1
|
da Silva Oliveira CR, Suarez WT, Dos Santos Melo G, Barros AO, Dias Castro GA, Fernandes SA, de Almeida JPB, Dos Santos VB. Green synthesis of thiazole bis-imines as fluorometric sensor for determination of lead in environmental, biological, and food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125250. [PMID: 39393196 DOI: 10.1016/j.saa.2024.125250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
In this work, we describe for the first time the synthesis of a thiazole bis-imine fluorometric sensor for the selective determination of Pb2+ in environmental, biological, and food samples. The novel molecules were obtained through a multicomponent reaction using a green and environmentally sustainable methodology. Synthesized chemical sensors were characterized using spectroscopic techniques to structural elucidation, including UV-Vis, FTIR-ATR, 1H and 13C NMR. One of these sensors exhibited remarkable selectivity for the Pb2+ ion at pH 3, forming a stable 1:1 (metal:ligand) complex. Additionally, the reaction conditions for complex formation were optimized, resulting in a method with a linear range of 0.667-10 μg L-1 and a detection limit of 0.18 μg L-1. Furthermore, method validation reinforced its reliability, showing low relative standard deviation in both intra-day and inter-day analyses. Recovery experiments ranged from 83.53 % to 119.10 %. This study represents a significant and innovative advancement in the development of rapid, sensitive, and alternative methods for the detection of potentially toxic metals in a wide range of samples employing a green multicomponent reaction of thiazole bis-imines.
Collapse
Affiliation(s)
| | - Willian Toito Suarez
- Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Gabriela Dos Santos Melo
- Departamento de Química, Centro de Ciências Exatas e Tecnológicas, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - Amanda Oliveira Barros
- Grupo de Química Supramolecular e Biomimética (GQSB), Departamento de Química, CCE, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - Gabriel Abranches Dias Castro
- Grupo de Química Supramolecular e Biomimética (GQSB), Departamento de Química, CCE, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - Sergio Antonio Fernandes
- Grupo de Química Supramolecular e Biomimética (GQSB), Departamento de Química, CCE, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - João Paulo Barbosa de Almeida
- Laboratório de Instrumentação e Automação em Analítica Aplicada (LIA), Federal University of Pernambuco, Recife, PE, Brazil
| | - Vagner Bezerra Dos Santos
- Laboratório de Instrumentação e Automação em Analítica Aplicada (LIA), Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
2
|
Pawar S, Karan R, Hazarika S, Lal M, Rawal RK, Gupta PK. Synthesis, Antimicrobial Evaluation, and In Silico Studies of 2-Substituted-Phenyl-3-(5-Aryl/Heteroaryl Substituted Thiazol-2-yl) Thiazolidin-4-One Derivatives. Assay Drug Dev Technol 2024; 22:325-339. [PMID: 39046971 DOI: 10.1089/adt.2024.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Affiliation(s)
- Swati Pawar
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Ram Karan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Srija Hazarika
- Natural Product Chemistry, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Mohan Lal
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Ravindra K Rawal
- Natural Product Chemistry, Chemical Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Praveen Kumar Gupta
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| |
Collapse
|
3
|
Aggarwal R, Jain N, Dubey GP. Design, synthesis and characterization of tetra substituted 2,3-dihydrothiazole derivatives as DNA and BSA targeting agents: advantages of the visible-light-induced multicomponent approach. RSC Adv 2024; 14:23152-23176. [PMID: 39040709 PMCID: PMC11262567 DOI: 10.1039/d4ra02331e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
This report describes the visible-light-induced one-pot multicomponent regioselective synthesis of a series of 5-aroyl-3-((arylidene)amino)-2-((arylidene)hydrazono)-4-methyl-2,3-dihydrothiazoles as DNA and BSA targeting agents. The multicomponent condensation of thiocarbohydrazide and aldehydes with α-bromo-1,3-diketones, generated in situ by the bromination of unsymmetrical 1,3-diketones with NBS using white LED light as an environmental friendly source in the presence of EtOAc solvent furnished the titled 2,3-dihydrothiazole derivatives in excellent yields. The exact regioisomeric structure was identified unambiguously by employing multinuclear 2D-NMR spectroscopy [1H-13C] HMBC; [1H-13C] HMQC and [1H-15N] HMBC. Furthermore, the binding characteristics of the synthesized 2,3-dihydrothiazole derivatives were assessed with double-stranded calf-thymus DNA duplex (ct-DNA) and bovine serum albumin (BSA). Initial screening of all the synthesized 2,3-dihydrothiazole derivatives using various in silico techniques including molecular reactivity analysis, Lipinski rule and molecular docking, concluded 5-(4'-chlorobenzoyl)-3-((4''-methoxybenzylidene)amino)-2-(4'''-methoxybenzylidene)hydrazono)-4-methyl-2,3-dihydrothiazole derivative 6a as the most suitable compound for studying binding interaction with DNA and BSA. Additionally, to illustrate the ex vivo binding mode of 6a with DNA and BSA, several spectroscopic techniques viz. UV-visible, circular dichroism (CD), steady-state fluorescence and competitive displacement assays were carried out.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 Haryana India
- CSIR-National Institute of Science Communication and Policy Research New Delhi 110012 India +91-9896740740
| | - Naman Jain
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 Haryana India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University Kurukshetra 136119 Haryana India
| |
Collapse
|
4
|
Chedupaka R, Audipudi AV, Sangolkar AA, Mamidala S, Venkatesham P, Penta S, Vedula RR. Design, synthesis, molecular docking, and dynamic studies of novel thiazole derivatives incorporating benzimidazole moiety and assessment as antibacterial agents. Mol Divers 2024; 28:1565-1576. [PMID: 37490125 DOI: 10.1007/s11030-023-10675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 07/26/2023]
Abstract
A general and sustainable approach for the synthesis of benzimidazole-thiazole compounds via an efficient, one-pot, domino, pseudo-four-component reaction using 5-amino-2-mercaptobenzimidazole, aralkyl halides, ammonium thiocyanate, and substituted α-bromo-acetophenones in glacial acetic acid at ambient temperature to give final compounds (4a-p) in good yields in shorter time. The spectral data of synthesized compounds were evaluated by analytical and spectral techniques (IR, 1H-NMR, 13C-NMR, and ESI-HRMS). Further, some of the synthesized compounds were screened for their in-vitro antibacterial activity studies using the agar well diffusion method against Gram-positive Streptococcus pneumoniae (2451) bacteria and Gram-negative Proteous mirabilis (2081) bacteria. Based on the MIC results, it was observed that the most active compounds 4b, 4e, 4f, and 4k show promising antibacterial activity with the zone of inhibition values of 2.85 cm 2.75 cm, 3.6 cm, and 3.3 cm against both Gram-negative and positive bacteria cell lines, respectively. Further, we have also insight into the molecular simulation studies, based on the binding results, compound 4i showed stable binding interactions with streptomycin drug with the active site of the gyrase protein (PDB ID: 1KIJ). The structure-activity relationship (SAR) studies of all the title scaffolds were also established. The antibacterial activity, molecular docking studies, and molecular dynamic simulations of the title compounds suggested that these are promising antibacterial active skeletons.
Collapse
Affiliation(s)
- Raju Chedupaka
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Amrutha V Audipudi
- Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur, A.P., 522510, India
| | | | - Srikanth Mamidala
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Papisetti Venkatesham
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Santhosh Penta
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
5
|
Piplani P, Kumar A, Kulshreshtha A, Vohra T, Piplani V. Recent Development of DNA Gyrase Inhibitors: An Update. Mini Rev Med Chem 2024; 24:1001-1030. [PMID: 37909434 DOI: 10.2174/0113895575264264230921080718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023]
Abstract
Antibiotic or antimicrobial resistance is an urgent global public health threat that occurs when bacterial or fungal infections do not respond to the drug regimen designed to treat these infections. As a result, these microbes are not evaded and continue to grow. Antibiotic resistance against natural and already-known antibiotics like Ciprofloxacin and Novobiocin can be overcome by developing an agent that can act in different ways. The success of agents like Zodiflodacin and Zenoxacin in clinical trials against DNA gyrase inhibitors that act on different sites of DNA gyrase has resulted in further exploration of this target. However, due to the emergence of bacterial resistance against these targets, there is a great need to design agents that can overcome this resistance and act with greater efficacy. This review provides information on the synthetic and natural DNA gyrase inhibitors that have been developed recently and their promising potential for combating antimicrobial resistance. The review also presents information on molecules that are in clinical trials and their current status. It also analysed the SAR studies and mechanisms of action of enlisted agents.
Collapse
Affiliation(s)
- Poonam Piplani
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Ajay Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Akanksha Kulshreshtha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Tamanna Vohra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Vritti Piplani
- Bhojia Dental College and Hospital, Baddi, 173205, India
| |
Collapse
|
6
|
Farghaly TA, Alfaifi GH, Gomha SM. Recent Literature on the Synthesis of Thiazole Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:196-251. [PMID: 37496137 DOI: 10.2174/1389557523666230726142459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
The thiazole ring is naturally occurring and is primarily found in marine and microbial sources. It has been identified in various compounds such as peptides, vitamins (thiamine), alkaloids, epothilone, and chlorophyll. Thiazole-containing compounds are widely recognized for their antibacterial, antifungal, anti-inflammatory, antimalarial, antitubercular, antidiabetic, antioxidant, anticonvulsant, anticancer, and cardiovascular activities. The objective of this review is to present recent advancements in the discovery of biologically active thiazole derivatives, including their synthetic methods and biological effects. This review comprehensively discusses the synthesis methods of thiazole and its corresponding biological activities within a specific timeframe, from 2017 until the conclusion of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghaidaa H Alfaifi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| |
Collapse
|
7
|
Tiwari G, Khanna A, Mishra VK, Sagar R. Recent developments on microwave-assisted organic synthesis of nitrogen- and oxygen-containing preferred heterocyclic scaffolds. RSC Adv 2023; 13:32858-32892. [PMID: 37942237 PMCID: PMC10628940 DOI: 10.1039/d3ra05986c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
In recent decades, the utilization of microwave energy has experienced an extraordinary surge, leading to the introduction of innovative and revolutionary applications across various fields of chemistry such as medicinal chemistry, materials science, organic synthesis and heterocyclic chemistry. Herein, we provide a comprehensive literature review on the microwave-assisted organic synthesis of selected heterocycles. We highlight the use of microwave irradiation as an effective method for constructing a diverse range of molecules with high yield and selectivity. We also emphasize the impact of microwave irradiation on the efficient synthesis of N- and O-containing heterocycles that possess bioactive properties, such as anti-cancer, anti-proliferative, and anti-tumor activities. Specific attention is given to the efficient synthesis of pyrazolopyrimidines-, coumarin-, quinoline-, and isatin-based scaffolds, which have been extensively studied for their potential in drug discovery. The article provides valuable insights into the recent synthetic protocols and trends for the development of new drugs using heterocyclic molecules.
Collapse
Affiliation(s)
- Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
8
|
Sayed MT, Elsharabasy SA, Abdel-Aziem A. Synthesis and antimicrobial activity of new series of thiazoles, pyridines and pyrazoles based on coumarin moiety. Sci Rep 2023; 13:9912. [PMID: 37336955 DOI: 10.1038/s41598-023-36705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
Microbial infections are currently a widespread disease in hospitals and community health centres and are a major cause of death worldwide. In pursuit of searching new antimicrobial agents, coumarin linked to thiazoles, pyridines and pyrazoles have been developed and evaluated for their antimicrobial properties against two Gram + bacteria, two Gram - bacteria as well as two fungi. Some of the prepared coumarins displayed high to moderate activity against the tested microorganisms with respect to the reference drugs. However, compound 3 exhibited antimicrobial effect equal to the reference drug Ciprofloxacin for Gram - baceria Enterobacter cloacae. Compound 12 was found to be the most potent compound against Bacillus pumilis with MIC of 7.69 (µmol/ml). Compounds 3, 4 and 12 showed remarkable activity against Streptococcus faecalis with MIC of 14.34, 3.67 and 15.36 (µmol/ml), respectively. Regarding Escherichia coli, most compounds recorded high to moderate MIC values (4.73-45.46 µmol/ml). Moreover, in case of E. cloacae compound 9 was the most potent compound with MIC value of 22.76 (µmol/ml).
Collapse
Affiliation(s)
- Mariam T Sayed
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Salwa A Elsharabasy
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Anhar Abdel-Aziem
- Chemistry Department, Faculty of Science (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt.
| |
Collapse
|
9
|
Kecel Gunduz S, Budama Kilinc Y, Bicak B, Gok B, Belmen B, Aydogan F, Yolacan C. New Coumarin Derivative with Potential Antioxidant Activity: Synthesis, DNA Binding and In Silico Studies (Docking, MD, ADMET). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Kaya Y. Investigation of spectroscopic, crystallographic, thermal and antioxidant properties of mononuclear dioxomolybdenum(VI) complexes derived from a new symmetric bisthiocarbohydrazone. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Emori W, Ogunwale GJ, Louis H, Agwamba EC, Wei K, Unimuke TO, Cheng CR, Ejiofor EU, Asogwa FC, Adeyinka AS. Spectroscopic (UV–vis, FT-IR, FT-Raman, and NMR) analysis, structural benchmarking, molecular properties, and the in-silico cerebral anti-ischemic activity of 2-amino-6-ethoxybenzothiazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Rabeeb SIE, Deeb MAE, Sarg MT, Hassan AY. Imidazo[1,2,4]triazolone and Fused Imidazo[1,2,4]triazolone Derivatives: Synthesis,
In Vitro
Anticancer screening, CDK2 inhibitory activity, and Molecular modelling studies. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shaimaa I. El Rabeeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
| | - Moshira A. El Deeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
- Pharmaceutical Organic Chemistry Department Faculty of Pharmacy, Modern University for Technology & Information
| | - Marwa T. Sarg
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls) Al‐Azhar University Cairo Egypt
| | - Aisha Y. Hassan
- Organic Chemistry Department, Faculty of Science (Girls) Al‐Azhar University Cairo Egypt
| |
Collapse
|
13
|
Novel cyclohepta[b]thiophene derivative incorporating pyrimidine, pyridine, and chromene moiety as potential antimicrobial agents targeting DNA gyrase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Yang XC, Hu CF, Zhang PL, Li S, Hu CS, Geng RX, Zhou CH. Coumarin thiazoles as unique structural skeleton of potential antimicrobial agents. Bioorg Chem 2022; 124:105855. [DOI: 10.1016/j.bioorg.2022.105855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/19/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
|
15
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Developments of Molecular Hybrids Targeting Tubulin Polymerization. Int J Mol Sci 2022; 23:4001. [PMID: 35409361 PMCID: PMC8999808 DOI: 10.3390/ijms23074001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Microtubules are cylindrical protein polymers formed from αβ-tubulin heterodimers in the cytoplasm of eukaryotic cells. Microtubule disturbance may cause cell cycle arrest in the G2/M phase, and anomalous mitotic spindles will form. Microtubules are an important target for cancer drug action because of their critical role in mitosis. Several microtubule-targeting agents with vast therapeutic advantages have been developed, but they often lead to multidrug resistance and adverse side effects. Thus, single-target therapy has drawbacks in the effective control of tubulin polymerization. Molecular hybridization, based on the amalgamation of two or more pharmacophores of bioactive conjugates to engender a single molecular structure with enhanced pharmacokinetics and biological activity, compared to their parent molecules, has recently become a promising approach in drug development. The practical application of combined active scaffolds targeting tubulin polymerization inhibitors has been corroborated in the past few years. Meanwhile, different designs and syntheses of novel anti-tubulin hybrids have been broadly studied, illustrated, and detailed in the literature. This review describes various molecular hybrids with their reported structural-activity relationships (SARs) where it is possible in an effort to generate efficacious tubulin polymerization inhibitors. The aim is to create a platform on which new active scaffolds can be modeled for improved tubulin polymerization inhibitory potency and hence, the development of new therapeutic agents against cancer.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
16
|
Borah B, Dwivedi KD, Kumar B, Chowhan LR. Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
17
|
Mahapatra M, Paidesetty SK, Bishoyi AK, Padhy RN. Design, molecular docking study of synthesised N-heteroaryl substituted gallamide derivatives and their antibacterial assessment. Nat Prod Res 2022; 36:5575-5583. [PMID: 35105197 DOI: 10.1080/14786419.2021.2022662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A series of N-heteroaryl substituted Gallamide derivatives 3a-3g were synthesised and the obtained structures were further confirmed by different spectral studies. For in-vitro antibacterial activity, the synthesised compounds were evaluated against three UTI (Urinary Tract Infection) bacterial strains including Staphylococcus aureus, Escherichia coli, and Streptococcus pyogenes. Furthermore, the designed compounds were docked with bacterial DNA gyrase and dihydropteroate synthase. All the compounds had shown good inhibition against S. aureus whereas compound 3e has produced significant inhibition at 28 and 26 mm against S.aureus and E.coli, respectively. The MIC value of the conjugate 3e and 3d was 3.12 and 6.25 μg/mL against S. aureus andE.coli, respectively. Compound 3,4,5-trihydroxy-N-(4-(N-(5-methyl isoxazol-3-yl) sulfamoyl) phenyl)benzamide 3d had shown the highest binding energy against both the targets along with good antibacterial action.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ajit Kumar Bishoyi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.,Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
18
|
Novel series of triazole containing coumarin and isatin based hybrid molecules as acetylcholinesterase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Abdou MM, Abu-Rayyan A, Bedir AG, Abdel-Fattah S, Omar AMA, Ahmed AA, El-Desoky ESI, Ghaith EA. 3-(Bromoacetyl)coumarins: unraveling their synthesis, chemistry, and applications. RSC Adv 2021; 11:38391-38433. [PMID: 35493203 PMCID: PMC9044231 DOI: 10.1039/d1ra05574g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
This review emphasizes recent developments in synthetic routes of 3-(bromoacetyl)coumarin derivatives. Also, chemical reactions of 3-(bromoacetyl)coumarins as versatile building blocks in the preparation of critical polyfunctionalized heterocyclic systems and other industrially significant scaffolds are described. Recent advances of 3-(bromoacetyl)coumarins as attractive starting points towards a wide scale of five and six-membered heterocyclic systems such as thiophenes, imidazoles, pyrazoles, thiazoles, triazoles, pyrans, pyridines, thiadiazins as well as fused heterocyclic systems have been reported. Additionally, this review covers a wide range of analytical chemistry, fluorescent sensors, and biological applications of these moieties, covering the literature till May 2021.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Ahmed Abu-Rayyan
- Faculty of Science, Applied Science Private University P. O. BOX 166 Amman 11931 Jordan
| | - Ahmed G Bedir
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - S Abdel-Fattah
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - A M A Omar
- Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt
| | - Abdullah A Ahmed
- Department of Chemistry, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| | - El-Sayed I El-Desoky
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Eslam A Ghaith
- Department of Chemistry, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
20
|
Johnson J, Yardily A. Co(II), Ni(II), Cu(II), and Zn(II) metal complexes of chalcone: Synthesis, characterization, thermal, antimicrobial, photocatalytic degradation of dye and molecular modeling studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jino Johnson
- Department of Chemistry and Research Centre Scott Christian College (Autonomous) Nagercoil India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India)
| | - Amose Yardily
- Department of Chemistry and Research Centre Scott Christian College (Autonomous) Nagercoil India (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India)
| |
Collapse
|
21
|
One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (DHFR) inhibitors with molecular docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130748] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Mamidala S, Aravilli RK, Ramesh G, Khajavali S, Chedupaka R, Manga V, Vedula RR. A facile one-pot, three-component synthesis of a new series of thiazolyl pyrazole carbaldehydes: In vitro anticancer evaluation, in silico ADME/T, and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Jilloju PC, Persoons L, Kurapati SK, Schols D, De Jonghe S, Daelemans D, Vedula RR. Discovery of ( ±)-3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazine derivatives with promising in vitro anticoronavirus and antitumoral activity. Mol Divers 2021; 26:1357-1371. [PMID: 34165689 PMCID: PMC8223195 DOI: 10.1007/s11030-021-10258-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
A new series of ( ±)-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanones were efficiently synthesized starting from 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol 1, acetyl acetone 2, various aromatic and heterocyclic aldehydes 3 and phenacyl bromides 4. All the newly synthesized compounds were tested for their antiviral and antitumoral activity. It was shown that subtle structural variations on the phenyl moiety allowed to tune biological properties toward antiviral or antitumoral activity. Mode-of-action studies revealed that the antitumoral activity was due to inhibition of tubulin polymerization.
Collapse
Affiliation(s)
| | - Leentje Persoons
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Sathish Kumar Kurapati
- Department of Chemistry, National Institute of Technology, Andhra Pradesh, 534101, India.,Department of Chemistry, Chaithanya Bharati Institute of Technology, Hyderabad, Telangana, 500075, India
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Dirk Daelemans
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
24
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
25
|
An Overview of the Synthesis and Antimicrobial, Antiprotozoal, and Antitumor Activity of Thiazole and Bisthiazole Derivatives. Molecules 2021; 26:molecules26030624. [PMID: 33504100 PMCID: PMC7865802 DOI: 10.3390/molecules26030624] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Thiazole, a five-membered heteroaromatic ring, is an important scaffold of a large number of synthetic compounds. Its diverse pharmacological activity is reflected in many clinically approved thiazole-containing molecules, with an extensive range of biological activities, such as antibacterial, antifungal, antiviral, antihelmintic, antitumor, and anti-inflammatory effects. Due to its significance in the field of medicinal chemistry, numerous biologically active thiazole and bisthiazole derivatives have been reported in the scientific literature. The current review provides an overview of different methods for the synthesis of thiazole and bisthiazole derivatives and describes various compounds bearing a thiazole and bisthiazole moiety possessing antibacterial, antifungal, antiprotozoal, and antitumor activity, encouraging further research on the discovery of thiazole-containing drugs.
Collapse
|