1
|
Hajian R, Mousavi NS. Manganese salophen covalently anchored to amino-functionalized graphene oxide as an efficient heterogeneous catalyst for selective epoxidation. RSC Adv 2024; 14:38470-38479. [PMID: 39640526 PMCID: PMC11618214 DOI: 10.1039/d4ra05280c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Epoxidation of olefins catalyzed by manganese(iii) salophen (MnSalop) immobilized on graphene oxide (GO) modified with 3-aminopropyltrimethoxysilane (GO·NH2) has been reported. Characterization of the solid catalyst by FTIR, DR UV-Vis, FESEM, XRD, elemental scanning mappings, TGA/DTG, BET measurements, and ICP analysis aided in understanding the catalyst morphology. It confirmed that there was no significant demetallation or chemical change in MnSalop-GO·NH2. The heterogeneous catalyst (MnSalop-GO·NH2) showed high efficiency in the oxidation of different olefins with H2O2 as a green oxygen donor agent assisted by NaHCO3 as co-catalyst at room temperature. The alkenes were oxidized to their corresponding epoxides with 88-100% selectivity and turnover frequency (TOF) values ranging from 40.7 to 162.8 h-1 in the presence of MnSalop-GO·NH2 under mild conditions. When supported on GO, MnSalop-GO·NH2 afforded epoxide yields comparable to those of the corresponding homogeneous analog. The prepared catalyst was selective for most olefins, with a high conversion. In addition, it could be reused four times without any remarkable loss in catalytic performance.
Collapse
Affiliation(s)
- Robabeh Hajian
- Department of Chemistry, Yazd University Yazd 89195-741 Iran +98-353-8210644 +98-353-31232822
| | - Narjes Sadat Mousavi
- Department of Chemistry, Yazd University Yazd 89195-741 Iran +98-353-8210644 +98-353-31232822
| |
Collapse
|
2
|
Le Thi Hong H, Nguyen H, Trinh Hong D, Nguyen Hoang N, Nguyen Nhat K, Van Meervelt L. Crystal structures and photophysical properties of mono- and dinuclear Zn II complexes flanked by tri-ethyl-ammonium. Acta Crystallogr E Crystallogr Commun 2024; 80:1210-1216. [PMID: 39712172 PMCID: PMC11660477 DOI: 10.1107/s2056989024010302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024]
Abstract
Two new zinc(II) complexes, tri-ethyl-ammonium di-chlorido-[2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-olato]zinc(II), (C6H16N){Zn(C21H13N2O3)Cl2] (ZnOQ), and bis-(tri-ethyl-ammonium) {2,2'-[1,4-phenyl-enebis(nitrilo-methyl-idyne)]diphenolato}bis-[di-chlorido-zinc(II)], (C6H16N)2[Zn2(C20H14N2O2)Cl4] (ZnBS), were synthesized and their structures were determined using ESI-MS spectrometry, 1H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-ol (HOQ) and N,N'-bis-(2-hy-droxy-benzyl-idene)benzene-1,4-di-amine (H2BS) were deprotonated by tri-ethyl-amine, forming the counter-ion Et3NH+, which inter-acts via an N-H⋯O hydrogen bond with the ligand. The ZnII atoms have a distorted trigonal-pyramidal (ZnOQ) and distorted tetra-hedral (ZnBS) geometries with a coord-ination number of four, coordinating with the ligands via N and O atoms. The N atoms coordinating with ZnII correspond to the heterocyclic nitro-gen for the HOQ ligand, while for the H2BS ligand, it is the nitro-gen of the imine (CH=N). The crystal packing of ZnOQ is characterized by C-H⋯π inter-actions, while that of ZnBS by C-H⋯Cl inter-actions. The emission spectra showed that ZnBS complex exhibits green fluorescence in the solid state with a small band-gap energy, and the ZnOQ complex does exhibit non-fluorescence.
Collapse
Affiliation(s)
- Hai Le Thi Hong
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
- Institute of Natural Sciences, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Hien Nguyen
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Duong Trinh Hong
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Ninh Nguyen Hoang
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Khanh Nguyen Nhat
- Department of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
3
|
Arjunan A, Sebastian A. Synthesis, crystal structure, biological and docking studies of 5-hydroxy-2-{[(2-methylpropyl)iminio]methyl}phenolate. Future Med Chem 2024; 16:1983-1997. [PMID: 39258968 PMCID: PMC11486094 DOI: 10.1080/17568919.2024.2389763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024] Open
Abstract
Background: Schiff base compounds are potential drugs.Results: A Schiff base compound prepared by condensing 2,4-dihydroxy benzaldehyde and isobutylamine was characterized for structure, thermal, physicochemical and biological properties. The keto-enol tautomerism and azomethine functionality enhances electron delocaliZation and biological activity. The compound showed good antibacterial and antifungal activity at 40 μg/ml against bacteria such as Escherichia coli and Staphylococcus aureus and fungi like Candida albicans and Candida tropicalis. The docking study exhibits a moderate binding affinity for the GyrB protein in E. coli with a binding energy of -4.26 kcal/mol.Conclusion: The compound exhibits enhanced biological activity and suppression of cell growth at concentrations as low as 30 μg/ml. The IC50 for MFC-7 was found to be 41.5 μg/ml.
Collapse
Affiliation(s)
- Ayyappan Arjunan
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology, Chennai-127, India
| | - Arockiasamy Sebastian
- Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology, Chennai-127, India
| |
Collapse
|
4
|
Todarwal MA, Sancheti RS, Nikume SR, Patel HM, Bendre RS. Anti-Malarial and Multi-Bioactive Co (II), Cu (II) and Ni (II) Salen Complexes: Synthesis, Characterization and Computational Studies. Chem Biodivers 2024; 21:e202400715. [PMID: 38825566 DOI: 10.1002/cbdv.202400715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Herein, we report the anti-malarial, anti-bacterial and anti-inflammatory activities of the N2O2 donor tetradentate salen type ligand and its CoL, NiL, and CuL metal complexes. The synthesized compounds were characterized by various spectroscopic analytical methods. The in-vitro anti-malarial investigations revealed that the complex CuL exhibited equipotency with quinine drug having IC50 value 0.25 μg/mL. The compound L showed significant inhibition of bacterial spp. viz. E. Coli, P. Aeruginosa, and S. Aureus (MIC=12.5-50 μg/mL), while the compound CoL (MIC=12.5 μg/mL) exhibited potency against gram-positive bacteria. In the in-vitro anti-inflammatory study, the compound CuL displayed moderate activity than other tested compounds. The compound CuL showed the highest anti-malarial docking score with enzyme pLDH at -8.12 Kcal/mol. The DFT study also gives authentication of higher antimalarial activity of CuL due to high dipole moment. None of the potent compounds was found cytotoxic towards vero cell lines.
Collapse
Affiliation(s)
- Minakshee A Todarwal
- Department of Chemistry, SNJB's KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, 423101, India
- School of Chemical Sciences, KBC, North Maharashtra University, Jalgaon, 425001, India
| | - Rakesh S Sancheti
- Department of Chemistry, SNJB's KKHA Arts, SMGL Commerce and SPHJ Science College, Chandwad, 423101, India
| | - Sumit R Nikume
- School of Chemical Sciences, KBC, North Maharashtra University, Jalgaon, 425001, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Institute of Pharmaceutical Education and Research, Shirpur, 425405, India
| | - Ratnamala S Bendre
- School of Chemical Sciences, KBC, North Maharashtra University, Jalgaon, 425001, India
| |
Collapse
|
5
|
Damena T, Desalegn T, Mathura S, Getahun A, Bizuayehu D, Alem MB, Gadisa S, Zeleke D, Demissie TB. Synthesis, Structural Characterization, and Computational Studies of Novel Co(II) and Zn(II) Fluoroquinoline Complexes for Antibacterial and Antioxidant Activities. ACS OMEGA 2024; 9:36761-36777. [PMID: 39220483 PMCID: PMC11359626 DOI: 10.1021/acsomega.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Research into heterocyclic ligands has increased in popularity due to their versatile applications in the biomedical field. Quinoline derivatives with their transition metal complexes are popular scaffolding molecules in the ongoing pursuit of newer and more effective bioactive molecules. Subsequently, this work reports on the synthesis and possible biological application of new Zn(II) and Co(II) complexes with a bidentate quinoline derivative ligand (H2 L), [(H2 L):(E)-2-(((6-fluoro-2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethanol]. The ligand and its metal complexes were structurally characterized by spectroscopic methods (1H NMR, 13C NMR, Fourier transform infrared (FTIR), UV-vis, fluorescence, and mass spectroscopy), as well as by thermogravimetric and elemental analysis methods. The spectroscopic findings were further supported by density functional theory (DFT) and time-dependent (TD)-DFT calculations. The biological application was examined by investigating the inhibitory action of the complexes against bacterial strains using diffusion and agar dilution methods, and their profiles against two Gram-positive and Gram-negative bacterial strains were supported by molecular docking analysis. To rationalize the in vitro activity and establish the possible mechanism of action, the interactions and binding affinity of the ligand and complexes were investigated against three different bacterial enzymes (Escherichia coli DNA gyrase (PDB ID 6f86), E. coli dihydrofolate reductase B (PDB ID: 7r6g), and Staphylococcus aureus tyrosyl-tRNA synthetase (PDB ID: 1JIJ)) using AutoDock with the standard protocol. The MIC value of 0.20 μg/mL for zinc complex against E. coli and associated binding affinities -7.2 and -9.9 kcal/mol with DNA gyrase (PDB ID 6f86) and dihydrofolate reductase B (PDB ID: 7r6g), as well as the MIC value of 2.4 μg/mL for cobalt(II) complex against Staphylococcus aureus and the associated binding affinity of -10.5 kcal/mol with tyrosyl-tRNA synthetase (PDB ID: 1JIJ), revealed that the complexes' inhibitory actions were strong and comparable with those of the standard drug in the experiments. In addition, the ability of the new quinoline-based complexes to scavenge 1,1-diphenyl-picrylhydrazyl radicals was investigated; the findings suggested that the complexes exhibit potent antioxidant activities, which may be of therapeutic significance.
Collapse
Affiliation(s)
- Tadewos Damena
- Department
of Chemistry, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Tegene Desalegn
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Sadhna Mathura
- School
of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Alemayehu Getahun
- Department
of Biology, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Dereje Bizuayehu
- Department
of Chemistry, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Mamaru Bitew Alem
- Department
of Physics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
- National
Institute for Theoretical and Computational Sciences (NITheCS), Dimbaza 5600, South Africa
| | - Shiferaw Gadisa
- Department
of Physics, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Digafie Zeleke
- Department
of Chemistry, Salale University, P.O. Box 245 Fitche, Ethiopia
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, Notwane Rd, P/bag UB, 00704 Gaborone, Botswana
| |
Collapse
|
6
|
Panicker RR, Sivaramakrishna A. Studies on synthesis and influence of sterically driven Ni(II)-terpyridine (NNN) complexes on BSA/DNA binding and anticancer activity. J Inorg Biochem 2024; 257:112553. [PMID: 38759263 DOI: 10.1016/j.jinorgbio.2024.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/19/2024]
Abstract
The present work demonstrates the synthesis, structural diversity and coordination behavior of some selected new Ni(II)-Tpy complexes. The structural analysis revealed the coordination of the selected terpyridine ligands with the core metal atom in two different modes via dimeric species (1:1 fashion) through the Cl-bridging and a bis(Tpy)-Ni complex (2:1 fashion). Perhaps the most striking manifestations of these Ni(II)-Tpy complexes are BSA/DNA binding ability and anticancer activity. In addition, the cytotoxicity studies of Tpy ligand (4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 5-methylthiophene-2-carboxylate) and the Ni(II) complexes were carried out using lung cancer cell line (A549), breast cancer cell line (MCF-7) and normal cell line (Vero cell). The cytotoxicity results were compared with the cisplatin control group. Notably, bis-terpyridyl complex 3C (R = 4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 4-isopropoxybenzoate) demonstrates better activity with the IC50 value of 23.13 ± 3 μm for A549 and 22.7 ± 3 for MCF-7. The DFT calculations reveal the significant energy differences of HOMO and LUMO for the ligands and their corresponding Ni(II) complexes. The Tpy ligands and Ni(II)-Tpy complexes were investigated for BSA binding and further all the Ni(II) complexes were analyzed for DNA binding studies.
Collapse
Affiliation(s)
- Rakesh R Panicker
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Juyal VK, Thakuri SC, Panwar M, Rashmi, Prakash O, Perveen K, Bukhari NA, Nand V. Manganese(II) and Zinc(II) metal complexes of novel bidentate formamide-based Schiff base ligand: synthesis, structural characterization, antioxidant, antibacterial, and in-silico molecular docking study. Front Chem 2024; 12:1414646. [PMID: 39100916 PMCID: PMC11294232 DOI: 10.3389/fchem.2024.1414646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
A new bidentate Schiff base ligand (C16H16Cl2N4), condensation product of ethylene diamine and 4-chloro N-phenyl formamide, and its metal complexes [M(C16H16Cl2N4)2(OAc)2] (where M = Mn(II) and Zn(II)) were synthesized and characterized using various analytical and spectral techniques, including high-resolution mass spectrometry (HRMS), elemental analysis, ultraviolet-visible (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, AAS, molar conductance, 1H NMR, and powder XRD. All the compounds were non-electrolytes and nanocrystalline. The synthesized compounds were assessed for antioxidant potential by DPPH radical scavenging and FRAP assay, with BHT serving as the positive control. Inhibitory concentration at 50% inhibition (IC50) values were calculated and used for comparative analysis. Furthermore, the prepared compounds were screened for antibacterial activity against two Gram-negative bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram-positive bacteria (Escherichia coli and Salmonella typhi) using disk-diffusion methods, with amikacin employed as the standard reference. The comparison of inhibition zones revealed that the complexes showed better antibacterial activity than the ligand. To gain insights into the molecular interactions underlying the antibacterial activity, the ligand and complexes were analyzed for their binding affinity with S. aureus tyrosyl-tRNA synthetase (PDB ID: 1JIL) and S. typhi cell membrane protein OmpF complex (PDB ID: 4KR4). These analyses revealed robust interactions, validating the observed antibacterial effects against the tested bacterial strains.
Collapse
Affiliation(s)
- Vijay Kumar Juyal
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Shweta Chand Thakuri
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Mohit Panwar
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Rashmi
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Om Prakash
- Regional Ayurveda Research Institute, Ministry of Ayush, Gwalior, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Viveka Nand
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| |
Collapse
|
8
|
Sen S, Ghosh S, Jana A, Jash M, Ghosh S, Mukherjee N, Mukherjee D, Sarkar J, Ghosh S. Multi-Faceted Antimicrobial Efficacy of a Quinoline-Derived Bidentate Copper(II) Ligand Complex and Its Hydrogel Encapsulated Formulation in Methicillin-Resistant Staphylococcus aureus Inhibition and Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:4142-4161. [PMID: 38770768 DOI: 10.1021/acsabm.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The emergence of antimicrobial resistance, exemplified by methicillin-resistant Staphylococcus aureus (MRSA), poses a grave threat to public health globally. Over time, MRSA has evolved resistance to multiple antibiotics, challenging conventional treatment strategies. The relentless adaptability of MRSA underscores the urgent need for innovative and targeted antimicrobial approaches to combat this resilient pathogen. Ancient knowledge and practices, along with scientific evidence, have established that metallic copper, and its organic coordination complexes can act as potential antibacterial substances. In search of a smart and effective antimicrobial against MRSA, we designed, synthesized, and characterized a bidentate copper(II) ligand complex (SG-Cu) utilizing a comprehensive array of analytical techniques, including ESI-MS, elemental analysis, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and others. Antibacterial efficacy and mechanism of action of the complex were assessed through bacterial growth analyses, bacterial membrane perturbation assays, ROS elicitation assays, and field emission scanning electron microscopy. SG-Cu was found to maintain robust biocompatibility against the mammalian cell lines HEK-293, WI-38, and NIH/3T3. Remarkably, SG-Cu demonstrated significant biofilm disruptive tendency evidenced by the retardation of sliding motility, reduction in slime production, reduction in biofilm viability, and enhanced biofilm eradication, both in vitro and in urinary catheters. In vivo studies on murine excisional wounds, with SG-Cu impregnated in a palmitic acid conjugated NAVSIQ hexapeptide (PA-NV) hydrogel, revealed the sustained release of SG-Cu from the gel matrix, facilitating accelerated wound healing and effective wound disinfection. This multifaceted investigation highlights the potential of SG-Cu as a versatile option for combating MRSA infections and promoting wound healing, solidifying its claim to be developed into a viable therapeutic.
Collapse
Affiliation(s)
- Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
9
|
Sindhu S, Arockiasamy S. Synthesis, crystal structure, thermal stability and biological study of bis{(2-methoxy-6-[(E)-(propylimino)methyl]phenolato}nickel(II) complex. Heliyon 2024; 10:e24108. [PMID: 38293524 PMCID: PMC10825431 DOI: 10.1016/j.heliyon.2024.e24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
A Schiff base complex of nickel, bis{(2-methoxy-6-[(E)-(propylimino)methyl]phenolato}nickel(II) was synthesised by condensing bis(2-hydroxy-3-methoxybenzaldehyde) nickel (II) and n-propylamine in methanolic medium. Single crystal X-ray diffraction analysis of the complex revealed it to possess planar geometry with a monoclinic crystal system. The non-isothermal TG/DTA runs on this complex in a high purity (99.99 %) nitrogen environment at atmospheric pressure confirmed the absence of any coordinated water. A sharp endotherm in its DTA shows a melting temperature range of 168-171 °C. It is thermally stable up to 243 °C and decomposes in two steps, yielding NiO and carbon as residue. In addition to the methoxy group (-OCH3), infrared analysis (IR) confirmed the presence of the characteristic azomethine group (-C[bond, double bond]N-) which is also responsible for the biological action. It was further analysed by elemental analyser (C, H, N), 1H and 13C NMR as well as mass spectrometry. It showed considerable antibacterial activity towards Escherichia coli and Staphylococcus aureus when the concentration exceeds 200 μg/ml. The antifungal study shows significant inhibition with the antifungal drug imidazole as a positive control (PC). Small values of MIC, MBC/MIC indicate a lesser quantity of complex is required to inhibit the growth of micro-organisms.
Collapse
Affiliation(s)
- S. Sindhu
- Physics Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 127, India
| | - S. Arockiasamy
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai, 127, India
| |
Collapse
|
10
|
Ebrahim RMA, Abdelbagi A, Sulfab Y, Hamdi OAA, Shokri SA, Ali EA. Synthesis, characterization, molecular docking, and antimicrobial activities of dinuclear nickel(ii), palladium(ii), and platinum(iv) complexes. RSC Adv 2023; 13:27501-27511. [PMID: 37720836 PMCID: PMC10501048 DOI: 10.1039/d3ra04768g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
New nickel(ii), palladium(ii), and platinum(iv) complexes were synthesized by reacting the metal ions with benzidinedioxime in a 1 : 1 mole ratio. The CHN elemental analysis, spectroscopic analyses, and powder X-ray diffraction (PXRD) results showed that two Ni(ii) and two Pd(ii) ions coordinated to two benzidinedioxime ligands via the nitrogen atoms of both oxime groups and the two azomethine nitrogen atoms. In the case of the dinuclear platinum(iv) complex, however, each Pt(iv) is coordinated with the two oxygen atoms of the oxime group and the two azomethine nitrogen atoms of the ligand. Both elemental analyses and PXRD indicated that the complex ions of Ni(ii) and Pt(iv) have distorted octahedral geometry, whereas Pd(ii) has a square planar geometry. Molecular docking studies showed that the nickel(ii) complex is the most potent dual DHPS/DHFR bacterial inhibitor. The receptor of the DHPS enzyme (3ZTE) showed the best interaction with the nickel(ii) complex when compared to a receptor of the DHFR enzyme (3FRB). All the synthesized complexes and ligand exhibited significant results against PS. Aeruginous than their corresponding SMX-TMP drug. Among the three synthesized complexes, the nickel(ii) complex possessed the highest antimicrobial activities against tested microorganisms.
Collapse
Affiliation(s)
- Reem M A Ebrahim
- Biotechnology Department, Africa City of Technology Khartoum Sudan
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology Khartoum Sudan
| | - Abubakar Abdelbagi
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Al-Neelain University Khartoum Sudan
| | - Yousif Sulfab
- Chemistry Department, Faculty of Science and Technology, Al-Neelain University Khartoum Sudan
| | | | - Samah A Shokri
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Al-Neelain University Khartoum Sudan
| | - Elmugdad A Ali
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology Khartoum Sudan
| |
Collapse
|
11
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
12
|
Devi P, Singh K, Kumar B, Kumari Singh J. Synthesis, spectroscopic, antimicrobial and in vitro anticancer activity of Co+2, Ni+2, Cu+2 and Zn+2 metal complexes with novel Schiff base. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Chowdhury M, Biswas N, Saha S, Zangrando E, Rizzoli C, Sepay N, Roy Choudhury C. Structural investigation, theoretical DFT, Hirshfeld surface analysis and catalytic behaviour towards 3,5-DTBC oxidation of two cobalt(ii) complexes with semicarbazone Schiff base ligands. TRANSIT METAL CHEM 2023. [DOI: 10.1007/s11243-023-00523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
14
|
Synthesis, Spectral Characterization, and Biological Activities of Some Metal Complexes Bearing an Unsymmetrical Salen-Type Ligand, (Z)-1-(((2-((E)-(2-Hydroxy-6-methoxybenzylidene)amino)phenyl)amino) methylene) Naphthalen-2(1H)-one. HETEROATOM CHEMISTRY 2023. [DOI: 10.1155/2023/4563958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An unsymmetrical salen-type Schiff base ligand, (Z)-1-(((2-((E)-(2-hydroxy-6-methoxybenzylidene)amino)phenyl)amino)methylene)naphthalen-2(1H)-one, and its Zn(II), Cu(II), Co(II), Mn(II), and Fe(III) complexes were synthesized and characterized by mass (MS), nuclear magnetic resonance (NMR), infrared (IR), ultraviolet-visible (UV-Vis) spectra, and effective magnetic moments. The thermal analyses of the obtained ligand and metal complexes were conducted by thermogravimetric analysis (TGA). Antimicrobial activity of the unsymmetrical Schiff base ligand and its metal complexes were examined for Staphylococcus aureus as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria. In vitro anticancer property of synthetic compounds was estimated against human cancer cell lines, a subline of Hela tumor cell line (KB), and a human liver cancer cell line (HepG-2) as well.
Collapse
|
15
|
Singh HL, Khaturia S, Solaki VS, Sharma N. Synthesis of coordination compounds of dibutyltin(IV) with Schiff bases having nitrogen donor atoms. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
16
|
Adhikari J, Bhattarai A, Chaudhary NK. Bioinorganic interest on Co(II) and Zn(II) complexes of pyrrole-based surfactant ligand: Synthesis, characterization, and in silico-ADME study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Sen R, Mondal K, dos Santos AM, Escobar LB, Brandão P, Reis MS, Lin Z. A chiral alkali metal capped Ni4 cubane complex: Synthesis, structure, magnetic and catalytic bromination studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Boughougal A, Kadri R, Kadri M, Tommasino JB, Pilet G, Messai A, Luneau D. Novel copper (II) and zinc (II) complexes with enrofloxacin and oxolinic acid: synthesis, characterization, Hirshfeld surface and DFT/CAM-B3LYPD3BJ studies: NBO, QTAIM and RDG analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
19
|
Hussain S, Kiran R, Ahmad M, Saqib M, Munawar KS, Shahid M, Waqas M, Massey S, Jawaria R, Baby R. Synthesis, spectroscopy and biological studies of triphenyltin(IV) derivatives with carboxylated Schiff bases. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Michael S, Jeyaraman P, Marimuthu B, Rajasekar R, Thanasamy R, Kumar KA, Raman N. Influence of electron density on the biological activity of aniline substituted Schiff base: in silico, in vivo and in vitro authentication. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Elaboration and structural study of Ni(II), Cu(II), Zn(II) and Co(II) complexes based on the ligand [(N1Z,N2Z)-N1,N2-bis((1H-pyrrol-2-yl) methylene) ethane-1,2-diamine] with evaluation of antioxidant/antibacterial activities and cytotoxicity. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
22
|
Tan Y, Lei Y. Synthesis and crystal structures of copper, nickel and zinc complexes derived from 2-((2-(pyrrolidin-1-yl)ethylimino)methyl)phenol with antimicrobial activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Kumar M, Chauhan S, Sindhu M, Darolia PJ, Bhardwaj A, Garg S. Organotellurium(IV) complexes of N-methylisatin-o-aminothiophenol Schiff base: Preparation, characterization, DFT, molecular docking studies, antimicrobial and antioxidant activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Nasaruddin NH, Ahmad SN, Sirat SS, Tan KW, Zakaria NA, Mohamad Nazam SS, Rahman NMMA, Mohd Yusof NS, Bahron H. Synthesis, Structural Characterization, Hirshfeld Surface Analysis, and Antibacterial Study of Pd(II) and Ni(II) Schiff Base Complexes Derived from Aliphatic Diamine. ACS OMEGA 2022; 7:42809-42818. [PMID: 36467908 PMCID: PMC9713794 DOI: 10.1021/acsomega.2c04688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
A Schiff base bearing two methyl substituents, namely, 6,6'-((1E,1'E)-((2,2-dimethylpropane-1,3-diyl) bis(azanylylidene)) bis(methanylylidene)) bis(2-methylphenol) [H2AD1Me] was synthesized and characterized through physicochemical and spectroscopic analyses. Then, the Schiff base was complexed with Pd(II) and Ni(II) to form [Pd(AD1Me)] and [Ni(AD1Me)], respectively. Both metal complexes were successfully obtained and characterized through several analyses, viz., melting point, elemental analysis, molar conductivity, magnetic susceptibility, FTIR, 1H NMR, UV-vis, and single crystal X-ray diffraction. A quantitative analysis of the intermolecular interactions in the crystal structures has been performed using Hirshfeld surface analysis. Both metal complexes were crystallized in a monoclinic crystal system with the space group of P21/c. Additionally, the deprotonated phenolic oxygen atom (O1/O2) and azomethine nitrogen atom (N1/N2) of the ligand chelate the Pd(II) and Ni(II) ions, forming a slightly distorted square-planar complex containing three six-membered rings encircling the metal core with dsp2 hybridization. The shift of ν(C=N) to a higher frequency in FTIR by 26-28 cm-1 indicated that the complexation to Pd(II) and Ni(II) through the azomethine N was established. It was further supported through the shifting of the azomethine proton signal to higher or lower chemical shifts with Δδ = 0.43-1.15 ppm in 1H NMR. In addition, the shifting of the n-π*(C=N) band in UV-vis spectra with Δλ = 24-40 nm indicated the involvement of azomethine nitrogen in the complexation. All the compounds showed no significant antibacterial activity against three bacterial strains, namely, Staphylococcus aureus subsp. aureus Rosenbach (ATCC 6538), Streptococcus mutans Clarke (ATCC 700,610), and Proteus vulgaris (ATCC 6380), as the percent growth inhibition calculated was less than 90%.
Collapse
Affiliation(s)
- Nur Husnina Nasaruddin
- Faculty
of Applied Sciences, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Shahrul Nizam Ahmad
- Faculty
of Applied Sciences, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Siti Syaida Sirat
- Faculty
of Applied Sciences, Universiti Teknologi
MARA, Cawangan Negeri
Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
| | - Kong Wai Tan
- Department
of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurul Aili Zakaria
- Faculty
of Applied Sciences, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
| | | | - Nor Mas Mira Abd Rahman
- Department
of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nor Saadah Mohd Yusof
- Department
of Chemistry, Faculty of Science, Universiti
Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hadariah Bahron
- Faculty
of Applied Sciences, Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
25
|
Sinicropi MS, Ceramella J, Iacopetta D, Catalano A, Mariconda A, Rosano C, Saturnino C, El-Kashef H, Longo P. Metal Complexes with Schiff Bases: Data Collection and Recent Studies on Biological Activities. Int J Mol Sci 2022; 23:14840. [PMID: 36499170 PMCID: PMC9739361 DOI: 10.3390/ijms232314840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Metal complexes play a crucial role in pharmaceutical sciences owing to their wide and significant activities. Schiff bases (SBs) are multifaceted pharmacophores capable of forming chelating complexes with various metals in different oxidation states. Complexes with SBs are extensively studied for their numerous advantages, including low cost and simple synthetic strategies. They have been reported to possess a variety of biological activities, including antimicrobial, anticancer, antioxidant, antimalarial, analgesic, antiviral, antipyretic, and antidiabetic ones. This review summarizes the most recent studies on the antimicrobial and antiproliferative activities of SBs-metal complexes. Moreover, recent studies regarding mononuclear and binuclear complexes with SBs are described, including antioxidant, antidiabetic, antimalarial, antileishmanial, anti-Alzheimer, and catecholase activities.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Hussein El-Kashef
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
26
|
Damena T, Alem MB, Zeleke D, Desalegn T, Eswaramoorthy R, Demissie TB. Synthesis, characterization, and biological activities of zinc(II), copper(II) and nickel(II) complexes of an aminoquinoline derivative. Front Chem 2022; 10:1053532. [DOI: 10.3389/fchem.2022.1053532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Interest is increasingly focused on the use of transition metal complexes as biochemical, medical, analytical, pharmaceutical, agronomic, anticancer, and antibacterial agents. In this study, three complexes of [Zn(H2L)Cl] (1), [Cu(H2L)(H2O)(NO3)] (2) and [Ni(H2L)(NO3)].2H2O (3) were synthesized from a 2-chloroquinoline-3-carbaldehyde derived ligand [H3L = ((E)-2-(((2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethanol. The compounds were characterized using physicochemical and spectroscopic methods. The results demonstrate that the free ligand behaves as a tridentate ligand with one oxygen and two nitrogen (ONN) donor atoms in 1:1 metal:ligand ratio. The formation constants of the complexes were found to be (KZn(II) = 2.3 × 106, KCu(II) = 2.9 × 106, and KNi(II) = 3.8 × 105). The thermodynamic parameters indicated that the reactions were spontaneous with exothermic nature of metal-ligand interaction energies. Based on the analyses of the experimental (EDX, FTIR, PXRD, MS and TGA) and DFT results, a distorted tetrahedral, a distorted square pyramidal and square planar geometry for Zn(II), Cu(II) and Ni(II) complexes, respectively, were proposed. The B3LYP calculated IR frequencies and TD-B3LYP calculated absorption spectra were found to be in good agreement with the corresponding experimental results. The powder XRD data confirmed that the Zn(II), Cu(II) and Ni(II) complexes have polycrystalline nature with average crystallite sizes of 27.86, 33.54, 37.40 Å, respectively. In vitro antibacterial activity analyses of the complexes were studied with disk diffusion method, in which the complexes showed better activity than the precursor ligand. Particularly the Cu(II) complex showed higher percent activity index (62, 90%), than both Zn(II) (54, 82%) and Ni(II) (41, 68%) complexes against both E. coli and P. aeruginosa, respectively. Using the DPPH assay, the complexes were further assessed for their antioxidant capacities. All metal complexes showed improved antioxidant activity than the free ligand. Zn(II) and Cu(II) complexes, which had IC50 values of 10.46 and 8.62 μg/ml, respectively, showed the best antioxidant activity. The calculated results of Lipinski’s rule of five also showed that the target complexes have drug-like molecular nature and similarly, the results of binding mode of action of these compounds against E. coli DNA gyrase B and P. aeruginosa LasR.DNA were found to be in good agreement with the in vitro biological activities.
Collapse
|
27
|
Ali A, Ashfaq M, Din ZU, Ibrahim M, Khalid M, Assiri MA, Riaz A, Tahir MN, Rodrigues-Filho E, Imran M, Kuznetsov A. Synthesis, Structural, and Intriguing Electronic Properties of Symmetrical Bis-Aryl-α,β-Unsaturated Ketone Derivatives. ACS OMEGA 2022; 7:39294-39309. [PMID: 36340158 PMCID: PMC9631725 DOI: 10.1021/acsomega.2c05441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Three symmetrical bis-aryl-α,β-unsaturated ketone derivatives, 2,6-di((E)-benzylidene)-cyclohexan-1-one (DBC), 2,6-bis((E)-4-chlorobenzylidene)cyclohexan-1-one (BCC), and (1E,1'E,4E,4'E)-5,5'-(1,4-phenylene)bis(2-methyl-1-phenylpenta-1,4-dien-3-one) (PBMP), have been prepared using the aldol condensation approach toward ketones having two enolizable sites. The structures of DBC, BCC, and PBMP have been resolved via spectrometric methods. Moreover, the crystal structure of PBMP is determined by the single-crystal X-ray diffraction (SC-XRD) technique, which revealed that the PBMP molecular assembly is stabilized by the intermolecular C-H···O bonding and C-O···π and weak T-shaped offset π···π stacking interactions. The Hirshfeld surface analysis (HSA) of the PBMP crystal structure was performed as well, and the results were compared with the results of DBC and BCC. The density functional theory (DFT) study results revealed that the longer conjugated molecule of PBMP has smaller but still quite significant HOMO-LUMO gaps compared to the smaller molecules of BCC and DBC. The natural population analysis (NPA) and natural bonding orbital (NBO) analysis were performed. Accordingly, the hydrogen bonding and dipole-dipole interactions stabilize the crystal structures of these compounds. Additionally, the NBO analysis showed numerous high-energy stabilizing interactions for the PBMP compound due to the presence of numerous delocalized and relatively easily polarizable π-electrons, thus implying its significant thermodynamic stability. According to the global reactivity parameter (GRP) analysis, the compounds BCC and DBC are relatively stable in redox processes and have high thermodynamic stability and relatively lower reactivity in general. The molecular electrostatic potential (MEP) analysis results imply potential formation of the intermolecular hydrogen bonding and dispersion interactions, which stabilizes the crystal structures of these compounds.
Collapse
Affiliation(s)
- Akbar Ali
- Department
of Chemistry, Government College University, Faisalabad38040, Pakistan
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha40100, Pakistan
| | - Zia Ud Din
- LaBioMMi,
Departamento de Química, Universidade
Federal de São Carlos, CP 676, 13.565-905São Carlos, SP, Brazil
| | - Muhammad Ibrahim
- Department
of Applied Chemistry, Government College
University, Faisalabad38040, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan64200, Pakistan
| | - Mohammed A. Assiri
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Arish Riaz
- Department
of Applied Chemistry, Government College
University, Faisalabad38040, Pakistan
| | | | - Edson Rodrigues-Filho
- LaBioMMi,
Departamento de Química, Universidade
Federal de São Carlos, CP 676, 13.565-905São Carlos, SP, Brazil
| | - Muhammad Imran
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha61514, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha61413, Saudi Arabia
| | - Aleksey Kuznetsov
- Departamento
de Química, Campus Santiago Vitacura, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura7660251, Chile
| |
Collapse
|
28
|
Hooda P, Lather V, Malik R, Khatri S, Khangwal J, Kumari P, Taxak V, Kumar M, Khatkar S, Kumar R. Judd-Ofelt analysis of warm reddish orange light emanating samarium (III) complexes possessing two band gaps. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Jain S, Rana M, Sultana R, Mehandi R, Rahisuddin. Schiff Base Metal Complexes as Antimicrobial and Anticancer Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shruti Jain
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Razia Sultana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rabiya Mehandi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
30
|
Structural and computational analysis, spectroscopic and electrochemical elucidation of a Schiff base. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02571-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Damena T, Alem MB, Zeleke D, Desalegn T, Eswaramoorthy R, Demissie TB. Novel Zinc(II) and Copper(II) Complexes of 2-((2-Hydroxyethyl)amino)quinoline-3-carbaldehyde for Antibacterial and Antioxidant Activities: A Combined Experimental, DFT, and Docking Studies. ACS OMEGA 2022; 7:26336-26352. [PMID: 35936450 PMCID: PMC9352163 DOI: 10.1021/acsomega.2c02205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/07/2022] [Indexed: 05/06/2023]
Abstract
In the present work, two novel complexes of zinc(II) and copper(II) were synthesized from the ligand 2-((2-hydroxyethyl)amino)quinoline-3-carbaldehyde (H 2 L) in a 1:2 metal-to-ligand ratio in methanol. The complexes were characterized by UV-visible spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA) experimental techniques and density functional theory (DFT) calculations. The spectral data revealed that the mono-deprotonated (HL) ligand acted as a bidentate ligand, which bound to both Zn(II) and Cu(II) ions via the nitrogen atom of the amine (N-H) and the hydroxyl (O-H) groups through the deprotonated oxygen atom. Formation constants and thermal analysis indicated that both metal complexes are stable up to 100 °C with thermodynamically favored chemical reactions. The Cu(II) complex showed antibacterial activities with the zones of inhibition of 20.90 ± 2.00 mm against Pseudomonas aeruginosa, 19.69 ± 0.71 mm against Staphylococcus aureus, and 18.58 ± 1.04 mm against Streptococcus pyogenes. These results are relatively higher compared with the Zn(II) complex at the same concentration. The minimum inhibitory concentration (MIC) results for the complexes also showed similar trends against the three bacteria. On the other hand, radical scavenging activities of both Cu(II) and Zn(II) complexes showed half-maximal inhibitory concentrations (IC50) of 4.72 and 8.2 μg/mL, respectively, while ascorbic acid (a positive control) has a value of 4.28 μg/mL. The Cu(II) complex exhibited better communication with the positive control, indicating its potential use for biological activities. The calculated and in silico molecular docking results also strongly support the experimental results.
Collapse
Affiliation(s)
- Tadewos Damena
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Mamaru Bitew Alem
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Digafie Zeleke
- Department
of Chemistry, Salale University, P.O. Box 245 Fitche, Ethiopia
| | - Tegene Desalegn
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Rajalakshmanan Eswaramoorthy
- Department
of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai 600077, India
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, Notwane Rd, P/bag UB 00704, Gaborone, Botswana
| |
Collapse
|
32
|
Ashfaq M, Ali A, Tahir MN, Kuznetsov A, Munawar KS, Muhammad S. Synthesis, single-crystal exploration, hirshfeld surface analysis, and DFT investigation of the thiosemicarbazones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Theoretical studies, Hirshfeld surface analysis, and crystal structure determination of a newly synthesized benzothiazole copper(II) complex. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Mohamed GG, Omar MM, Moustafa BS, AbdEl-Halim HF, Farag NA. Spectroscopic investigation, thermal, molecular structure, antimicrobial and anticancer activity with modelling studies of some metal complexes derived from isatin Schiff base ligand. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Xiao YH, Wu HY, Sun C, Hou JL. SYNTHESIS, CRYSTAL STRUCTURES AND BIOLOGICAL ACTIVITY OF TRINUCLEAR NICKEL(II) AND COPPER(II) COMPLEXES DERIVED FROM N,N′-BIS(4-BROMOSALICYLIDENE)- 1,3-PENTANEDIAMINE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Dilmen Portakal E, Kaya Y, Demirayak E, Karacan Yeldir E, Erçağ A, Kaya İ. Ni(II), Zn(II), and Fe(III) complexes derived from novel unsymmetrical salen-type ligands: preparation, characterization and some properties. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Eylem Dilmen Portakal
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul, Turkey
| | - Yeliz Kaya
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul, Turkey
| | - Emire Demirayak
- Istanbul University, Department of Chemistry, Inorganic Chemistry Division, Istanbul, Turkey
| | - Elif Karacan Yeldir
- Çanakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, Polymer Synthesis and Analysis Lab, Çanakkale, Turkey
| | - Ayşe Erçağ
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Inorganic Chemistry Division, Istanbul, Turkey
| | - İsmet Kaya
- Çanakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, Polymer Synthesis and Analysis Lab, Çanakkale, Turkey
| |
Collapse
|
37
|
Ajaz K. Kirmani S, Ali P, Azam F, Kuznetsov A, Alvi P. Structure and electronic properties of the HA-CUR conjugate: an insight from the DFT perspective. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Qi J, Luo Y, Zhou Q, Su G, Zhang X, Nie X, Lv M, Li W. Synthesis, structure and anticancer studies of Cu(Ⅱ) and Ni(Ⅱ) complexes based on 2-hydroxy-1-naphthaldehyde-4-aminoantipyrine Schiff-base. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Pandya J, Travadi M, Jadeja R, Patel R, Gupta VK. Synthesis, crystal feature and spectral characterization of paeonol derived Schiff base ligands and their Cu(II) complexes with antimicrobial activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Sureshbabu P, Varghese B, Sujitha E, Sabiah S. Syntheses, Structure, DNA Docking and Antimicrobial Studies of Copper(II) Complexes with Diethylenetriamine and N-Bidentate Ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Ashfaq M, Tahir MN, Muhammad S, Munawar KS, Ali S, Ahmed G, Al-Sehemi AG, Alarfaji SS, Ibraheem Khan ME. Shedding Light on the Synthesis, Crystal Structure, Characterization, and Computational Study of Optoelectronic Properties and Bioactivity of Imine derivatives. ACS OMEGA 2022; 7:5217-5230. [PMID: 35187337 PMCID: PMC8851652 DOI: 10.1021/acsomega.1c06325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Two imine compounds named as (E)-2-(((3,4-dichlorophenyl)imino)methyl)phenol (DC2H) and (E)-4-(((2,4-dimethylphenyl)imino)methyl)phenol (DM4H) are synthesized, and their crystal structures are verified using the single-crystal X-ray diffraction (XRD) technique. The crystal structures of the compounds are compared with the closely related crystal structures using the Cambridge Structural Database (CSD). The crystal packing in terms of intermolecular interactions is fully explored by Hirshfeld surface analysis. Void analysis is carried out for both compounds to check the strength of the crystal packing. Furthermore, a state-of-the-art dual computational technique consisting of quantum chemical and molecular docking methods is used to shed light on the molecular structure, optoelectronic properties, and bioactivity of indigenously synthesized compounds. The optimized molecular geometries are compared with their counterpart experimental values. Based on previous reports of biofunctions of the indigenously synthesized imine derivatives, they are explored for their potential inhibition properties against two very crucial proteins (main protease (Mpro) and nonstructural protein 9 (NSP9)) of SARS-CoV-2. The calculated interaction energy values of DC2H and DM4H with Mpro are found to be -6.3 and -6.6 kcal/mol, respectively, and for NSP9, the calculated interaction energy value is found to be -6.5 kcal/mol. We believe that the current combined study through experiments and computational techniques will not only pique the interest of the broad scientific community but also evoke interest in their further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Saqib Ali
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Gulzar Ahmed
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Abdullah G. Al-Sehemi
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saleh S. Alarfaji
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | |
Collapse
|
42
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar KS, Ashfaq M, Tahir MN. Diverse coordination of isoniazid hydrazone Schiff base ligand towards iron(III): Synthesis, characterization, SC-XRD, HSA, QTAIM, MEP, NCI, NBO and DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Bahadori M, Moghadam M, Ashfaq M, Munawar KS, Tahir MN. Pd(II) and Ni(II) complexes containing ONNO tetradentate Schiff base ligand: Synthesis, crystal structure, spectral characterization, theoretical studies, and use of PdL as an efficient homogeneous catalyst for Suzuki–Miyaura cross-coupling reaction. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Amiri Rudbari H, Adabi Ardakani A, Sedighi-Khavidak S, Munawar KS, Ashfaq M, Tahir MN. Synthesis, spectral characterization, crystal structures, biological activities, theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn(II) Schiff base complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Rudbari HA, Ardakani AA, Sedighi-Khavidak S, Munawar KS, Ashfaq M, Tahir MN. Binuclear Zn(II) Schiff base complexes: Synthesis, spectral characterization, theoretical studies and antimicrobial investigations. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Marchetti F, Pettinari R, Verdicchio F, Tombesi A, Scuri S, Xhafa S, Olivieri L, Pettinari C, Choquesillo-Lazarte D, García-García A, Rodríguez Diéguez A, Galindo A. Role of hydrazone substituents in determining the nuclearity and antibacterial activity of Zn(II) complexes with pyrazolone-based hydrazones. Dalton Trans 2022; 51:14165-14181. [DOI: 10.1039/d2dt02430f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrazones and their metal derivatives are very important compounds in medicinal chemistry due to their reported variety of biological activities, such as antibacterial, antifungal and anticancer action. Five hydrazone-pyrazolone ligands...
Collapse
|
47
|
Wei B, Cao C. Crystal structure of [6,6′-((1 E,1′ E)-(propane-1,3- diylbis(azaneylylidene))bis(methaneylylidene)) bis(3-chlorophenol)- κ
4
N, N′, O, O′] copper(II), C 17H 14Cl 2CuN 2O 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C17H14Cl2CuN2O2, monoclinic, C2/c (no. 15), a = 22.743(4) Å, b = 8.0434(15) Å, c = 8.9388(17) Å, V = 1630.8(5) Å3, Z = 4, R
gt
(F) = 0.0376, wR
ref(F
2) = 0.0997, T = 296(2) K.
Collapse
Affiliation(s)
- Baiying Wei
- School of Resource Environment and Safety Engineering , Hunan University of Science and Technology , Xiangtan , 411201 , P. R. China
| | - Chenzhong Cao
- School of Resource Environment and Safety Engineering, School of Chemistry and Chemical Engineering , Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, Hunan University of Science and Technology , Xiangtan , 411201 , P. R. China
| |
Collapse
|
48
|
Kapoor A, Rajput JK. Staudinger k
etene–imine
[2+2] cycloaddition of novel azomethines to synthesize biologically active azetidinone derivatives and their in vitro antimicrobial studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Atul Kapoor
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar India
| | - Jaspreet Kaur Rajput
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar India
| |
Collapse
|
49
|
Calix[4]arene-based thiosemicarbazide Schiff-base ligand and its transition metal complexes: synthesis and biological assessment. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Titanium(IV) complex containing ONO-tridentate Schiff base ligand: Synthesis, crystal structure determination, Hirshfeld surface analysis, spectral characterization, theoretical and computational studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130653] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|