotinic acid derivatives of potential antioxidant and anticancer activity. Arch Pharm (Weinheim) 2023; 356:e2300250. [PMID: 37792247 DOI: 10.1002/ardp.202300250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
This study comprises the design and synthesis of novel nicotinic acid-based cytotoxic agents with selective inhibitory efficacy against the vascular endothelial growth factor receptor-2 (VEGFR-2). Screening of novel compounds for cytotoxicity was assessed against 60 human cancer cell lines. The two most active compounds, 5b and 5c, and the reference drugs sorafenib and doxorubicin were investigated against HCT-15, PC-3, and CF-295 cancer cell lines. Compound 5c exhibited the highest cytotoxic potential compared to doxorubicin against the HCT-15 and PC-3 tumor cell lines. Moreover, it exhibited higher cytotoxic potential and selectivity toward the HCT-15 cell panel compared with sorafenib. Compound 5c demonstrated promising VEGFR-2 inhibition (concentration needed to inhibit cell viability by 50%, IC50 = 0.068 μM) and superior VEGFR-2 selectivity over the epidermal growth factor receptor and platelet-derived growth factor receptor-β enzymes. It also reduced the total and phosphorylated VEGFR-2 and induced apoptosis, as evidenced by a 4.3-fold rise in caspase-3 levels. The antioxidant potential of the new compounds was determined via measuring the superoxide dismutase (SOD) levels, among which compound 5c exhibited an SOD level almost comparable to ascorbic acid. These results suggested that compound 5c exhibited dual cytotoxic and antioxidant activities. Docking of 5c into the VEGFR-2 pocket showed a similar binding mode to sorafenib. Moreover, the ADME (absorption, distribution, metabolism, and excretion) profile of 5c outlined drug-likeness. Finally, The density functional theory calculations displayed an increased binding affinity of 5c to the target enzyme.
Collapse
Affiliation(s)
- Yara El-Dash
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Soha O Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Chen X, Ma H, Ji X, Han R, Pang K, Yang Z, Liu Z, Peng S. Engineering green MOF-based superhydrophobic sponge for efficiently synchronous removal of microplastics and pesticides from high-salinity water. WATER RESEARCH 2023; 243:120314. [PMID: 37441898 DOI: 10.1016/j.watres.2023.120314] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Microplastics (MPs) and pesticides are becoming an intractable environmental issue due to their wide spreading and non-degradable nature, posing serious threat to ecosystem and human health. To settle such dilemma, this work reasonably designed a superhydrophobic MOF-based coated sponge (ODSOSS/TiO2/Ni-MOF/PDA@Sponge) through the combination of an environmentally friendly in-situ supersaturated coprecipitation and polysesiloxane modification method. Among them, (I) the introduction of polydopamine (PDA) not only improves the adhesion between coatings and sponge, but also enhances the growth of MOF structure through complexation. (II) The obtained Ni-MOF shows large-area microscale anthemy structure with multilayered flaky texture, forming heterogeneously hierarchical structure with the deposited TiO2 nanoparticles, which promotes photodegradation ability of TiO2 owing to great specific surface area of Ni-MOF. (III) The high specific large area Ni-MOF supplies sufficient action sites for linkage of PDA and polysesiloxane molecules with unique nanocage-like structure, thus further greatly increasing adsorption force for various pollutants. (IV) The superhydrophobicity protect the porous channels of MOF from contamination of various absorbed pollutants, while TiO2 nanoparticles effectively photodegrade the absorbed organic pollutants, endowing the sponge superior recyclability. The superhydrophobic sponge selectively rapidly and synchronously adsorbs various MPs (maintained almost 100% after 60 cycles) and pesticides (adsorption rates 71.6%-95.1%) from high-salinity water. The large-area sponge (9 cm × 6 cm × 1 cm) simultaneously removes almost 100% MPs (40 mg/L), Sudan Ⅲ (10 mg/L), kerosene (30 mL/L), and four pesticides (10 mg/L) within 1 min. Particularly, four pesticides are quickly photocatalytic degraded by the coated sponge. The free radical capture trials show that hydroxyl radicals (·OH) are the main active species of pesticide degradation. Furthermore, we reveal the negative centers where pesticide molecules are most vulnerable to ·OH attack, on basis of the charge distribution and molecular electrostatic potential (MEP) analysis. The adsorption mechanisms are carefully clarified through theoretical calculation and experimental data. This work not only provide an effective superhydrophobic candidate for MPs and pesticides removal in a broad applicable scope (especially in high-salinity wastewater), but also opens a new strategy for environmental remediation.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Department of Eco-Environment, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Haobo Ma
- Department of Eco-Environment, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Xiaoyu Ji
- College of Chemistry and Materials Science, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Ruimeng Han
- Department of Eco-Environment, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Kyongjin Pang
- Department of Organic Chemistry, Hamhung University of Chemical Industry, Hoisang 1 Dong, Hoisang District, Hamhung city, South Hamgyong Province, 999092, D. P. R of Korea.
| | - Zemin Yang
- Department of Eco-Environment, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Zhimin Liu
- Department of Eco-Environment, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| | - Shan Peng
- College of Chemistry and Materials Science, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, China; Engineering Technology Research Center for Flame Retardant Materials and Processing Technology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, 071002, China.
| |
Collapse
|
8
|
Ata AÇ, Yildiko Ü, Tanriverdi AA, Ebiri R, Yiğit E, Orak İ, Cakmak İ. Two‐step novel aromatic polyimide synthesis and characterization: Survey of energy calculations and diode applications. J Appl Polym Sci 2023. [DOI: 10.1002/app.53689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ahmet Çağrı Ata
- Institute of Science, Department of Chemistry Kafkas University Kars Turkey
| | - Ümit Yildiko
- Architecture and Engineering Faculty, Department of Bioengineering Kafkas University Kars Turkey
| | | | - Rüstem Ebiri
- Faculty of Sciences. Department of Chemistry Ataturk University Erzurum Turkey
| | - Evin Yiğit
- Department of Chemistry, Faculty of Sciences and Arts Bingol University Bingol Turkey
| | - İkram Orak
- Vocational School of Health Services Bingol University Bingol Turkey
- Renewable Energy Systems, Institute of Science Bingol University Bingol Turkey
| | - İsmail Cakmak
- Faculty of Arts and Sciences. Department of Chemistry Kafkas University Kars Turkey
| |
Collapse
|
9
|
Liu X, Fu L, Liu H, Zhang D, Xiong C, Wang S, Zhang L. Design of Zr-MOFs by Introducing Multiple Ligands for Efficient and Selective Capturing of Pb(II) from Aqueous Solutions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5974-5989. [PMID: 36649205 DOI: 10.1021/acsami.2c21546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The existence of lead ions seriously affects the quality of many metal products in metallurgical enterprises. Currently, the various methods of lead-ion removal tried by researchers will affect valuable metals in the removal process, thus resulting in low economic efficiency. In this study, a novel metal-organic framework adsorbent (UiO-FHD) which efficiently and selectively captures lead ions is developed by introducing multiple ligands. The maximum adsorption capacity of lead ions is 433.15 mg/g at pH 5. The adsorption process accords with the pseudo-second-order kinetic and the Langmuir isotherm models at room temperature. Thermodynamic experiments indicate that the removal of Pb(II) is facilitated by appropriate temperature reduction. The performance tests indicate that UiO-FHD maintains a high removal rate of 90.35% for Pb(II) after four consecutive adsorption-desorption cycles. The distribution coefficient of lead ions (26.7 L/g) shows that UiO-FHD has excellent selective adsorption for lead ions. It is revealed that the chelation of the sulfhydryl groups and the electrostatic interaction of the hydroxyl groups are the dominant factors to improve the removal rate of Pb(II) by density functional theory calculations. This study clarifies the value of self-designed novel organic ligands in metal-organic framework materials that selectively capture heavy-metal ions.
Collapse
Affiliation(s)
- Xiang Liu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Likang Fu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Hongliang Liu
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Dekun Zhang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 Guangdong, China
| | - Shixing Wang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| | - Libo Zhang
- National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093 Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093 Yunnan, China
| |
Collapse
|
10
|
Abdollahi-Moghadam M, Keypour H, Azadbakht R, Koolivand M. An experimental and theoretical study of a new sensitive and selective Al3+ Schiff base fluorescent chemosensor bearing a homopiperazine moiety. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Xu R, Gu S, Chen K, Chen J, Wang Y, Gao Y, Shang S, Song Z, Song J, Li J. Discovery of rosin-based acylhydrazone derivatives as potential antifungal agents against rice Rhizoctonia solani for sustainable crop protection. PEST MANAGEMENT SCIENCE 2023; 79:655-665. [PMID: 36223125 DOI: 10.1002/ps.7232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The use of fungicides to protect crops from diseases is an effective method, and novel environmentally friendly plant-derived fungicides with enhanced performance and low toxicity are urgent requirements for sustainable agriculture. RESULTS Two kinds of rosin-based acylhydrazone compounds were designed and prepared. Based on the antifungal activity assessment against Rhizoctonia solani, Fusarium oxysporum, Phytophthora capsici, Sclerotinia sclerotiorum, and Botrytis cinerea, acylhydrazone derivatives containing a thiophene ring were screened and showed an inhibitory effect on rice R. solani. Among them, Compound 4n, with an electron-withdrawing group on the benzene ring structure attached to the thiophene ring, showed optimal activity, and the EC50 value was 0.981 mg L-1 , which was lower than that of carbendazim. Furthermore, it was indicated that 4n could affect the mycelial morphology, cell membrane permeability and microstructure, cause the generation of reactive oxygen species in fungal cells, and damage the nucleus and mitochondrial physiological function, resulting in the cell death of R. solani. Meanwhile, Compound 4n exhibited a better therapeutic effect on in vivo rice plants. However, the induction activity of 4n on the defense enzyme in rice leaf sheaths showed that 4n stimulates the initial resistance of rice plants by removing active oxygen, thereby protecting the cell membrane or enhancing the strength of the cell wall. Through the quantitative structure-activity relationship study, the quantitative chemical and electrostatic descriptors significantly affect the binding of 4n with the receptor, which improves its antifungal activity. CONCLUSION This study provides a basis for exploiting potential rosin-based fungicides in promoting sustainable crop protection. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renle Xu
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Shihao Gu
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Kun Chen
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinyu Chen
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Wang
- Department of Agricultural Pharmacology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanqing Gao
- Department of Agricultural Pharmacology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, MI, USA
| | - Jian Li
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
W. A, Dhas DA, Balachandran S, I. HJ. Structural, Spectroscopic, and C-H…O Hydrogen Bonding Interaction on Structure (Monomer and Dimer) Vibrational Spectroscopic, Fukui, NCI, AIM, and RDG Analysis Molecular Docking and Molecular Dynamic Simulation of Biological Active Pencycuron. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Abisha W.
- Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
- Department of Physics and Research Centre, Nesamony Memorial Christian College, Marthandam, India
| | - D. Arul Dhas
- Department of Physics and Research Centre, Nesamony Memorial Christian College, Marthandam, India
| | - S. Balachandran
- Department of Chemistry, NSS College Ottapalam, Palakkad, India
| | - Hubert Joe I.
- Department of Physics, Centre for Molecular and Biophysics Research, Mar Ivanios College, Thiruvananthapuram, India
| |
Collapse
|
13
|
Quantum computational, spectroscopic and molecular docking studies on 6-amino-3-bromo-2-methylpyridine. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Kazachenko AS, Tanış E, Akman F, Medimagh M, Issaoui N, Al-Dossary O, Bousiakou LG, Kazachenko AS, Zimonin D, Skripnikov AM. A Comprehensive Study of N-Butyl-1H-Benzimidazole. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227864. [PMID: 36431965 PMCID: PMC9698437 DOI: 10.3390/molecules27227864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Imidazole derivatives have found wide application in organic and medicinal chemistry. In particular, benzimidazoles have proven biological activity as antiviral, antimicrobial, and antitumor agents. In this work, we experimentally and theoretically investigated N-Butyl-1H-benzimidazole. It has been shown that the presence of a butyl substituent in the N position does not significantly affect the conjugation and structural organization of benzimidazole. The optimized molecular parameters were performed by the DFT/B3LYP method with 6-311++G(d,p) basis set. This level of theory shows excellent concurrence with the experimental data. The non-covalent interactions that existed within our compound N-Butyl-1H-benzimidazole were also analyzed by the AIM, RDG, ELF, and LOL topological methods. The color shades of the ELF and LOL maps confirm the presence of bonding and non-bonding electrons in N-Butyl-1H-benzimidazole. From DFT calculations, various methods such as molecular electrostatic potential (MEP), Fukui functions, Mulliken atomic charges, and frontier molecular orbital (HOMO-LUMO) were characterized. Furthermore, UV-Vis absorption and natural bond orbital (NBO) analysis were calculated. It is shown that the experimental and theoretical spectra of N-Butyl-1H-benzimidazole have a peak at 248 nm; in addition, the experimental spectrum has a peak near 295 nm. The NBO method shows that the delocalization of the aσ-electron from σ (C1-C2) is distributed into antibonding σ* (C1-C6), σ* (C1-N26), and σ* (C6-H11), which leads to stabilization energies of 4.63, 0.86, and 2.42 KJ/mol, respectively. Spectroscopic investigations of N-Butyl-1H-benzimidazole were carried out experimentally and theoretically to find FTIR vibrational spectra.
Collapse
Affiliation(s)
- Aleksandr S. Kazachenko
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, Bld. 24, 660036 Krasnoyarsk, Russia
- Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University of the Ministry of Healthcare of the Russian Federation, St. Partizan Zheleznyak, Bld. 1, 660022 Krasnoyarsk, Russia
- Correspondence: (A.S.K.); (F.A.)
| | - Emine Tanış
- Department of Electrical Electronics Engineering, Faculty of Engineering and Architecture, Kırşehir Ahi Evran University, Kırşehir 40100, Turkey
| | - Feride Akman
- Vocational School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey
- Correspondence: (A.S.K.); (F.A.)
| | - Mouna Medimagh
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia
| | - Omar Al-Dossary
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Leda G. Bousiakou
- IMD Laboratories Co., R&D Section, Lefkippos Technology Park, NCSR Demokritos, P.O. Box 60037, 15130 Athens, Greece
| | - Anna S. Kazachenko
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, Bld. 24, 660036 Krasnoyarsk, Russia
| | - Dmitry Zimonin
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, Bld. 24, 660036 Krasnoyarsk, Russia
| | - Andrey M. Skripnikov
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia; (A.S.K.)
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok, 50, Bld. 24, 660036 Krasnoyarsk, Russia
| |
Collapse
|
15
|
Mukherjee D, Reja S, Sarkar K, Fayaz T, Kumar P, Kejriwal A, Das P, Sanphui P, Kumar Das R. In Vitro Cytotoxicity Activity of Copper Complexes of imine and amine ligands: A Combined Experimental and Computational Study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Feride Akman, Kazachenko AS, Issaoui N. DFT Calculations of Some Important Radicals Used in the Nitroxide-Mediated Polymerization and Their HOMO‒LUMO, Natural Bond Orbital, and Molecular Electrostatic Potential Comparative Analysis. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s156009042270035x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Feride Akman, Kazachenko AS, Issaoui N. DFT Calculations of Some Important Radicals Used in the Nitroxide-Mediated Polymerization and Their HOMO‒LUMO, Natural Bond Orbital, and Molecular Electrostatic Potential Comparative Analysis. POLYMER SCIENCE SERIES B 2022. [DOI: doi.org/10.1134/s156009042270035x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Moharana M, Pattanayak SK, Khan F. Computational efforts to identify natural occurring compounds from phyllanthus niruri that target hepatitis B viral infections: DFT, docking and dynamics simulation study. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
Cao X, Liu C, Huang X, Zeng J, Xue J, Zhang R, Huang K, Cao Z, Zhong H. Uncovering the flotation performance and adsorption mechanism of a multifunctional thiocarbamate collector on malachite. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Tarika JD, Dexlin XD, Arun kumar A, Rathika A, Jayanthi DD, Beaula TJ. Computational Insights On Charge Transfer and Non-covalent Interactions of Antibacterial Compound 4-dimethylaminopyridinium pyridine-2-carboxylate pentahydrate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Yildiko U, Tanriverdi AA. A novel sulfonated aromatic polyimide synthesis and characterization: Energy calculations,
QTAIM
simulation study of the hydrated structure of one unit. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Umit Yildiko
- Engineering and Architecture Faculty, Department of Bioengineering Kafkas University Kars Turkey
| | | |
Collapse
|
22
|
Isoquinolinedione-urea hybrids: Synthesis, antibacterial evaluation, drug-likeness, molecular docking and DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Ali M, Latif A, Bibi S, Ali S, Ali A, Ahmad M, Ahmad R, Khan AA, Khan A, Ribeiro AI, Al‐Harrasi A, Farooq U. Facile Synthesis of the Shape‐Persistent 4‐Hydroxybenzaldehyde Based Macrocycles and Exploration of their Key Electronic Properties: An Experimental and DFT Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mumtaz Ali
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Abdul Latif
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Saeeda Bibi
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Sardar Ali
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Akbar Ali
- Department of Chemistry Government College University Faisalabad Faisalabad 38000 Pakistan
| | - Manzoor Ahmad
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
| | - Rashid Ahmad
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
- Center for Computational Materials Science University of Malakand Dir Lower
| | - Adnan Ali Khan
- Department of Chemistry University of Malakand Lower 18800 Khyber Pakhtunkhwa Pakistan
- Center for Computational Materials Science University of Malakand Dir Lower
| | - Ajmal Khan
- Natural and Medical Sciences Research Center University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Alany Ingrid Ribeiro
- Department of Chemistry Federal University of São Carlos Rod. Washington Luís, Km 265 São Carlos Brazil
| | - Ahmed Al‐Harrasi
- Natural and Medical Sciences Research Center University of Nizwa PO Box 33, 616 Birkat Al Mauz Nizwa Oman
| | - Umar Farooq
- Department of Chemistry COMSATS University Islamabad Abbottabad Campus, KPK 22060 Islamabad 45550 Pakistan
| |
Collapse
|
24
|
Kumar R, Kamal R, Kumar V, Parkash J. Bifunctionalization of α,β-unsaturated diaryl ketones into α-aryl-β,β-ditosyloxy ketones: Single crystal XRD, DFT, FMOs, molecular electrostatic potential, hirshfeld surface analysis, and 3D-energy frameworks. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Surface active SNS-based dicationic ionic liquids containing amphiphilic anions: Experimental and theoretical studies of their structures and organization in solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Dexlin XD, Tarika JD, Kumar SM, Mariappan A, Beaula TJ. Synthesis and DFT computations on structural, electronic and vibrational spectra, RDG analysis and molecular docking of novel Anti COVID-19 molecule 3, 5 Dimethyl Pyrazolium 3, 5 Dichloro Salicylate. J Mol Struct 2021; 1246:131165. [DOI: 10.1016/j.molstruc.2021.131165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
|
27
|
Kazachenko AS, Akman F, Malyar YN, ISSAOUI N, Vasilieva NY, Karacharov AA. Synthesis optimization, DFT and physicochemical study of chitosan sulfates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131083] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Lu Y, Wu K, Wang S, Cao Z, Ma X, Zhong H. Structural modification of hydroxamic acid collectors to enhance the flotation performance of malachite and associated mechanism. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Intermolecular hydrogen bonds interactions in water clusters of ammonium sulfamate: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NBO analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117475] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Tarika JDD, Dexlin XDD, Madhankumar S, Jayanthi DD, Beaula TJ. Tuning the Computational Evaluation of Spectroscopic, ELF, LOL, NCI analysis and Molecular Docking of Novel Anti COVID-19 Molecule 4-Dimethylamino Pyridinium 3, 5-Dichlorosalicylate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119907. [PMID: 33989977 PMCID: PMC8098044 DOI: 10.1016/j.saa.2021.119907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
In this work novel antiviral compound 4-(Dimethylamino) Pyridinium 3, 5-dichlorosalicylate was synthesized and characterized by UV-vis, FT-IR, FT-Raman, 1H NMR and 13C NMR spectra. Quantum chemical computations were carried out by Density functional theory methods at B3LYP level. Electronic stability of the compound arising from hyper conjugative interactions and charge delocalization is investigated using natural bond orbital analysis. Assignments of vibrational spectra have been carried out with the aid of Normal coordinate analysis following the SQMFF methodology. TD-DFT approach was applied to assign the electronic transition observed in UV visible spectrum measured experimentally. Frontier molecular orbital energy gap affirms the bioactivity of the molecule and NCI analysis gives information about inter and intra non covalent interactions. ESP recognises the nucleophilic and electrophilic regions of molecule and the chemical implication of molecule was explained using ELF, LOL. The reactive sites of the compound were studied from the Fukui function calculations and chemical descriptors define the reactivity of the molecule. Molecular docking done with SARS and MERS proteins endorses the bioactivity of molecule and drug likeness factors were calculated to comprehend the biological assets of DADS.
Collapse
Affiliation(s)
- J D Deephlin Tarika
- Research Scholar, Register No: 19213082132003, Department of Physics and Research Centre, Malankara Catholic College, Mariagiri 629153, Tamilnadu, India; Affiliated to Manonmaniam Sundaranar University, Abishekapatti-627012, Tirunelveli, Tamilnadu, India
| | - X D Divya Dexlin
- Research Scholar, Register No: 19213082132004, Department of Physics and Research Centre, Malankara Catholic College, Mariagiri 629153,Tamilnadu, India; Affiliated to Manonmaniam Sundaranar University, Abishekapatti-627012, Tirunelveli, Tamilnadu, India
| | - S Madhankumar
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India
| | - D Deva Jayanthi
- Department of Physics and Research Centre, Rani Anna Government College for Women, Gandhi Nagar, Tirunelveli 627008, Tamilnadu, India; Affiliated to Manonmaniam Sundaranar University, Abishekapatti-627012, Tirunelveli, Tamilnadu, India
| | - T Joselin Beaula
- Department of Physics and Research Centre, Malankara Catholic College, Mariagiri 629153, Tamilnadu, India; Affiliated to Manonmaniam Sundaranar University, Abishekapatti-627012, Tirunelveli, Tamilnadu, India.
| |
Collapse
|
31
|
Alanazi MM, Elkady H, Alsaif NA, Obaidullah AJ, Alkahtani HM, Alanazi MM, Alharbi MA, Eissa IH, Dahab MA. New quinoxaline-based VEGFR-2 inhibitors: design, synthesis, and antiproliferative evaluation with in silico docking, ADMET, toxicity, and DFT studies. RSC Adv 2021; 11:30315-30328. [PMID: 35493991 PMCID: PMC9044819 DOI: 10.1039/d1ra05925d] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023] Open
Abstract
A new series of 3-methylquinoxaline-based derivatives having the same essential pharmacophoric features as VEGFR-2 inhibitors have been synthesized and evaluated for their antiproliferative activities against two human cancer cell lines, MCF-7 and HepG-2. Compounds 15b and 17b demonstrated a significant antiproliferative effect with IC50 ranging from 2.3 to 5.8 μM. An enzymatic assay was carried out for all the tested candidates against VEGFR-2. Compound 17b was the most potent VEGFR-2 inhibitor (IC50 = 2.7 nM). Mechanistic investigation including cell cycle arrest and apoptosis was performed for compound 17b against HepG-2 cells, and the results revealed that 17b induced cell apoptosis and arrested cell cycle in the G2/M phase. Moreover, apoptosis analyses were conducted for compound 17b to evaluate its apoptotic potential. The results showed upregulation in caspase-3 and caspase-9 levels, and improving the Bax/Bcl-2 ratio by more than 10-fold. Docking studies were performed to determine the possible interaction with the VEGFR-2 active site. Further docking studies were carried out for compound 17b against cytochrome P450 to present such compounds as non-inhibitors. In silico ADMET, toxicity, and physico-chemical properties revealed that most of the synthesized members have acceptable values of drug-likeness. Finally, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties.
Collapse
Affiliation(s)
- Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Nawaf A Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Manal M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Madhawi A Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11541 Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
32
|
Sarkar K, Das RK. In Silico study of Rosmarinic Acid Derivatives as Novel Insulin Fibril Inhibitors. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The self-assembly of human insulin (HI) plays a crucial role in regulating amyloid fibrils. Therefore, it is a significant problem for the medical management of diabetes therapy and these findings have led us to investigate the amyloid formation and its inhibition. Few potential inhibitors have been identified to inhibit amyloid fibrils. Rosmarinic acid (RA) is one of the things that inhibits amyloid formation completely by increasing the resistivity of the amyloidogenic insulin (dimer) protein to thermal unfolding. Here, we choose different tested derivative compounds for designing amyloid inhibitors by substituting various functional groups of RA. These derivative compounds were subjected to in silico studies to determine the best drug candidates. In comparison to RA, 14 molecules have higher binding affinity and interactions with the target receptor. After frontier molecular orbitals study, ADME and toxicity analysis, the eight best compounds may act as the best inhibitors. The stability of the docked complexes was visualized by molecular dynamics (MD) simulations. This finding opens a new proposal to explore future studies with these best compounds to increase the thermal stability of the insulin dimers.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Rajesh Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
33
|
|
34
|
Ferreira VC, Zanchet L, Monteiro WF, da Trindade LG, de Souza MO, Correia RRB. Theoretical and experimental comparative study of nonlinear properties of imidazolium cation based ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Melo MN, Pereira FM, Rocha MA, Ribeiro JG, Junges A, Monteiro WF, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Chitosan and chitosan/PEG nanoparticles loaded with indole-3-carbinol: Characterization, computational study and potential effect on human bladder cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112089. [PMID: 33947529 DOI: 10.1016/j.msec.2021.112089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022]
Abstract
Indole-3-carbinol (I3C) is a plant molecule known to be active against several types of cancer, but some chemical characteristics limit its clinical applications. In order to overcome these limitations, polymeric nanoparticles can be used as carrier systems for targeted delivery of I3C. In this study, chitosan and chitosan/polyethylene glycol nanoparticles (CS NP and CS/PEG NP, respectively) were prepared to encapsulate I3C by ionic gelation method. The polymeric nanoparticles were characterized by Dynamic Scattering Light (DLS), Zeta Potential (ZP), Fourier Transform Infrared (FTIR) spetroscopy, X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). I3C release testing was performed at an acidic media and the interactions between I3C and chitosan or PEG were evaluated by Density Functional Theory (DFT). Cytotoxicity of nanoparticles in bladder cancer T24 cell line was evaluated by the Methyl-thiazolyl-tetrazolium (MTT) colorimetric assay. The average size of the nanoparticles was observed to be in the range from 133.3 ± 3.7 nm to 180.4 ± 2.7 nm with a relatively homogeneous distribution. Samples had relatively high positive zeta potential values (between +20.3 ± 0.5 mV and + 24.3 ± 0.5 mV). Similar encapsulation efficiencies (about 80%) for both nanoparticles were obtained. Physicochemical and thermal characterizations pointed to the encapsulation of I3c. electron microscopy showed spherical particles with smooth or ragged surface characteristics, depending on the presence of PEG. The mathematical fitting of the release profile demonstrated that I3C-CS NP followed the Higuchi model whereas I3C-CS/PEG NP the Korsmeyer-Peppas model. Chemical differences between the nanoparticles as based on the I3C/CS or I3C/PEG interactions were demonstrate by computational characterization. The assessment of cell viability by the MTT test showed that the presence of both free I3C and I3C-loaded nanoparticles lead to statistically significant reduction in T24 cells viability in the concentrations from 500 to 2000 μM, when comparison to the control group after 24 h of exposure. Thus, CS and CS/PEG nanoparticles present as feasible I3C carrier systems for cancer therapy.
Collapse
Affiliation(s)
- Micael Nunes Melo
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Fernanda Menezes Pereira
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Matheus Alves Rocha
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Jesica Gonçalves Ribeiro
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Alexander Junges
- Department of Food Engineering, URI - Erechim Av. Sete de Setembro, 1621, 99709-910 Erechim, Rio Grande do Sul, Brazil
| | - Wesley Formentin Monteiro
- Chemistry Institute, Federal University of Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Life and Health Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University - UNIT, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil; Institute of Technology and Research - ITP, Av. Murilo Dantas 300, 49032-490 Aracaju, SE, Brazil.
| |
Collapse
|
36
|
Celik I, Erol M, Kuyucuklu G. Molecular modeling, density functional theory, ADME prediction and antimicrobial activity studies of 2-(substituted)oxazolo[4,5- b]pyridine derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj00701g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular docking, molecular dynamics, DFT, ADME prediction, and antimicrobial activity studies of some 2-(substituted)oxazolo[4,5-b]pyridine derivatives were carried out.
Collapse
Affiliation(s)
- Ismail Celik
- Erciyes University
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- Kayseri
- Turkey
| | - Meryem Erol
- Erciyes University
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- Kayseri
- Turkey
| | - Gulcan Kuyucuklu
- Department of Medical Microbiology
- Faculty of Medicine
- Trakya University
- Edirne
- Turkey
| |
Collapse
|
37
|
Optical and morphological properties and in silico studies on metallophthalocyanines containing pyridyloxy moieties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Qian J, Wen C, Xia J. Development of highly efficient chemosensors for Cu 2+ and N 2H 4 detection based on 2D polyaniline derivatives by template-free chemical polymerization method. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121902. [PMID: 31874755 DOI: 10.1016/j.jhazmat.2019.121902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/14/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Chemosensors play an important role in environmental protection, medical diagnosis and energy conservation. Although polyaniline and its derivatives and two-dimensional (2D) materials have been applied as chemosensors in many reports, the concept of two-dimensional (2D) polyaniline derivatives has not been achieved in chemosensors. Here, two kinds of two-dimensional (2D) polyaniline derivatives are designed and synthesized by template-free chemical polymerization. It can be found that these two two-dimensional (2D) chemosensors exhibit high selectivity and sensitivity to Cu2+ and N2H4. Moreover, it is noteworthy that one of the two-dimensional materials can achieve the limit of detection (LOD) of 45 nM and 8 nM for Cu2+ and N2H4, respectively. Especially, these results imply that this two-dimensional polyaniline derivative is promising as the chemosensor in sensing field.
Collapse
Affiliation(s)
- Junning Qian
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China
| | - Can Wen
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
39
|
Akman F, Kazachenko AS, Vasilyeva NY, Malyar YN. Synthesis and characterization of starch sulfates obtained by the sulfamic acid-urea complex. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127899] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Liu Y, Peng Y, An B, Li L, Liu Y. Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: Batch experiments and DFT calculations. CHEMOSPHERE 2020; 246:125778. [PMID: 31918094 DOI: 10.1016/j.chemosphere.2019.125778] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 05/05/2023]
Abstract
In order to investigate the adsorption behaviors of sulfonamides onto hydroxylated multi - walled carbon nanotubes (CNTs) with a porous structure and large specific surface area, six typical sulfonamides including sulfanilamide (SAM), sulfamerazine (SMR), sulfadimethoxine (SMX), sulfadiazine (SDZ), sulfamethazine (SMT) and sulfametoxydiazine (SMD) were selected to be adsorbed respectively on CNTs, and in the same time the structural parameters of the six sulfonamides molecules were calculated according to the density functional theory (DFT). Based upon above mentioned experiments and the structural parameters, the quantitative correlation between the structural parameters of sulfonamides molecules and their adsorption affinity (e.g. adsorption capacity and adsorption rate constant) onto CNTs was established, respectively. The adsorption data of sulfonamides fitted well with the pseudo - second - order kinetic model and the Langmuir isotherm model. The order of both pseudo - second - order kinetic constant and maximum adsorption capacity of the six sulfonamides were SAM < SMR < SMX < SDZ < SMT < SMD. The frontier molecular orbital energy (EHOMO) and dipole moment (μ) could be used as indicators for the adsorption affinity of sulfonamides onto CNTs. Accordingly, the possible adsorption mechanism was proposed.
Collapse
Affiliation(s)
- Yunbo Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Yunlan Peng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Baohua An
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Laicai Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Sichuan, Chengdu, 610066, China.
| |
Collapse
|
41
|
Tao P, Wu C, Hao J, Gao Y, He X, Li J, Shang S, Song Z, Song J. Antifungal Application of Rosin Derivatives from Renewable Pine Resin in Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4144-4154. [PMID: 32191457 DOI: 10.1021/acs.jafc.0c00562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the current work, we synthesized two series of dehydroabietyl amide derivatives from natural product rosin and evaluated their antifungal effects on Valsa mali, Phytophthora capsici, Botrytis cinerea, Sclerotinia sclerotiorum, and Fusarium oxysporum. In vitro and in vivo antifungal activities results indicated that rosin-based amide compounds containing thiophene heterocycles had better inhibitory effects on B. cinerea. In particular, compound 5b (5-fluoro-2-thiophene dehydroabietyl amide) exhibited the excellent antifungal properties against B. cinerea with an EC50 of 0.490 mg/L, which was lower compared to the positive control penthiopyrad (0.562 mg/L). Physiological and biochemical studies showed that the primary action mechanism of compound 5b on B. cinerea changes mycelial morphology, increases cell membrane permeability, and inhibits the TCA pathway in respiratory metabolism. Furthermore, QSAR and SAR studies revealed that charge distribution of rosin-based amides derivatives have a key role in the antifungal activity through the hydrogen bonding, conjugation, and electrostatic interaction between the compounds and the receptors of the target. To sum up, this study contributes to the development of rosin-based antifungal agents with a novel structure and preferable biological activity.
Collapse
Affiliation(s)
- Pan Tao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chengyu Wu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jin Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jian Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| |
Collapse
|