1
|
Arfeen M, Srivastava A, Srivastava N, Khan RA, Almahmoud SA, Mohammed HA. Design, classification, and adverse effects of NSAIDs: A review on recent advancements. Bioorg Med Chem 2024; 112:117899. [PMID: 39217686 DOI: 10.1016/j.bmc.2024.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Inflammation is a hallmark of many diseases, including cancer, neurodegenerative diseases like Alzheimer's, type II diabetes, rheumatoid arthritis, and asthma. Nonsteroidal anti-inflammatory drugs (NSAIDs) have been a cornerstone in the management of various inflammatory, pain, and fever-related conditions. As a result, NSAIDs have found their applications in new therapeutic areas. NSAIDs are known to act by inhibiting the cyclooxygenase (COX) pathway. In recent years, new strategies have been proposed to counter inflammation and develop safer COX inhibitors. This review discusses the design of new COX inhibitors, the derivatization of conventional NSAIDs, and their biological applications. The review also presents an integrated classification of NSAIDs incorporating both traditional chemical-based and function-based approaches, including a brief overview of the NSAIDs of natural origins. Additionally, the review addresses adverse effects associated with different NSAIDs, including effects associated with cardiovascular, renal, and hepatic complications emphasizing the need for the development of new and safer COX inhibitors.
Collapse
Affiliation(s)
- Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ashish Srivastava
- PSIT-Pranveer Singh Institute of Technology, (Pharmacy), Kanpur, UP 209305, India.
| | - Noopur Srivastava
- Six Sigma Institute of Technology and Science, Rudrapur, Uttarkhand 263153, India.
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| |
Collapse
|
2
|
Nayak A, Gadnayak A, Dash KT, Jena S, Ray A, Nayak S, Sahoo A. Exploring molecular docking with MM-GBSA and molecular dynamics simulation to predict potent inhibitors of cyclooxygenase (COX-2) enzyme from terpenoid-based active principles of Zingiber species. J Biomol Struct Dyn 2023; 41:10840-10850. [PMID: 36576262 DOI: 10.1080/07391102.2022.2161011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022]
Abstract
Cyclooxygenase 2 (COX-2), the key enzyme involved in prostaglandin (PGs) production, is known to take part in inflammatory and immune responses. Though COX-2 inhibitors are therapeutically effective anti-inflammatory drugs, they deficit anti-thrombotic activity thus leading to increased cardiovascular diseases. Therefore, COX-2 inhibitors with improved therapeutic efficacy and tolerance are still needed. In recent years, traditional medicine systems have paid attention to the essential oil of genus Zingiber, particularly for the treatment of various inflammatory illnesses, with lesser side effects. Thus, the present study aims to explore the anti-inflammatory activity of Zingiber essential oil through computational-biology approaches. In this regard, virtual screening, molecular docking, and simulations were carried out on 53 compounds derived from the essential oil of Zingiber species in order to provide mechanistic insights into COX-2 inhibition and identify the most actively potent anti-inflammatory compounds. Among all the docked ligands, epi-cubenol, δ-cadinene, γ-eudesmol, cubenol, and α-terpineol were found to be powerful bioactive compounds with an increased binding affinity towards COX-2 along with favorable physiochemical properties. Additionally, MD simulation in DPPC lipid bilayers was studied to examine the intrinsic dynamics and adaptability of the chosen ligands and COX-2-complexes. The findings showed that the selected five components interacted steadily with the COX-2 active site residues throughout the simulation via different bondings. The integrative-computational approach showed that the identified natural compounds may be taken into further consideration for potential in vitro and in vivo evaluation as COX-2 inhibitors, which would lead to the development of more potent and efficient anti-inflammatory drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananya Nayak
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Odisha, India
| | - Ayushman Gadnayak
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Odisha, India
| | - Khirabdhi Tanaya Dash
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Odisha, India
| | - Sudipta Jena
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Odisha, India
| | - Asit Ray
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Odisha, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Odisha, India
| | - Ambika Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Odisha, India
| |
Collapse
|
3
|
Ganji M, Bakhshi S, Shoari A, Ahangari Cohan R. Discovery of potential FGFR3 inhibitors via QSAR, pharmacophore modeling, virtual screening and molecular docking studies against bladder cancer. J Transl Med 2023; 21:111. [PMID: 36765337 PMCID: PMC9913026 DOI: 10.1186/s12967-023-03955-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Fibroblast growth factor receptor 3 is known as a favorable aim in vast range of cancers, particularly in bladder cancer treatment. Pharmacophore and QSAR modeling approaches are broadly utilized for developing novel compounds for the determination of inhibitory activity versus the biological target. In this study, these methods employed to identify FGFR3 potential inhibitors. METHODS To find the potential compounds for bladder cancer targeting, ZINC and NCI databases were screened. Pharmacophore and QSAR modeling of FGFR3 inhibitors were utilized for dataset screening. Then, with regard to several factors such as Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties and Lipinski's Rule of Five, the recognized compounds were filtered. In further step, utilizing the flexible docking technique, the obtained compounds interactions with FGFR3 were analyzed. RESULTS The best five compounds, namely ZINC09045651, ZINC08433190, ZINC00702764, ZINC00710252 and ZINC00668789 were selected for Molecular Dynamics (MD) studies. Off-targeting of screened compounds was also investigated through CDD search and molecular docking. MD outcomes confirmed docking investigations and revealed that five selected compounds could make steady interactions with the FGFR3 and might have effective inhibitory potencies on FGFR3. CONCLUSION These compounds can be considered as candidates for bladder cancer therapy with improved therapeutic properties and less adverse effects.
Collapse
Affiliation(s)
- Mahmoud Ganji
- grid.412266.50000 0001 1781 3962Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- grid.411705.60000 0001 0166 0922Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoari
- grid.420169.80000 0000 9562 2611Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316543551, Iran.
| |
Collapse
|
4
|
Jack KS, Asaruddin MRB, Bhawani SA. Pharmacophore study, molecular docking and molecular dynamic simulation of virgin coconut oil derivatives as anti-inflammatory agent against COX-2. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2022; 9:73. [PMID: 37520584 PMCID: PMC9579622 DOI: 10.1186/s40538-022-00340-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/27/2022] [Indexed: 05/30/2023]
Abstract
Background Virgin coconut oil is mostly made up of saturated fatty acids in which approximately 72% are medium chain triglycerides. Medium chain triglycerides can be digested into medium chain fatty acids and medium chain monoglycerides which are bioactive components. Therefore, it is very important to study the in-silico ability of some Virgin coconut oil derivatives, namely, medium chain fatty acids and medium chain monoglycerides to inhibit Cyclooxygenase 2 (COX-2) protein for prevention of excessive inflammatory response. Results Pharmacophore study displayed monolaurin with two hydrogen bond donor, three hydrogen bond acceptor and five hydrophobic interactions, while lauric acid presented two hydrogen bond acceptor, five hydrophobic interactions and a negative ion interaction. Molecular docking underlined the ability of monolaurin in the inhibition of COX-2 protein which causes inflammatory action with a decent result of energy binding affinity of - 7.58 kcal/mol and 15 interactions out of which 3 are strong hydrogen bond with TYR385 (3.00 Å), PHE529 (2.77 Å), and GLY533 (3.10 Å) residues of the protein. Monolaurin was employed as hydrogen bond acceptor to the side of residue TYR385 of COX-2 protein with an occupancy of 67.03% and was observed to be long-living during the entire 1000 frames of the molecular dynamic simulation. The analysis of RMSD score of the Monolaurin-COX-2 complex backbone was calculated to be low (1.137 ± 0.153 Å) and was in a stable range of 0.480 to 1.520 Å. Redocking of this complex still maintained a strong hydrogen bond (2.87 Å) with the main residue TYR385. AMDET results where promising for medium chain fatty acids and medium chain monoglycerides with good physicochemical drug scores. Conclusions This can be concluded from the results obtained that the monolaurin has strong interactions with COX-2 protein to disrupt its function due to significant hydrogen bonds and hydrophobic interactions with amino acid residues present in the target protein's active site. These results displayed a very significant anti-inflammatory potential of monolaurin and a new promising drug candidates as anti-inflammatory agent. Graphical Abstract
Collapse
Affiliation(s)
- Kho Swen Jack
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak Malaysia
| | - Mohd Razip Bin Asaruddin
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak Malaysia
| | - Showkat Ahmad Bhawani
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak Malaysia
| |
Collapse
|
5
|
Identification of potential inhibitors for Hematopoietic Prostaglandin D2 synthase: Computational modeling and molecular dynamics simulations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Ahmadi M, Bekeschus S, Weltmann KD, von Woedtke T, Wende K. Non-steroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Med Chem 2022; 13:471-496. [PMID: 35685617 PMCID: PMC9132194 DOI: 10.1039/d1md00280e] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases. In this framework, the mechanism of action of both COX isoforms (particularly COX-2) as inflammation mediators must be reviewed. Moreover, proinflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, IL-1β, and IL-8 must be highlighted due to their major participation in upregulation of the inflammatory reaction. Structural and functional analyses of selective COX-2 inhibitors within the active-site cavity of COXs could enable introduction of lead structures with higher selectivity and potency against inflammation with fewer adverse effects. This review focuses on the biological activity of recently discovered synthetic COX-2, dual COX-2/lipoxygenase, and COX-2/soluble epoxide hydrolase hybrid inhibitors based primarily on the active motifs of related US Food and Drug Administration-approved drugs. These new agents could provide several advantages with regard to anti-inflammatory activity, gastrointestinal protection, and a safer profile compared with those of the NSAIDs celecoxib, valdecoxib, and rofecoxib.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine Walther-Rathenau-Straße 49A 17489 Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| |
Collapse
|
7
|
Sharaf M, Arif M, Hamouda HI, Khan S, Abdalla M, Shabana S, Rozan HE, Khan TU, Chi Z, Liu C. Preparation, urease inhibition mechanisms, and anti- Helicobacter pylori activities of hesperetin-7-rhamnoglucoside. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100103. [PMID: 35024644 PMCID: PMC8732090 DOI: 10.1016/j.crmicr.2021.100103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This work investigated the effects of the bioflavonoid hesperetin-7-rhamnoglucoside isolated from Citrus uranium fruit peel on Helicobacter pylori (H. pylori). Separation and purity, crystalline state, and urease inhibition assays were carried out. Then, molecular docking and molecular dynamics (MD) simulations were conducted with urease as the target protein. Hesp was isolated from citrus peel with a purity of 95.14 µg mg-1 of dry raw material. X-ray diffraction analysis, hydrogen-1 nuclear magnetic resonance, Fourier transform infrared spectroscopy, and differential scanning calorimetry revealed that pure Hesp had the same crystallinity rating as the Hesp standard. The kinetic inhibition study demonstrated that Hesp inhibited H. pylori urease in a competitive and concentration-dependent manner with jack bean urease. In addition, bioimaging studies with laser scanning confocal microscopy and scanning electron microscopy illustrated that Hesp interacted with bacterial cells and induced membrane disruption by creating holes in the outer membranes of the bacterial cells, resulting in the leakage of amino acids. Importantly, molecular docking and 20 ns MD simulations revealed that Hesp inhibited the target protein through slow-binding inhibition and hydrogen bond interactions with active site residues, namely, Gly11 (O⋯H distance = 2.2 Å), Gly13 (O⋯H distance = 2.4 Å), Ser12 (O⋯H distance = 3.3 Å), Lys14 (O⋯H distance = 3.3 Å), and Arg179 (O⋯H distance = 2.7 Å). This work presents novel anti- H. pylori agents from natural sources.
Collapse
Affiliation(s)
- Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hamed I. Hamouda
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
- Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province, 250012, PR China
| | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Hussein. E. Rozan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Tehsin Ullah Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Zhe Chi
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
8
|
Exploring the effect of temperature on microscopic heat transfer of liquid organics by molecular dynamics simulations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Titov IY, Stroylov VS, Rusina P, Svitanko IV. Preliminary modelling as the first stage of targeted organic synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review aims to present a classification and applicability analysis of methods for preliminary molecular modelling for targeted organic, catalytic and biocatalytic synthesis. The following three main approaches are considered as a primary classification of the methods: modelling of the target – ligand coordination without structural information on both the target and the resulting complex; calculations based on experimentally obtained structural information about the target; and dynamic simulation of the target – ligand complex and the reaction mechanism with calculation of the free energy of the reaction. The review is meant for synthetic chemists to be used as a guide for building an algorithm for preliminary modelling and synthesis of structures with specified properties.
The bibliography includes 353 references.
Collapse
|
10
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
11
|
Sabe VT, Ntombela T, Jhamba LA, Maguire GEM, Govender T, Naicker T, Kruger HG. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur J Med Chem 2021; 224:113705. [PMID: 34303871 DOI: 10.1016/j.ejmech.2021.113705] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Computer-aided drug design (CADD) is one of the pivotal approaches to contemporary pre-clinical drug discovery, and various computational techniques and software programs are typically used in combination, in a bid to achieve the desired outcome. Several approved drugs have been developed with the aid of CADD. On SciFinder®, we evaluated more than 600 publications through systematic searching and refining, using the terms, virtual screening; software methods; computational studies and publication year, in order to obtain data concerning particular aspects of CADD. The primary focus of this review was on the databases screened, virtual screening and/or molecular docking software program used. Furthermore, we evaluated the studies that subsequently performed molecular dynamics (MD) simulations and we reviewed the software programs applied, the application of density functional theory (DFT) calculations and experimental assays. To represent the latest trends, the most recent data obtained was between 2015 and 2020, consequently the most frequently employed techniques and software programs were recorded. Among these, the ZINC database was the most widely preferred with an average use of 31.2%. Structure-based virtual screening (SBVS) was the most prominently used type of virtual screening and it accounted for an average of 57.6%, with AutoDock being the preferred virtual screening/molecular docking program with 41.8% usage. Following the screening process, 38.5% of the studies performed MD simulations to complement the virtual screening and GROMACS with 39.3% usage, was the popular MD software program. Among the computational techniques, DFT was the least applied whereby it only accounts for 0.02% average use. An average of 36.5% of the studies included reports on experimental evaluations following virtual screening. Ultimately, since the inception and application of CADD in pre-clinical drug discovery, more than 70 approved drugs have been discovered, and this number is steadily increasing over time.
Collapse
Affiliation(s)
- Victor T Sabe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Lindiwe A Jhamba
- HIV Pathogenesis Program, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Faculty of Science and Agriculture, Department of Chemistry, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
12
|
Beura S, Chetti P. In-silico strategies for probing chloroquine based inhibitors against SARS-CoV-2. J Biomol Struct Dyn 2021; 39:3747-3759. [PMID: 32448039 PMCID: PMC7284140 DOI: 10.1080/07391102.2020.1772111] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
The global health emergency of novel COVID-19 is due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Currently there are no approved drugs for the treatment of coronaviral disease (COVID-19), although some of the drugs have been tried. Chloroquine is being widely used in treatment of SARS-CoV-2 infection. Hydroxychloroquine, the derivative of Chloroquine shows better inhibition than Chloroquine and has in vitro activity against SARS-CoV-2 also used to treat COVID-19. To study the interactions of Chloroquine and derivatives of Chloroquine with SARS-CoV-2, series of computational approaches like pharmacophore model, molecular docking, MM_GBSA study and ADME property analysis are explored. The pharmacophore model and molecular docking study are used to explore the structural properties of the compounds and the ligand-receptor (PDB_ID: 6LU7) interactions respectively. MM_GBSA study gives the binding free energy of the protein-ligand complex and ADME property analysis explains the pharmacological property of the compounds. The resultant best molecule (CQD15) further subjected to molecular dynamics (MD) simulation study which explains the protein stability (RMSD), ligand properties as well as protein-ligand contacts. Outcomes of the present study conclude with the molecule CQD15 which shows better interactions for the inhibition of SARS-CoV-2 in comparison to Chloroquine and Hydroxychloroquine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyajit Beura
- Department of Chemistry, National Institute of Technology, Kurukshetra, India
| | - Prabhakar Chetti
- Department of Chemistry, National Institute of Technology, Kurukshetra, India
| |
Collapse
|
13
|
Mujwar S. Computational bioprospecting of andrographolide derivatives as potent cyclooxygenase-2 inhibitors. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2021. [DOI: 10.4103/bbrj.bbrj_56_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|