1
|
Kołodziejski D, Koss-Mikołajczyk I, Glatt H, Bartoszek A. The comparison of cytotoxic and genotoxic activities of glucosinolates, isothiocyanates, and indoles. Sci Rep 2022; 12:4875. [PMID: 35318378 PMCID: PMC8940953 DOI: 10.1038/s41598-022-08893-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Chemopreventive properties of Brassica vegetables are attributed mainly to their characteristic compounds—glucosinolates (GLs) and their main hydrolysis products—isothiocyanates (ITCs) and indoles. In this study, we compared antiproliferative activity (MTT test in HT29 cells) and genotoxic effects (comet assay in HT29 cells and restriction analysis in a cell-free system) of three GLs (sinigrin (SIN), glucotropaeolin (GTL), and glucobrassicin (GLB)) with that of their major degradation products. Intact GLs did not exhibit cytotoxic activity, possibly due to their limited bioavailability. However, in the presence of myrosinase (MYR), GLs gained the ability to inhibit HT29 cells’ growth. The addition of MYR caused the hydrolysis of GLs to the corresponding ITCs or indoles, i.e. compounds that show stronger biological activity than parent GLs. Pure ITC/indole solutions showed the strongest antiproliferative activity. Based on the results of restriction analysis, it was found that GLs to a greater extent than ITCs caused DNA modification in a cell-free system. In the case of GLs, metabolic activation by the S9 fraction increased this effect, and at the same time changed the preferential binding site from the area of base pairs AT to GC base pairs. Of all compounds tested, only benzyl ITC caused DNA damage detectable in the comet assay, but it required relatively high concentrations.
Collapse
Affiliation(s)
- Dominik Kołodziejski
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Narutowicza St. 11/12, 80-233, Gdansk, Poland
| | - Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Narutowicza St. 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
2
|
Schepici G, Bramanti P, Mazzon E. Efficacy of Sulforaphane in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21228637. [PMID: 33207780 PMCID: PMC7698208 DOI: 10.3390/ijms21228637] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/14/2022] Open
Abstract
Sulforaphane (SFN) is a phytocompound belonging to the isothiocyanate family. Although it was also found in seeds and mature plants, SFN is mainly present in sprouts of many cruciferous vegetables, including cabbage, broccoli, cauliflower, and Brussels sprouts. SFN is produced by the conversion of glucoraphanin through the enzyme myrosinase, which leads to the formation of this isothiocyanate. SFN is especially characterized by antioxidant, anti-inflammatory, and anti-apoptotic properties, and for this reason, it aroused the interest of researchers. The aim of this review is to summarize the experimental studies present on Pubmed that report the efficacy of SFN in the treatment of neurodegenerative disease, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS). Therefore, thanks to its beneficial effects, SFN could be useful as a supplement to counteracting neurodegenerative diseases.
Collapse
|
3
|
Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clin Exp Med 2020; 20:173-190. [PMID: 32016615 DOI: 10.1007/s10238-020-00611-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Health-threatening consequences of carcinogen exposure are mediated via occurrence of electrophiles or reactive oxygen species. As a result, the accumulation of biomolecular damage leads to the cancer initiation, promotion or progression. Accordingly, there is an association between lifestyle factors including inappropriate diet or carcinogen formation during food processing, mainstream, second or third-hand tobacco smoke and other environmental or occupational carcinogens and malignant transformation. Nevertheless, increasing evidence supports the protective effects of naturally occurring phytochemicals against carcinogen exposure as well as carcinogenesis in general. Isolated phytochemicals or their mixtures present in the whole plant food demonstrate efficacy against malignancy induced by carcinogens widely spread in our environment. Phytochemicals also minimize the generation of carcinogenic substances during the processing of meat and meat products. Based on numerous data, selected phytochemicals or plant foods should be highly recommended to become a stable and regular part of the diet as the protectors against carcinogenesis.
Collapse
|
4
|
Paśko P, Prochownik E, Krośniak M, Tyszka-Czochara M, Francik R, Marcinkowska M, Sikora J, Malinowski M, Zagrodzki P. Animals in Iodine Deficiency or Sulfadimethoxine Models of Thyroid Damage Are Differently Affected by the Consumption of Brassica Sprouts. Biol Trace Elem Res 2020; 193:204-213. [PMID: 30927245 PMCID: PMC6914734 DOI: 10.1007/s12011-019-01694-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
The study was primarily aimed at investigating the effect of brassica sprout consumption, namely rutabaga (Brassica napus L. var. napobrassica) sprouts (R) generally recognized as antithyroid agent due to its goitrogenic substance content, on hematological, biochemical, and immunological parameters in rats. Sprouts were tested alone and in a combination with other antithyroid factors, such as iodine deficiency (RDI) and sulfadimethoxine (RS). The expression of the heme oxygenase-1 (HO-1) gene in the thyroid as a stress-inducible protein was determined. The thermographic analysis was also estimated. The intake of rutabaga sprouts by healthy rats did not reveal any significant, harmful effect on the thyroid function. Both body temperature and expression of HO-1 remained unchanged in response to the consumed sprouts. In animals with hypothyroidism, rutabaga sprouts enhanced the negative effect of iodine deficiency or sulfadimethoxine ingestion on the organism by increasing the WBC (RDI), TNF-α (RS), creatinine (RS), and triglyceride (RDI and RS) levels, as well as decreasing PLT (RS) level. Moreover, rutabaga sprout consumption by rats with iodine deficiency and sulfadimethoxine decreased their body temperature. Additionally, the concomitant administration of sprouts and iodine depletion significantly reduced the expression of HO-1 in the thyroid. The results may prove useful in confirming rutabaga sprout consumption to be safe, though the seeds of this vegetable provide a well-known antithyroid agent. Our results have shown that rutabaga sprout consumption may be also a factor that enhances the negative clinical features only when combined with iodine deficiency and sulfadimethoxine ingestion.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland.
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Tyszka-Czochara
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Kraków, Poland
| | - Monika Marcinkowska
- Department of Pharmaceutical Chemistry, Medical College, Jagiellonian University, Kraków, Poland
| | - Jakub Sikora
- Institute of Agriculture Engineering and Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Kraków, Poland
| | - Mateusz Malinowski
- Institute of Agriculture Engineering and Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Kraków, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
5
|
Godoy FR, Nunes HF, Alves AA, Carvalho WF, Franco FC, Pereira RR, da Cruz AS, da Silva CC, Bastos RP, de Melo E Silva D. Increased DNA damage is not associated to polymorphisms in OGGI DNA repair gene, CYP2E1 detoxification gene, and biochemical and hematological findings in soybeans farmers from Central Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26553-26562. [PMID: 31292876 DOI: 10.1007/s11356-019-05882-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Our study evaluated 163 individuals, being 74 soybean farmers, occupationally exposed to pesticides, and 89 individuals from Goias municipalities, Central Brazil, with similar conditions to the exposed group, comprising the control group. Of the 74 soybean farmers, 43 exposed directly to pesticides and 31 exposed indirectly. The exposed group consisted of individuals aged 19 to 63 years, 21 women and 53 men, and the control group had ages ranging from 18 to 64 years, being 36 women and 53 men. 18.9% of the exposed group were poisoned by pesticides, and the most common symptoms were headache and gastrointestinal problems. The genotype frequencies of the rs2031920 (T>C) polymorphism in the CYP2E1 gene present significant differences between the exposed and control groups (p = 0.02), showing that 24.3% of the exposed group were heterozygotes against 6.7% in the control group. For the OGG1 gene, two SNPs, rs1052133 (G>C) and rs293795 (T>C), were evaluated and the genotype frequencies were not statistically different between the exposed and control groups. The DNA damage was distinct (p < 0.05) in the three analyzed comet parameters (tail length, Olive tail moment, %DNA) between groups. However, there was no influence of age and alcohol consumption between the groups associated with the polymorphisms in the CYP2E1 and OGG1 genes and DNA damage. We also did not find altered hematological and biochemical parameters in the exposed group. Thus, this pioneering study at Goias State carried out an overview of the health of soybean farmers. We evaluated classic laboratory exams, associated with exposure markers (comet assay) and susceptibility markers (genetic polymorphisms), emphasizing the need to expand the Brazilian health assessment protocol. We found, in soybean farmers, increased DNA damage and a higher number of heterozygotes in CYP2E1 gene, compared with the control group, despite the lack of association with age, educational level, smoking, drinking habits, and genetic polymorphisms.
Collapse
Affiliation(s)
- Fernanda Ribeiro Godoy
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Hugo Freire Nunes
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alessandro Arruda Alves
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Wanessa Fernandes Carvalho
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fernanda Craveiro Franco
- Laboratório de Virologia Animal, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rodrigo Roncato Pereira
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alex Silva da Cruz
- Escola de Ciências Biológicas e Agrárias, Campus II, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Cláudio Carlos da Silva
- Escola de Ciências Biológicas e Agrárias, Campus II, Núcleo de Pesquisas Replicon, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | - Rogério Pereira Bastos
- Laboratório de Herpetologia e Comportamento Animal, Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
- Depto. de Genética, Instituto de Ciências Biológicas, ICB I, Universidade Federal de Goiás, Bairro: Campus Universitário, Goiânia, GO, CEP: 74690-900, Brazil.
| |
Collapse
|
6
|
Modulation of hepatic ABC transporters by Eruca vesicaria intake: Potential diet-drug interactions. Food Chem Toxicol 2019; 133:110797. [PMID: 31479713 DOI: 10.1016/j.fct.2019.110797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/02/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The aim of this work was to evaluate whether oral administration of Eruca vesicaria, a species of rocket cultivated in Argentina, could modify cyclophosphamide (CP)-induced genotoxicity through modulation of hepatic ABC transporters. Daily oral administration of E. vesicaria fresh leaves juice (1.0, 1.4 and 2.0 g/kg) for 14 days did not alter genotoxicity biomarkers -alkaline comet assay and micronucleus test -in neither male nor female mice. Instead, repeated intake of this cruciferous decreased CP-induced DNA damage dose-dependently and it caused hepatic overexpression of P-glycoprotein (P-gp; 1.4 and 2.0 g/kg) and multidrug resistance protein 2 (MRP2; 2.0 g/kg), but not breast cancer resistance protein (Bcrp). The antigenotoxic effect of E. vesicaria was prevented by 50 mg/kg verapamil (P-gp inhibitor) or 10 mg/kg indomethacin (MRP2 inhibitor). In turn, CP-induced cytotoxicity (10 mM, 24 h) on human hepatoma cells (HepG2/C3A) was significantly reduced by preincubation with E. vesicaria (1.4 mg/ml; 48 h); this effect was absent when CP was coincubated with 35 μM verapamil, 80 μM indomethacin or 10 μM KO-143 (BCRP inhibitor). Altogether, these results allow us to demonstrate that repeated intake of E. vesicaria exhibited antigenotoxicity, at least in part, by induction of hepatic ABC transporters in vivo in mice as well as in vitro in human liver cells. This could account for other diet-drug interactions.
Collapse
|
7
|
Li Z, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H. Natural Sulforaphane From Broccoli Seeds Against Influenza A Virus Replication in MDCK Cells. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19858221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Yumei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing, P.R. China
| |
Collapse
|
8
|
Moreno DA, Pérez-Balibrea S, García-Viguera C. Phytochemical Quality and Bioactivity of Edible Sprouts. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600101120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Edible sprouts are phytonutrient-rich plant foods, good source of flavonoids, other polyphenols, glucosinolates, isothiocyanates, proteins, minerals and vitamins. The increasing consumption of sprouts requires optimisation of their quality, palatability and bioactivity. Multiple genetic and environmental factors (growth conditions, stress, elicitors) affect the production and accumulation of phytochemicals in these foods, offering the basis for further research on the improvement of the nutritional and health-relevant functional value of edible sprouts. In the present review, we focus on the phytochemical characteristics of edible sprouts, which can be regarded as a safe and promising a new dietary source of natural products for human health.
Collapse
Affiliation(s)
- Diego A. Moreno
- Lab. Fitoquímica, Grupo de Investigación en Calidad, Seguridad y Bioactividad de Alimentos Vegetales, Dept. of Food Science and Technology, CEBAS-CSIC P.O. Box 164, Espinardo, E-30100 Murcia, Spain
| | - Santiago Pérez-Balibrea
- Lab. Fitoquímica, Grupo de Investigación en Calidad, Seguridad y Bioactividad de Alimentos Vegetales, Dept. of Food Science and Technology, CEBAS-CSIC P.O. Box 164, Espinardo, E-30100 Murcia, Spain
| | - Cristina García-Viguera
- Lab. Fitoquímica, Grupo de Investigación en Calidad, Seguridad y Bioactividad de Alimentos Vegetales, Dept. of Food Science and Technology, CEBAS-CSIC P.O. Box 164, Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
9
|
Zheng J, He J, Liao S, Cheng Z, Lin J, Huang K, Li X, Zheng K, Chen X, Lin L, Xia F, Liu J, Xu M, Chen T, Huang X, Cao X, Yang Z. Preventive effects of combinative natural foods produced by elite crop varieties rich in anticancer effects on N-nitrosodiethylamine-induced hepatocellular carcinoma in rats. Food Sci Nutr 2019; 7:339-355. [PMID: 30680188 PMCID: PMC6341211 DOI: 10.1002/fsn3.896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
The World Cancer Research Fund International has released 32 anticancer effects (ACEs) that targeted every stage of cancer processes. Thus, we designed two formulas of natural food combination Diet I and Diet II, mainly produced by elite crop varieties rich in ACEs with different mixture ratios, and evaluated their cancer preventive effects on N-nitrosodiethylamine (NDEA)-induced hepatocarcinogenesis. After 20 weeks of dietary intervention, Diet I and Diet II reduced incidence, size, and number of hepatic nodules (p < 0.01) and prevented hepatic tumor formation in NDEA-induced hepatocarcinogenesis rats. Low-grade hepatic dysplasia incidence was 20% for Diet II and 40% for Diet I, and apparent hepatocellular carcinomas (HCC) rates were both 0, while 90% HCC in control diet treatment group (p < 0.01). Diet I and Diet II ameliorated abnormal liver function enzymes, reduced serum alpha fetal protein, tumor-specific growth factor, dickkopf-related protein 1, tumor necrosis factor-alpha and interleukin-6 levels, regulated hepatic phase I and II xenobiotic-metabolizing enzymes, enhanced antioxidant capacity, suppressed NDEA-initiated oxidative DNA damage, and induced apoptosis coupled to down-regulation of proinflammatory, invasion, and angiogenesis markers. Daily intake of combination diet produced from ACEs-rich elite crop varieties can effectively prevent or delay occurrence and development of NDEA-induced hepatocarcinogenesis in rats.
Collapse
Affiliation(s)
- Jingui Zheng
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jun He
- Institute of Laboratory Animal ScienceChinese Academy of Medical SciencesBeijingChina
| | - Sufeng Liao
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zuxin Cheng
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinke Lin
- Anxi College of Tea ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ke Huang
- College of Horticulture and LandscapeHunan Agricultural UniversityChangshaChina
| | - Xiaocen Li
- Institute of Laboratory Animal ScienceChinese Academy of Medical SciencesBeijingChina
| | - Kaibin Zheng
- Institute of Sub‐tropical AgricultureFujian Academy of Agricultural SciencesFuzhouChina
| | - Xuanyang Chen
- Key Laboratory of Ministry for Education for Genetics, Breeding and Multiple Utilization of CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lihui Lin
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fagang Xia
- Key Laboratory of Ministry for Education for Genetics, Breeding and Multiple Utilization of CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianghong Liu
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ming Xu
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tuansheng Chen
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinying Huang
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaohua Cao
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhijian Yang
- Agricultural Product Quality InstituteFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
10
|
Jiang X, Liu Y, Ma L, Ji R, Qu Y, Xin Y, Lv G. Chemopreventive activity of sulforaphane. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2905-2913. [PMID: 30254420 PMCID: PMC6141106 DOI: 10.2147/dddt.s100534] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer is one of the major causes of morbidity and mortality in the world. Carcinogenesis is a multistep process induced by genetic and epigenetic changes that disrupt pathways controlling cell proliferation, apoptosis, differentiation, and senescence. In this context, many bioactive dietary compounds from vegetables and fruits have been demonstrated to be effective in cancer prevention and intervention. Over the years, sulforaphane (SFN), found in cruciferous vegetables, has been shown to have chemopreventive activity in vitro and in vivo. SFN protects cells from environmental carcinogens and also induces growth arrest and/or apoptosis in various cancer cells. In this review, we will discuss several potential mechanisms of the chemopreventive activity of SFN, including regulation of Phase I and Phase II drug-metabolizing enzymes, cell cycle arrest, and induction of apoptosis, especially via regulation of signaling pathways such as Nrf2-Keap1 and NF-κB. Recent studies suggest that SFN can also affect the epigenetic control of key genes and greatly influence the initiation and progression of cancer. This research may provide a basis for the clinical use of SFN for cancer chemoprevention and enable us to design preventive strategies for cancer management, reduce cancer development and recurrence, and thus improve patient survival.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ye Liu
- Department of Pathobiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Lixin Ma
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Rui Ji
- Department of Internal Medicine, Florida Hospital, Orlando, FL, USA
| | - Yaqin Qu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China,
| | - Guoyue Lv
- Department of General Surgery, The First Hospital of Jilin University, Changchun 130021, China,
| |
Collapse
|
11
|
Zhu M, Li W, Guo J, Lu Y, Dong X, Lin B, Chen Y, Zhang X, Li M. Alpha fetoprotein antagonises benzyl isothiocyanate inhibition of the malignant behaviors of hepatocellular carcinoma cells. Oncotarget 2018; 7:75749-75762. [PMID: 27716619 PMCID: PMC5342775 DOI: 10.18632/oncotarget.12407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
Benzyl isothiocyanate (BITC) is a dietary isothiocyanate derived from cruciferous vegetables. Recent studies showed that BITC inhibited the growth of many cancer cells, including hepatocellular carcinoma (HCC) cells. Alpha-fetoprotein (AFP) is a important molecule for promoting progression of HCC, in the present investigation, we explore the influence of AFP on the role of BITC in the malignant behaviours of HCC cells, and the potential underlying mechanisms. We found thatBITC inhibited viability, migration, invasion and induced apoptosis of human liver cancer cell lines, Bel 7402(AFP producer) and HLE(non-AFP producer) cells in vitro. The role of BITC involve in promoting actived-caspase-3 and PARP-1 expression, and enhancing caspase-3 activity but decreasing MMP-2/9, survivin and CXCR4 expression. AFP antagonized the effect of BITC. This study suggests that BITC induced significant reductions in the viability of HCC cell lines. BITC may activate caspase-3 signal and inhibit the expression of growth- and metastasis-related proteins; AFP is an pivotal molecule for the HCC chemo-resistance of BITC.
Collapse
Affiliation(s)
- Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Junli Guo
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China
| | - Yan Lu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China
| | - Xueer Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China.,Undergraduate Student of Clinical Medicine, Hainan Medical College, Haikou 571199, P.R. China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P.R. China.,Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, P.R. China.,Institution of Tumour, Hainan Medical College, Haikou 570102, Hainan Province, P.R. China
| |
Collapse
|
12
|
Isothiocyanates and Xenobiotic Detoxification. Mol Nutr Food Res 2018; 62:e1700916. [DOI: 10.1002/mnfr.201700916] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/18/2017] [Indexed: 12/22/2022]
|
13
|
Paśko P, Krośniak M, Prochownik E, Tyszka-Czochara M, Fołta M, Francik R, Sikora J, Malinowski M, Zagrodzki P. Effect of broccoli sprouts on thyroid function, haematological, biochemical, and immunological parameters in rats with thyroid imbalance. Biomed Pharmacother 2017; 97:82-90. [PMID: 29080462 DOI: 10.1016/j.biopha.2017.10.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 11/27/2022] Open
Abstract
Broccoli sprouts may exert a negative influence on thyroid function as they are a rich source of glucosinolates, in particular glucoraphanin. Under the study in a long-term experiment broccoli sprouts were tested as an element of rats diet, combined with deficient iodine, or sulfadimethoxine ingestion - two models of hypothyroidism. Evaluations were performed for serum TSH and thyroid hormones completed with analyzes of selected haematological, biochemical and immunological (IL-6, IL-10) parameters, as well as cytosolic glutathione peroxidase (GPX1), thioredoxin reductase (TR) in the thyroid, and plasma glutathione peroxidase (GPX3). A thermographic analysis was conducted to provide auxiliary indicators for determining a potential thyroid dysfunction under the specific experimental conditions. The levels of TSH, fT3 and fT4 remained unchanged following broccoli sprouts ingestion, which was even found to have a protective effect against sulfadimethoxine induced thyroid damage. Moreover, TR activity significantly increased in response to sprouts ingestion. In animals with hypothyroidism, broccoli sprouts were found to exert a beneficial influence on the antioxidant balance of the thyroid gland. In comparison to the rats with iodine deficiency, broccoli sprouts addition to the diet was observed to decrease IL-6 level. No significant differences in IL-10 concentration were determined. Neither addition of broccoli sprouts to the diet, nor sulfadimethoxine and iodine deficiency, caused negative changes in red blood cell parameters, glucose and uric acid concentrations, or kidney function. However, such a dietary intervention resulted in reduced WBC and PLT levels, and it may adversely interfere with liver function in rats, most likely due to a higher dietary intake of glucosinolates.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland.
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Tyszka-Czochara
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Maria Fołta
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Jakub Sikora
- Institute of Agriculture Engineering and Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland
| | - Mateusz Malinowski
- Institute of Agriculture Engineering and Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
14
|
Kim JK, Strapazzon N, Gallaher CM, Stoll DR, Thomas W, Gallaher DD, Trudo SP. Comparison of short- and long-term exposure effects of cruciferous and apiaceous vegetables on carcinogen metabolizing enzymes in Wistar rats. Food Chem Toxicol 2017; 108:194-202. [PMID: 28764905 DOI: 10.1016/j.fct.2017.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/13/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Cruciferous and apiaceous vegetables may be chemopreventive due to their ability to modulate carcinogen-metabolizing enzymes but whether the effects on such enzymes are sustained over time is unknown. To examine the short- and long-term effects of the vegetables, rats were fed one of four diets for 7, 30, or 60 d: AIN-93G, CRU (21% cruciferous vegetables-fresh broccoli, green cabbage, watercress), API (9% apiaceous vegetables - fresh parsnips, celery), or API + CRU (10.5% CRU + 4.5% API). Although CRU increased activity and protein expression of cytochrome P450 (CYP) 1A1 and CYP1A2 after 7 d, only activity was sustained after 30 and 60 d. There was a trend towards an interaction between the length of feeding period and CRU for CYP1A1 activity; activity increased with greater time of feeding. API increased CYP1A2 activity but decreased sulfotransferase 1A1 activity after 7 d, although not at later times. Altogether, increased CYP1A activity by CRU was maintained with long term feeding while protein amount decreased, suggesting influence by mechanisms other than, or in addition to, transcriptional regulation. Thus, response patterns and interactions with length of feeding may differ, depending upon the types of vegetables and enzymes, requiring caution when interpreting the results of short-term feeding studies.
Collapse
Affiliation(s)
- Jae Kyeom Kim
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Noemia Strapazzon
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Cynthia M Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| | - William Thomas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Sabrina P Trudo
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
15
|
|
16
|
Cierpiał T, Łuczak J, Kwiatkowska M, Kiełbasiński P, Mielczarek L, Wiktorska K, Chilmonczyk Z, Milczarek M, Karwowska K. Organofluorine Isoselenocyanate Analogues of Sulforaphane: Synthesis and Anticancer Activity. ChemMedChem 2016; 11:2398-2409. [PMID: 27714934 DOI: 10.1002/cmdc.201600442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/10/2022]
Abstract
A series of previously unknown sulforaphane analogues with organofluorine substituents bonded to the sulfinyl sulfur atom, an isoselenocyanate moiety in place of the isothiocyanate group, the central sulfur atom in various oxidation states, and different numbers of methylene groups in the central alkyl chain were synthesized and fully characterized. All new compounds were tested for their biological properties in vitro and demonstrated much higher anticancer activity against two breast cancer cell lines than that shown by native sulforaphane; at the same time, the compounds were less toxic for normal cells. The influence of the particular structural changes in the molecules on the cytotoxicity is discussed.
Collapse
Affiliation(s)
- Tomasz Cierpiał
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, Sienkiewicza 112, 90363, Łódź, Poland
| | - Jerzy Łuczak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, Sienkiewicza 112, 90363, Łódź, Poland
| | - Małgorzata Kwiatkowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, Sienkiewicza 112, 90363, Łódź, Poland
| | - Piotr Kiełbasiński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Heteroorganic Chemistry, Sienkiewicza 112, 90363, Łódź, Poland
| | - Lidia Mielczarek
- National Medicines Institute, Department of Cell Biology, Chełmska 30/34, 00725, Warszawa, Poland.,Warsaw University of Medicine, Faculty of Pharmaceutics and the Department of Laboratory Medicine, Banacha 1, 02097, Warszawa, Poland
| | - Katarzyna Wiktorska
- National Medicines Institute, Department of Cell Biology, Chełmska 30/34, 00725, Warszawa, Poland
| | - Zdzisław Chilmonczyk
- National Medicines Institute, Department of Cell Biology, Chełmska 30/34, 00725, Warszawa, Poland
| | - Małgorzata Milczarek
- National Medicines Institute, Department of Cell Biology, Chełmska 30/34, 00725, Warszawa, Poland
| | - Katarzyna Karwowska
- Warsaw University of Medicine, Faculty of Pharmaceutics and the Department of Laboratory Medicine, Banacha 1, 02097, Warszawa, Poland
| |
Collapse
|
17
|
Cirillo S, Canistro D, Vivarelli F, Paolini M. Effects of chlorinated drinking water on the xenobiotic metabolism in Cyprinus carpio treated with samples from two Italian municipal networks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18777-18788. [PMID: 27316649 DOI: 10.1007/s11356-016-7091-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Drinking water (DW) disinfection represents a milestone of the past century, thanks to its efficacy in the reduction of risks of epidemic forms by water micro-organisms. Nevertheless, such process generates disinfection by-products (DBPs), some of which are genotoxic both in animals and in humans and carcinogenic in animals. At present, chlorination is one of the most employed strategies but the toxicological effects of several classes of DBPs are unknown. In this investigation, a multidisciplinary approach foreseeing the chemical analysis of chlorinated DW samples and the study of its effects on mixed function oxidases (MFOs) belonging to the superfamily of cytochrome P450-linked monooxygenases of Cyprinus carpio hepatopancreas, was employed. The experimental samples derived from aquifers of two Italian towns (plant 1, river water and plant 2, spring water) were obtained immediately after the disinfection (A) and along the network (R1). Animals treated with plant 1 DW-processed fractions showed a general CYP-associated MFO induction. By contrast, in plant 2, a complex modulation pattern was achieved, with a general up-regulation for the point A and a marked MFO inactivation in the R1 group, particularly for the testosterone metabolism. Together, the toxicity and co-carcinogenicity (i.e. unremitting over-generation of free radicals and increased bioactivation capability) of DW linked to the recorded metabolic manipulation, suggests that a prolonged exposure to chlorine-derived disinfectants may produce adverse health effects.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| |
Collapse
|
18
|
Ganai SA. Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer. Biomed Pharmacother 2016; 81:250-257. [PMID: 27261601 DOI: 10.1016/j.biopha.2016.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/10/2016] [Accepted: 04/10/2016] [Indexed: 12/28/2022] Open
Abstract
Epigenetic modifications are closely involved in the patho-physiology of prostate cancer. Histone deacetylases (HDACs), the transcriptional corepressors have strong crosstalk with prostate cancer progression as they influence various genes related to tumour suppression. HDACs play a marked role in myriad of human cancers and as such are emerging as striking molecular targets for anticancer drugs and therapy. Histone deacetylase inhibitors (HDACi), the small-molecules interfering HDACs are emerging as promising chemotherapeutic agents. These inhibitors have shown multiple effects including cell growth arrest, differentiation and apoptosis in prostate cancer. The limited efficacy of HDACi as single agents in anticancer therapy has been strongly improved via novel therapeutic strategies like doublet therapy (combined therapy). More than 20HDACi have already entered into the journey of clinical trials and four have been approved by FDA against diverse cancers. This review deals with plant derived HDACi sulphoraphane (SFN; 1-isothiocyanato-4-(methylsulfinyl)-butane) and its potential role in prostate cancer therapy along with the underlying molecular mechanism being involved. The article further highlights the therapeutic strategy that can be utilized for sensitizing conventional therapy resistant cases and for acquiring the maximum therapeutic benefit from this promising inhibitor in the upcoming future.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006 Jammu & Kashmir, India.
| |
Collapse
|
19
|
Sapone A, Canistro D, Vivarelli F, Paolini M. Perturbation of xenobiotic metabolism in Dreissena polymorpha model exposed in situ to surface water (Lake Trasimene) purified with various disinfectants. CHEMOSPHERE 2016; 144:548-554. [PMID: 26397472 DOI: 10.1016/j.chemosphere.2015.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/21/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
Sanitation is of crucial importance for the microbiological safety of drinking water. However, chlorination of water rich in organic material produces disinfection by-products (DBPs), many of which have been reported to be mutagenic and/or carcinogenic compounds such as haloacetic acids and trihalomethanes. Epidemiological studies have suggested a link between drinking water consumption and cancer. We previously observed that Cyprinus carpio fish exposed to DBPs, may be subject to epigenetic effects such as those referable to the up-regulation of cytochrome P450 (CYP) superfamily (ex. co-mutagenesis/co-carcinogenesis and oxidative stress) that has been associated to non-genotoxic carcinogenesis. Our goal was to study the xenobiotic metabolism in mollusks exposed in situ to surface water of Lake Trasimene (Central Italy) treated with several disinfectants such as the traditional chlorine dioxide (ClO2), sodium hypochlorite (NaClO) or the relatively new one peracetic acid (PAA). The freshwater bivalves (Dreissena polymorpha) being selected as biomarker, have the unique ability to accumulate pollutants. Freshwater bivalves were maintained in surface water containing each disinfectant individually (1-2 mg/L). Following an exposure period up to 20 days during the fall period, microsomes were collected from the mussels, then tested for various monooxygenases. Strong CYP inductions were observed. These data indicate that drinking water disinfection generates harmful DBP mixtures capable of determining a marked perturbation of CYP-supported reactions. This phenomenon, being associated to an increased pro-carcinogen bioactivation and persistent oxidative stress, could provide an explanation for the observational studies connecting the regular consumption of drinking water to increased risk of various cancers in humans.
Collapse
Affiliation(s)
- Andrea Sapone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy
| |
Collapse
|
20
|
Pace BS, Liu L, Li B, Makala LH. Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease. Exp Biol Med (Maywood) 2015; 240:1050-64. [PMID: 26283707 DOI: 10.1177/1535370215596859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The developmental regulation of globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease and β-thalassemia. Fetal hemoglobin has been shown to block sickle hemoglobin S polymerization to improve symptoms of sickle cell disease; moreover, fetal hemoglobin functions to replace inadequate hemoglobin A synthesis in β-thalassemia thus serving as an effective therapeutic target. In the perinatal period, fetal hemoglobin is synthesized at high levels followed by a decline to adult levels by one year of age. It is known that naturally occurring mutations in the γ-globin gene promoters and distant cis-acting transcription factors produce persistent fetal hemoglobin synthesis after birth to ameliorate clinical symptoms. Major repressor proteins that silence γ-globin during development have been targeted for gene therapy in β-hemoglobinopathies patients. In parallel effort, several classes of pharmacological agents that induce fetal hemoglobin expression through molecular and cell signaling mechanisms have been identified. Herein, we reviewed the progress made in the discovery of signaling molecules targeted by pharmacologic agents that enhance γ-globin expression and have the potential for future drug development to treat the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | - Biaoru Li
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| | - Levi H Makala
- Department of Pediatrics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
21
|
Yoshida K, Ushida Y, Ishijima T, Suganuma H, Inakuma T, Yajima N, Abe K, Nakai Y. Broccoli sprout extract induces detoxification-related gene expression and attenuates acute liver injury. World J Gastroenterol 2015; 21:10091-10103. [PMID: 26401074 PMCID: PMC4572790 DOI: 10.3748/wjg.v21.i35.10091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/25/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of broccoli sprout extract (BSEx) on liver gene expression and acute liver injury in the rat.
METHODS: First, the effects of BSEx on liver gene expression were examined. Male rats were divided into two groups. The Control group was fed the AIN-76 diet, and the BSEx group was fed the AIN-76 diet containing BSEx. After a 10-d feeding period, rats were sacrificed and their livers were used for DNA microarray and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses. Next, the effects of BSEx on acute liver injury were examined. In experiments using acute liver injury models, 1000 mg/kg acetaminophen (APAP) or 350 mg/kg D-galactosamine (D-GalN) was used to induce injury. These male rats were divided into four groups: Control, BSEx, Inducer (APAP or D-GalN), and Inducer+BSEx. The feeding regimens were identical for the two analyses. Twenty-four hours following APAP administration via p.o. or D-GalN administration via i.p., rats were sacrificed to determine serum aspartate transaminase (AST) and alanine transaminase (ALT) levels, hepatic glutathione (GSH) and thiobarbituric acid-reactive substances accumulation and glutathione-S-transferase (GST) activity.
RESULTS: Microarray and real-time RT-PCR analyses revealed that BSEx upregulated the expression of genes related to detoxification and glutathione synthesis in normal rat liver. The levels of AST (70.91 ± 15.74 IU/mL vs 5614.41 ± 1997.83 IU/mL, P < 0.05) and ALT (11.78 ± 2.08 IU/mL vs 1297.71 ± 447.33 IU/mL, P < 0.05) were significantly suppressed in the APAP + BSEx group compared with the APAP group. The level of GSH (2.61 ± 0.75 nmol/g tissue vs 1.66 ± 0.59 nmol/g tissue, P < 0.05) and liver GST activity (93.19 ± 16.55 U/g tissue vs 51.90 ± 16.85 U/g tissue, P < 0.05) were significantly increased in the APAP + BSEx group compared with the APAP group. AST (4820.05 ± 3094.93 IU/mL vs 12465.63 ± 3223.97 IU/mL, P < 0.05) and ALT (1808.95 ± 1014.04 IU/mL vs 3936.46 ± 777.52 IU/mL, P < 0.05) levels were significantly suppressed in the D-GalN + BSEx group compared with the D-GalN group, but the levels of AST and ALT in the D-GalN + BSEx group were higher than those in the APAP + BSEx group. The level of GST activity was significantly increased in the D-GalN + BSEx group compared with the D-GalN group (98.04 ± 15.75 U/g tissue vs 53.15 ± 8.14 U/g tissue, P < 0.05).
CONCLUSION: We demonstrated that BSEx protected the liver from various types of xenobiotic substances through induction of detoxification enzymes and glutathione synthesis.
Collapse
|
22
|
Tan BL, Norhaizan ME, Huynh K, Yeap SK, Hazilawati H, Roselina K. Brewers’ rice modulates oxidative stress in azoxymethane-mediated colon carcinogenesis in rats. World J Gastroenterol 2015; 21:8826-8835. [PMID: 26269672 PMCID: PMC4528025 DOI: 10.3748/wjg.v21.i29.8826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/10/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the mechanistic action of brewers’ rice in regulating the Wnt/nuclear factor-kappa B (NF-κB)/Nrf2-signaling pathways during colon carcinogenesis in male Sprague-Dawley rats.
METHODS: Male Sprague-Dawley rats were randomly divided into the following five groups (six rats in each group): (G1) normal, (G2) azoxymethane (AOM) alone, (G3) AOM + 10% (weight (w)/weight (w)) brewers’ rice, (G4) AOM + 20% (w/w) brewers’ rice, and (G5) AOM + 40% (w/w) brewers’ rice. They were intraperitoneally administered 15 mg/kg body weight of AOM in saline once weekly over a two-week period and treated with an American Institute of Nutrition (AIN)-93G diet containing 10%, 20%, and 40% (w/w) brewers’ rice. The mRNA levels of glycogen synthase kinase 3β (GSK3β), β-catenin, key inflammation markers, nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1)-dependent transcriptional activity were assessed by quantitative real-time polymerase chain reaction analyses. The colon superoxide dismutase, malondialdehyde, and nitric oxide levels were also analyzed to assess the antioxidant effect of these treatments. The results were analyzed using one-way analysis of variance (ANOVA), and a P value of < 0.05 was considered significant.
RESULTS: The overall analyses demonstrated that the dietary administration of brewers’ rice in AOM-induced rat colon carcinogenesis resulted in the transcriptional upregulation of GSK3β, inducible nitric oxide synthase (iNOS), Nrf2, and HO-1. We discovered that the dietary administration of brewers’ rice downregulated the β-catenin and NF-κB mRNA levels. A significant reduction in β-catenin expression was found in the groups administered with 20% (0.611 ± 0.034) and 40% (0.436 ± 0.045) (w/w) brewers’ rice compared with that of the group treated with AOM alone (1.000 ± 0.064) (P < 0.05). The NF-κB expression was significantly lower between the AOM-alone group (1.000 ± 0.048) and those groups fed with diets containing 10% (w/w) brewers’ rice (0.255 ± 0.022), 20% (w/w) brewers’ rice (0.450 ± 0.045), or 40% (w/w) brewers’ rice (0.541 ± 0.027) (P < 0.05). Brewers’ rice improved the antioxidant levels, indicating that brewers’ rice can enhance effective recovery from oxidative stress induced by AOM.
CONCLUSION: Our results provide evidence that brewers’ rice can suppress colon cancer via the regulation of Nrf2 expression and the inhibition of the Wnt/NF-κB signaling pathways.
Collapse
|
23
|
Hwang ES. Effects of benzyl isothiocyanate and its N-acetylcysteine conjugate on induction of detoxification enzymes in hepa1c1c7 mouse hepatoma cells. Prev Nutr Food Sci 2014; 19:268-73. [PMID: 25580390 PMCID: PMC4287318 DOI: 10.3746/pnf.2014.19.4.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/01/2014] [Indexed: 11/20/2022] Open
Abstract
The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with 0.1~10 μM BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; 0.5 μM and 10 μM NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with 0.1~2.0 μM BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with 1 μM and 2 μM BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with 1 μM and 2 μM NAC-BITC caused 1.6- and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in 0.1~2 μM BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in 0.1 μM NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., 1~2 μM) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents.
Collapse
Affiliation(s)
- Eun-Sun Hwang
- Department of Nutrition and Culinary Science and Korean Foods Global Center, Hankyong National University, Gyeonggi 456-749, Korea
| |
Collapse
|
24
|
Abdull Razis AF, Noor NM. Sulforaphane is superior to glucoraphanin in modulating carcinogen-metabolising enzymes in Hep G2 cells. Asian Pac J Cancer Prev 2014; 14:4235-8. [PMID: 23991982 DOI: 10.7314/apjcp.2013.14.7.4235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 μM) for 24 hours. Glucoraphanin at higher concentration (25 μM) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 μM. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen- metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.
Collapse
Affiliation(s)
- Ahmad Faizal Abdull Razis
- Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology, Universiti Putra Malaysia, Malaysia.
| | | |
Collapse
|
25
|
Protective effect of Tuscan black cabbage sprout extract against serum lipid increase and perturbations of liver antioxidant and detoxifying enzymes in rats fed a high-fat diet. Br J Nutr 2013; 110:988-97. [PMID: 23433361 DOI: 10.1017/s0007114513000068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A diet rich in fat is considered a primary risk factor for CVD, cancer and failures in metabolism and endocrine functions. Hyperlipidaemia generates oxidative stress and weakens antioxidant defences as well as metabolic detoxification systems. Brassicaceae are vegetables rich in glucosinolates and isothiocyanates, affecting enzymatic antioxidant as well as phase II enzymes and conceivably counteracting high-fat diet (HFD)-associated pathologies. The protective role of Tuscan black cabbage (a variety of kale) sprout extract (TBCSE) intake against HFD alterations was here studied. The effects on rat hepatic antioxidant as well as detoxifying enzymes, and serum lipid- and body weightlowering properties of TBCSE, were investigated. Feeding the animals with a HFD for 21 d increased body as well as liver weights, and induced hyperlipidaemia, as confirmed by a higher serum lipid profile v. control diet. Daily intragastric administration of TBCSE to HFD-fed rats lowered serum total cholesterol, TAG and NEFA. Body and liver weight gains were also reduced. Antioxidant (catalase, NAD(P)H:quinone reductase, oxidised glutathione reductase and superoxide dismutase) and phase II (glutathione S-transferase and uridine diphosphate glucuronosyl transferase) enzymes were down-regulated by the HFD, while the extract restored normal levels in most groups. Generation of toxic intermediates, and membrane fatty acid composition changes by the HFD, might account for the altered hepatic antioxidant and detoxifying enzyme functions. The recovering effects of TBCSE could be attributed to high flavonoid, phenolic and organosulphur compound content, which possess free-radical-scavenging properties, enhance the antioxidant status and stimulate lipid catabolism. TBCSE intake emerges to be an effective alimentary strategy to counteract the perturbations associated with a diet rich in fat.
Collapse
|
26
|
Tian M, Bi W, Row KH. Multi-phase extraction of glycoraphanin from broccoli using aminium ionic liquid-based silica. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:81-86. [PMID: 22777845 DOI: 10.1002/pca.2386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Glucosinolates, a class of phytochemicals found in broccoli, have attracted recent interest due to the potential health benefits associated with their dietary intake. Glucoraphanin, the most common glucosinolate in broccoli can be converted to a known cancer chemopreventive agent. Multi-phase extraction in solid-phase extraction cartridges was developed to simultaneously extract and separate this compound. OBJECTIVE Multi-phase extraction with functionalised ionic liquid-based silica as a sorbent was used to simultaneously extract and separate glucoraphanin from broccoli. METHODOLOGY The sorbent and broccoli sample were packed into a single cartridge, and a fixed volume of water was then used to extract and remove the target compound from the sample to the sorbent over 15 repetitions. The sorbent was then washed with n-hexane to remove any interference and the target compound was eluted with water-1% acetic acid (vol.). RESULTS Under the optimised condition, 0.038 mg/g of glucoraphanin was obtained by multi-phase extraction with 0.2 g of sorbent. CONCLUSION The adsorption isotherm allowed investigation of the interactions between the sorbent and target compound and provided evidence for the accuracy of this method. The low deviation error, small amount of solvents required, highly selective separation and stability of the method justify further research.
Collapse
Affiliation(s)
- Minglei Tian
- Department of Chemical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Ku, Incheon 402-751, Korea
| | | | | |
Collapse
|
27
|
Melega S, Canistro D, Pagnotta E, Iori R, Sapone A, Paolini M. Effect of sprout extract from Tuscan black cabbage on xenobiotic-metabolizing and antioxidant enzymes in rat liver. Mutat Res 2012. [PMID: 23183052 DOI: 10.1016/j.mrgentox.2012.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In recent years, health protection by natural products has received considerable attention, and a multitude of nutraceuticals have been characterized and their use promoted. Dietary consumption of Cruciferous vegetables, rich in glucosinolates (GLs), and their myrosinase-mediated hydrolysis products isothiocyanates (ITCs), were associated with reductions in cancer risk. In this study, the chemo-preventive potential of sprout extract of Tuscan black cabbage (Brassica oleracea L. var. acephala subvar. Laciniata L.) (TBCSE), through modulation of the xenobiotic-metabolizing apparatus and antioxidant defenses, was investigated in Sprague-Dawley rat liver. TBCSE was administered either orally or intraperitoneally, at a dose of 15mg/kg b.w., daily for twenty-one consecutive days, in the absence or presence of exogenous myrosinase, β-thioglucoside glucohydrolase (MYR), to distinguish the effects of intact GLs and ITCs, in the context of the extract. A complex, mild modulation pattern of P450-related monooxygenases was observed, mainly regarding CYP content (up to 36% loss), NADPH cytochrome (P450) c-reductase (up to 26% loss), CYP1A1 (up to 23% loss), but no evident distinctions among the effects of the extracts containing GLs or ITCs, were noted. In contrast, significant inductions of phase-II enzymes (up to 107% for UDP-glucuronosyl-transferase, and up to 36% for glutathione S-transferase) were recorded only where the GLs to ITCs conversion had occurred. A boosting effect on catalase (up to 38%), NAD(P)H:quinone reductase (up to 70%), glutathione reductase and glutathione peroxidase (up to 10%) was also recorded, suggesting an indirect antioxidant capacity of the extracts. Overall, the general phase-I inhibition, together with the up-regulation of detoxifying phase-II and antioxidant enzymes, exerted by the TBCSE supplementation, seem to be in line with the classical chemopreventive theory, but whether the addition of exogenous MYR is relevant, still remains to be clarified. These results are in support of the potential health-promoting application of TBCSE, as a nutraceutical.
Collapse
Affiliation(s)
- Simone Melega
- Department of Pharmacy and Biotechnology, Molecular Toxicology Unit, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Canistro D, Barillari J, Melega S, Sapone A, Iori R, Speroni E, Paolini M. Black cabbage seed extract affects rat Cyp-mediated biotransformation: organ and sex related differences. Food Chem Toxicol 2012; 50:2612-21. [PMID: 22634264 DOI: 10.1016/j.fct.2012.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/13/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
Brassicaceae are widely consumed in many parts of the world and their dietary intake has been associated with cancer risk reduction. Extracts and metabolites derived from cruciferous vegetables have thus gained popularity as potential cancer chemopreventive agents. We have previously found, unexpectly, that glucoraphanin, the most extensively present glucosinolate in these vegetables, is a potent mutagen bioactivating Phase-I enzyme inducer. In the present study, the influence of black cabbage seed extract, rich in glucoraphanin, was investigated on Phase-I enzymes in different organs of male or female rats. Oral seed extract injection at 120 or 240 mg/kg b.w. for one or four consecutive days, significantly affected various cytochrome P450 (CYP) -linked monooxygenases in a complex way being the lung the most responsive organ (in males, up to ∼2600% increase for CYP2B1/2 isoform and ∼96% loss for CYP1A1, CYP3A1/2). These findings indicate that the extract may strongly enhance and/or suppress rat xenobiotic biotransformation pathways and that caution should be paid to the possible influence on human metabolism. These data suggest an overall evaluation of the balance between beneficial vs. possible adverse effects for each agent, even if of natural origin, prior to routinely, preventive mass use.
Collapse
Affiliation(s)
- Donatella Canistro
- Department of Pharmacology, Molecular Toxicology Unit, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Pasini F, Verardo V, Cerretani L, Caboni MF, D'Antuono LF. Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:2858-64. [PMID: 21725983 DOI: 10.1002/jsfa.4535] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/17/2011] [Accepted: 05/27/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND Salad crops of the Brassicaceae family, such as Diplotaxis tenuifolia and Eruca vesicaria, commonly referred to as 'rocket salads', have attracted considerable interest as culinary vegetables because of their strong flavour and their content of putative health-promoting compounds. Among such compounds, glucosinolates and phenolics are well-known phytochemicals with an important role also in determining the characteristic flavour of these species. In this study, to identify potentially high-value rocket salads, 37 cultivated types were examined for sensory characters and their relations with glucosinolate and phenolic contents, which ranged from 0.76 to 3.03 g kg(-1) dry weight (DW) and from 4.68 to 31.39 g kg(-1) DW, respectively. RESULTS The perception of bitter taste was significantly affected by specific glucosinolates, namely progoitrin/epiprogoitrin and dimeric glucosativin. Aroma intensity was negatively related to glucoalyssin content, whereas pungency was significantly related to total glucosinolate content. Kaempferol-3-(2-sinapoyl-glucoside)-4'-glucoside was positively and significantly related to all flavour trait perceptions. Aroma intensity, pungency, crunchiness and juiciness were positively related to typical rocket salad flavour perception through a prominent direct effect. CONCLUSION Aroma intensity, pungency, crunchiness and juiciness were strong determinants of overall rocket salad flavour perception. Visual traits also characterised sensory components. Bitterness, usually considered a negative flavour trait, was moderately perceived in the examined material, without negatively affecting typical flavour perception. In the range of the examined material, glucosinolate content did not contrast with typical flavour, demonstrating that good taste and putative health-promoting properties may coexist.
Collapse
Affiliation(s)
- Federica Pasini
- Department of Food Science, Faculty of Agriculture, Food Science University Campus, University of Bologna, Piazza Goidanich 60, I-47521 Cesena (FC), Italy.
| | | | | | | | | |
Collapse
|
30
|
Blum NM, Mueller K, Hirche F, Lippmann D, Most E, Pallauf J, Linn T, Mueller AS. Glucoraphanin does not reduce plasma homocysteine in rats with sufficient Se supply via the induction of liver ARE-regulated glutathione biosynthesis enzymes. Food Funct 2011; 2:654-64. [PMID: 21959850 DOI: 10.1039/c1fo10122f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Data from human and animal trials have revealed contradictory results regarding the influence of selenium (Se) status on homocysteine (HCys) metabolism. It was hypothesised that sufficient Se reduces the flux of HCys through the transsulphuration pathway by decreasing the expression of glutathione (GSH) synthesising enzymes. Glucoraphanin (GRA) is a potent inducer of genes regulated via an antioxidant response element (ARE), including those of GSH biosynthesis. We tested the hypothesis that GRA supplementation to rat diets lowers plasma HCys levels by increasing GSH synthesis. Therefore 96 weaned albino rats were assigned to 8 groups of 12 and fed diets containing four different Se levels (15, 50, 150 and 450 μg kg(diet)(-1)), either without GRA (groups: C15, C50, C150 and C450) or in combination with 700 μmol GRA kg(diet)(-1) (groups G15, G50, G150 and G450). Rats fed the low Se diets C15 and G15 showed an impressive decrease of plasma HCys. Se supplementation increased plasma HCys and lowered GSH significantly by reducing the expression of GSH biosynthesis enzymes. As new molecular targets explaining these results, we found a significant down-regulation of the hepatic GSH exporter MRP4 and an up-regulation of the HCys exporter Slco1a4. In contrast to our hypothesis, GRA feeding did not reduce plasma HCys levels in Se supplemented rats (G50, G150 and 450) through inducing GSH biosynthesis enzymes and MRP4, but reduced their mRNA in some cases to a higher extent than Se alone. We conclude: 1. That the long-term supplementation of moderate GRA doses reduces ARE-driven gene expression in the liver by increasing the intestinal barrier against oxidative stress. 2. That the up-regulation of ARE-regulated genes in the liver largely depends on GRA cleavage to free sulforaphane and glucose by plant-derived myrosinase or bacterial β-glucosidases. As a consequence, higher dietary GRA concentrations should be used in future experiments to test if GRA or sulforaphane can be established as HCys lowering compounds.
Collapse
Affiliation(s)
- Nicole M Blum
- Institute of Agricultural and Nutritional Sciences, Preventive Nutrition Group, Martin Luther University Halle Wittenberg, Von Danckelmann Platz 2, D-06120, Halle (Saale), Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liang H, Yuan Q. Natural sulforaphane as a functional chemopreventive agent: including a review of isolation, purification and analysis methods. Crit Rev Biotechnol 2011; 32:218-34. [DOI: 10.3109/07388551.2011.604838] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Shimamoto K, Dewa Y, Ishii Y, Kemmochi S, Taniai E, Hayashi H, Imaoka M, Morita R, Kuwata K, Suzuki K, Shibutani M, Mitsumori K. Indole-3-carbinol enhances oxidative stress responses resulting in the induction of preneoplastic liver cell lesions in partially hepatectomized rats initiated with diethylnitrosamine. Toxicology 2011; 283:109-17. [PMID: 21396975 DOI: 10.1016/j.tox.2011.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 12/22/2022]
Abstract
The liver tumor-promoting effects of indole-3-carbinol (I3C), a cytochrome P450 (CYP) 1A inducer found in cruciferous vegetables, were investigated using a medium-term hepatocarcinogenesis model in rats. Six-week-old male F344 rats received an intraperitoneal injection of N-diethylnitrosamine (DEN) and were fed a diet containing 0 (DEN-alone), 0.25, 0.50 or 1.0% of I3C for 8 weeks from 2 weeks after DEN-initiation. The number and area of liver cell foci positive for glutathione S-transferase placental form (GST-P) significantly increased in the livers of rats given 0.5% I3C or more, compared to those in the DEN-alone group. The number of GST-P positive foci also increased in the 0.25% I3C group. The number of liver cells positive for proliferating cell nuclear antigen (PCNA) significantly increased in all I3C groups compared to that in the DEN-alone group. Real-time RT-PCR analysis showed that I3C increased transcript levels of not only Cyp1a1 but also aryl hydrocarbon receptor (AhR) and/or nuclear factor (erythroid-derived 2)-like 2 (Nrf2) gene batteries, such as Cyp1a2, Cyp1b1, Ugt1a6, Nrf2, Nqo1, Gsta5, Gstm2, Ggt1and Gpx2. Reactive oxygen species (ROS) in the microsomal fraction significantly increased in all I3C-treated groups compared to the DEN-alone group, and thiobarbituric acid-reactive substances (TBARS) levels and 8-hydroxy-2'-deoxyguanosine (8-OHdG) content significantly increased in all of the I3C-treated groups and 1.0% I3C group, respectively. These results suggest that I3C is an AhR activator and enhances microsomal ROS production resulting in the upregulation of Nrf2 gene batteries, but the oxidative stress generated overcomes the antioxidant effect of Nrf2-related genes. Such 'a redox imbalance' subsequently induces liver tumor-promoting effects by enhancing cellular proliferation in rats.
Collapse
Affiliation(s)
- Keisuke Shimamoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C. Up-regulation of cytochrome P450 and phase II enzyme systems in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Lung Cancer 2011; 71:298-305. [DOI: 10.1016/j.lungcan.2010.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/15/2010] [Accepted: 06/19/2010] [Indexed: 11/25/2022]
|
34
|
Sulforaphane suppresses TARC/CCL17 and MDC/CCL22 expression through heme oxygenase-1 and NF-κB in human keratinocytes. Arch Pharm Res 2010; 33:1867-76. [PMID: 21116791 DOI: 10.1007/s12272-010-1120-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/03/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022]
Abstract
Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SFN) from broccoli has been used a chemopreventive photochemical as detoxification of xenobiotics and anti-inflammatory, however, there is no studies for Th2 chemokine expression through heme oxygenase-1 and NF-κB in keratinocytes. Atopic dermatitis is a chronically relapsing pruritic inflammatory skin disease. SFN is demonstrated to have anti-inflammatory and anti-oxidant effects. This study aimed to define whether and how SFN regulates Th2-related chemokine production in human HaCaT keratinocytes. The level of chemokine expression was measured by reverse transcription polymerase chain reaction (RT-PCR) and signaling study was performed by Western blot analysis. Chemokine production was determined by enzyme-linked immunosorbent assay. Pretreatment with SFN suppressed interferon-γ (IFN-γ) and tumor necrosis factor (TNF)-α- induced thymus- and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) production in HaCaT keratinocytes. SFN inhibited IFN-γ and TNF-α-induced NF-κB activation as well as STAT1 activation. Interestingly, pretreatment with SFN result in significantly suppressed IFN-γ and TNF-α-induced TARC/CCL17 and MDC/CCL22 production through the induction of HO-1. This suppression was completely abolished by HO-1 siRNA. Furthermore, Carbon monoxide, but not other end products of HO-1 activity, also suppressed IFN-γ and TNF-α-induced TARC/CCL17 and MDC/CCL22 production. These results demonstrate that SFN has an inhibitory role in IFN-γ and TNF-α-induced production of TARC/CCL17 and MDC/CCL22 in human HaCaT cells by inhibition of NF-κB activation and induction of HO-1.
Collapse
|
35
|
Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C. Intact glucosinolates modulate hepatic cytochrome P450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology 2010; 277:74-85. [DOI: 10.1016/j.tox.2010.08.080] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
|
36
|
Cantor KP, Villanueva CM, Silverman DT, Figueroa JD, Real FX, Garcia-Closas M, Malats N, Chanock S, Yeager M, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castaño-Vinyals G, Samanic C, Rothman N, Kogevinas M. Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1545-50. [PMID: 20675267 PMCID: PMC2974691 DOI: 10.1289/ehp.1002206] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/21/2010] [Accepted: 07/30/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Bladder cancer has been linked with long-term exposure to disinfection by-products (DBPs) in drinking water. OBJECTIVES In this study we investigated the combined influence of DBP exposure and polymorphisms in glutathione S-transferase (GSTT1, GSTZ1) and cytochrome P450 (CYP2E1) genes in the metabolic pathways of selected by-products on bladder cancer in a hospital-based case-control study in Spain. METHODS Average exposures to trihalomethanes (THMs; a surrogate for DBPs) from 15 years of age were estimated for each subject based on residential history and information on municipal water sources among 680 cases and 714 controls. We estimated effects of THMs and GSTT1, GSTZ1, and CYP2E1 polymorphisms on bladder cancer using adjusted logistic regression models with and without interaction terms. RESULTS THM exposure was positively associated with bladder cancer: adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were 1.2 (0.8-1.8), 1.8 (1.1-2.9), and 1.8 (0.9-3.5) for THM quartiles 2, 3, and 4, respectively, relative to quartile 1. Associations between THMs and bladder cancer were stronger among subjects who were GSTT1 +/+ or +/- versus GSTT1 null (P(interaction) = 0.021), GSTZ1 rs1046428 CT/TT versus CC (P(interaction) = 0.018), or CYP2E1 rs2031920 CC versus CT/TT (P(interaction) = 0.035). Among the 195 cases and 192 controls with high-risk forms of GSTT1 and GSTZ1, the ORs for quartiles 2, 3, and 4 of THMs were 1.5 (0.7-3.5), 3.4 (1.4-8.2), and 5.9 (1.8-19.0), respectively. CONCLUSIONS Polymorphisms in key metabolizing enzymes modified DBP-associated bladder cancer risk. The consistency of these findings with experimental observations of GSTT1, GSTZ1, and CYP2E1 activity strengthens the hypothesis that DBPs cause bladder cancer and suggests possible mechanisms as well as the classes of compounds likely to be implicated.
Collapse
Affiliation(s)
- Kenneth P Cantor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-7240, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Śmiechowska A, Bartoszek A, Namieśnik J. Determination of Glucosinolates and Their Decomposition Products—Indoles and Isothiocyanates in Cruciferous Vegetables. Crit Rev Anal Chem 2010. [DOI: 10.1080/10408347.2010.490489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Comparison of the protective effects of steamed and cooked broccolis on ischaemia–reperfusion-induced cardiac injury. Br J Nutr 2009; 103:815-23. [DOI: 10.1017/s0007114509992492] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recently, broccoli, a vegetable of the Brassica family, has been found to protect the myocardium from ischaemic reperfusion injury through the redox signalling of sulphoraphane, which is being formed from glucosinolate present in this vegetable. Since cooked broccoli loses most of its glucosinolate, we assumed that fresh broccoli could be a superior cardioprotective agent compared to cooked broccoli. To test this, two groups of rats were fed with fresh (steamed) broccoli or cooked broccoli for 30 d, while a third group was given vehicle only for the same period of time. After 30 d, all the rats were sacrificed, and the isolated working hearts were subjected to 30 min ischaemia followed by 2 h of reperfusion. Both cooked and steamed broccolis displayed significantly improved post-ischaemic ventricular function and reduced myocardial infarction and cardiomyocyte apoptosis compared to control, but steamed broccoli showed superior cardioprotective abilities compared with the cooked broccoli. Corroborating with these results, both cooked and steamed broccolis demonstrated significantly enhanced induction of the survival signalling proteins including Bcl2, Akt, extracellular signal-regulated kinase 1/2, haemoxygenase-1, NFE2 related factor 2, superoxide dismutase (SOD1) and SOD2 and down-regulation of the proteins (e.g. Bax, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase) of the death signalling pathway, steamed broccoli displaying superior results over its cooked counterpart. The expressions of proteins of the thioredoxin (Trx) superfamily including Trx1 and its precursor sulphoraphane, Trx2 and Trx reductase, were enhanced only in the steamed broccoli group. The results of the present study documented superior cardioprotective properties of the steamed broccoli over cooked broccoli because of the ability of fresh broccoli to perform redox signalling of Trx.
Collapse
|
39
|
Krajka-Kuźniak V, Szaefer H, Ignatowicz E, Adamska T, Oszmiański J, Baer-Dubowska W. Effect of Chokeberry (Aronia melanocarpa) juice on the metabolic activation and detoxication of carcinogenic N-nitrosodiethylamine in rat liver. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5071-5077. [PMID: 19378944 DOI: 10.1021/jf803973y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chokeberry is a rich source of polyphenols, which may counteract the action of chemical carcinogens. The aim of this study was to examine the effect of chokeberry juice alone or in combination with N-nitrosodiethylamine (NDEA) on phase I and phase II enzymes and DNA damage in rat liver. The forced feeding with chokeberry juice alone decreased the activities of enzymatic markers of cytochrome P450, CYP1A1 and 1A2. NDEA treatment also decreased the activity of CYP2E1 but enhanced the activity of CYP2B. Pretreatment with chokeberry juice further reduced the activity of these enzymes. Modulation of P450 enzyme activities was accompanied by the changes in the relevant proteins levels. Phase II enzymes were increased in all groups of animals tested. Chokeberry juice augmented DNA damage and aggravated the effect of NDEA. These results indicate that chokeberry may protect against liver damage; however, in combination with chemical carcinogens it might enhance their effect.
Collapse
|
40
|
Valgimigli L, Iori R. Antioxidant and pro-oxidant capacities of ITCs. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:222-237. [PMID: 19197991 DOI: 10.1002/em.20468] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Isothiocyanates (ITCs) are breakdown products of glucosinolates contained in cruciciferous vegetables. This heterogeneous family of molecules has the -N=C=S group as its common structural feature and possesses important cytoprotective properties. Their biological interactions are strongly related to modulation of cellular redox status, and a number of studies have documented their indirect antioxidant properties, particularly related to induction of phase-2 enzymes. On the other hand, some direct antioxidant behavior has also been observed for a limited number of ITCs. Paradoxically relevant pro-oxidant properties have also been documented, possibly related to the simultaneous induction of phase-1 enzymes. In this review, we will summarize and discuss the prevailing mechanisms for the antioxidant and pro-oxidant activity of ITCs, both in vivo and in vitro.
Collapse
Affiliation(s)
- Luca Valgimigli
- Department of Organic Chemistry A. Mangini, Faculty of Pharmacy, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
41
|
Villa-Cruz V, Davila J, Viana MT, Vazquez-Duhalt R. Effect of broccoli (Brassica oleracea) and its phytochemical sulforaphane in balanced diets on the detoxification enzymes levels of tilapia (Oreochromis niloticus) exposed to a carcinogenic and mutagenic pollutant. CHEMOSPHERE 2009; 74:1145-1151. [PMID: 19144376 DOI: 10.1016/j.chemosphere.2008.11.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 11/22/2008] [Accepted: 11/30/2008] [Indexed: 05/27/2023]
Abstract
Tilapia fish (Oreochromis niloticus) were fed with enriched diets containing broccoli and its phytochemical sulforaphane over 30 d. The levels of cytochrome P450, superoxide dismutase, catalase, lipid peroxidation and glutathione-S-transferase activities were measured. Basal value of cytochrome P450 activity was significantly increased as consequence of the broccoli and sulforaphane enriched diets, while no statistically significant changes were found on catalase and lipid peroxidation activities. After benzo(a)pyrene exposure, the cytochrome P450 activity increased to higher levels in the fish feed with broccoli and sulforaphane when compared with the control fish. Activities of antioxidant enzymes also varied but without significant difference with the control fish. Supported by the lower concentrations of BaP metabolites in bile from fish fed with broccoli or with sulforaphane enriched diets (indicating a better xenobiotic elimination) the cytochrome P450 induction could be considered beneficial for the detoxification because this transformation is the first step for PAH elimination by the phase II system. The protection of aquaculture organism against pollution effects by designing special diets able to modulate the enzymes involved in the phase-I and phase-II detoxification mechanism are discussed.
Collapse
Affiliation(s)
- V Villa-Cruz
- Centro de Investigación Científica y Educación Superior de Ensenada, CICESE, Ensenada BC, Mexico
| | | | | | | |
Collapse
|
42
|
Sulforaphane induces CYP1A1 mRNA, protein, and catalytic activity levels via an AhR-dependent pathway in murine hepatoma Hepa 1c1c7 and human HepG2 cells. Cancer Lett 2008; 275:93-101. [PMID: 19013013 DOI: 10.1016/j.canlet.2008.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/26/2008] [Accepted: 10/06/2008] [Indexed: 01/16/2023]
Abstract
Recent reports have proposed that some naturally occurring phytochemicals can function as anticancer agents mainly through inducing phase II drug detoxification enzymes. Of these phytochemicals, isothiocyanates sulforaphane (SUL), present in broccoli, is by far the most extensively studied. In spite of its positive effect on phase II drug metabolizing enzymes, its effect on the phase I bioactivating enzyme cytochrome P450 1a1 (Cyp1a1) is still a matter of debate. As a first step to investigate this effect, Hepa 1c1c7 and HepG2 cells were treated with various concentration of SUL. Our results showed that SUL-induced CYP1A1 mRNA in a dose- and time-dependent manner. Furthermore, this induction was further reflected on the protein and catalytic activity levels. Investigating the effect of SUL at the transcriptional level revealed that SUL increases the Cyp1a1 mRNA as early as 1h. The RNA polymerase inhibitor actinomycin D (Act-D) completely abolished the SUL-induced Cyp1a1 mRNA. Furthermore, SUL successfully activated AhR transformation and its subsequent binding to the XRE. At the post-transcriptional level, SUL did not affect the levels of existing Cyp1a1 mRNA transcripts. This is the first demonstration that the broccoli-derived SUL can directly induce Cyp1a1 gene expression in an AhR-dependent manner and represents a novel mechanism by which SUL induces this enzyme.
Collapse
|
43
|
Barillari J, Iori R, Papi A, Orlandi M, Bartolini G, Gabbanini S, Pedulli GF, Valgimigli L. Kaiware Daikon (Raphanus sativus L.) extract: a naturally multipotent chemopreventive agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:7823-7830. [PMID: 18665601 DOI: 10.1021/jf8011213] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Brassica vegetables are attracting major attention as healthy foods because of their content of glucosinolates (GLs) that release the corresponding isothiocyanates (ITCs) upon myrosinase hydrolysis. A number of studies have so far documented the chemopreventive properties of some ITCs. On the other hand, single nutrients detached from the food itself risk being somewhat "reductive", since plants contain several classes of compounds endowed with a polyhedral mechanism of action. Our recent finding that 4-methylthio-3-butenyl isothiocyanate (GRH-ITC) and 4-methylsulfinyl-3-butenyl isothiocyanate (GRE-ITC), released by the GLs purified from Japanese (Kaiware) Daikon (Raphanus sativus L.) seeds and sprouts, had selective cytotoxic/apoptotic activity on three human colon carcinoma cell lines prompted further research on the potential chemopreventive role of a standardized Kaiware Daikon extract (KDE), containing 10.5% w/w GRH and 3.8% w/w GRE, compared to its isolated components. KDE administered in combination with myrosinase at doses corresponding to 50 microM GRH-ITC plus 15 microM GRE-ITC (50 microM KDE-ITC) to three human cancer cell lines (LoVo, HCT-116 and HT-29) significantly reduced cell growth by 94-96% of control in six days (p < 0.05), outperforming pure GRH-ITC or GRE-ITC at the same dose. On the other hand, the same treatment had no significant toxicity on normal human T-lymphocytes. A 50 microM concentration of KDE-ITC had relevant apoptosis induction in all tested cancer cell lines, as confirmed by annexin V assay (e.g., 33% induction in LoVo compared to control, p < 0.05), Bax protein induction (e.g., +20% in HT-29, p < 0.05), and Bcl2 downregulation (e.g.-20% in HT-29, p < 0.05), and induced caspase-1 and PARP-1 activation in all cancer cells as shown by Western blot analysis. Unlike pure GRH or GRH-ITC, KDE also had significant chain-breaking antioxidant activity, retarding the AAPH-initiated autoxidation of methyl linoleate in SDS micelles at concentrations as low as 4.4 ppm (-50% in oxygen consumption rate), as monitored by Clark-type microelectrode oxygen-uptake kinetics, and induced very fast quenching of DPPH. radical in methanol with t(1/2) (s) = (1.47 +/- 0.25) x 10(-2)/[KDE; (g/L)], measured by stopped-flow UV-vis kinetics at 298 K. The potential chemopreventive role of KDE is discussed.
Collapse
Affiliation(s)
- Jessica Barillari
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Colture Industriali (CRA-CIN), via di Corticella 133, 4129 Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Iori R, Rollin P. To: G. Sivakumar, A. Aliboni, L. Bacchetta (2007). HPLC screening of anti-cancer sulforaphane from important European Brassica species. Food Chemistry, 104 (4), 1761–1764. Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.08.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Dewa Y, Nishimura J, Muguruma M, Jin M, Saegusa Y, Okamura T, Tasaki M, Umemura T, Mitsumori K. β-Naphthoflavone enhances oxidative stress responses and the induction of preneoplastic lesions in a diethylnitrosamine-initiated hepatocarcinogenesis model in partially hepatectomized rats. Toxicology 2008; 244:179-89. [DOI: 10.1016/j.tox.2007.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 02/07/2023]
|
46
|
Mukherjee S, Gangopadhyay H, Das DK. Broccoli: a unique vegetable that protects mammalian hearts through the redox cycling of the thioredoxin superfamily. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:609-617. [PMID: 18163565 DOI: 10.1021/jf0728146] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Epidemiological evidence indicates several health benefits of the consumption of broccoli, especially related to chemoprevention. Because broccoli contains high amounts of selenium and glucosinolates (particularly glucoraphanin and isothiocyanate sulforaphane), which can produce redox-regulated cardioprotective protein thioredoxin (Trx), it was reasoned that consumption of broccoli could be beneficial to the heart. To test this hypothesis, a group of rats were fed broccoli (slurry made with water) through gavaging; control animals were gavaged water only. After 30 days, the rats were sacrificed; isolated hearts perfused via working mode were made ischemic for 30 min followed by 2 h of reperfusion. The results demonstrated significant cardioprotection with broccoli as evidenced by improved postischemic ventricular function, reduced myocardial infarct size, and decreased cardiomyocyte apoptosis accompanied by reduced cytochrome c release and increased pro-caspase 3 activities. Ischemia/reperfusion reduced both RNA transcripts and protein levels of the thioredoxin superfamily including Trx1, Trx2, glutaredoxin Grx1, Grx2, and peroxiredoxin (Prdx), which were either restored or enhanced with broccoli. Broccoli enhanced the expression of Nrf2, a cytosolic suppressor of Keap1, suggesting a role of antioxidant response element (ARE) in the induction of Trx. Additionally, broccoli induced the expression of another cardioprotective protein, heme oxygenase (HO)-1, which could be transactivated during the activation of Trx. Examination of the survival signal revealed that broccoli caused the phosphorylation of Akt and the induction of Bcl2 in concert with the activation of redox-sensitive transcription factor NF kappa B and Src kinase, indicating a role of Akt, Bcl2, and cSrc in the generation of survival signal. Taken together, the results of the present study indicate that the consumption of broccoli triggers cardioprotection by generating a survival signal through the activation of several survival proteins and by redox cycling of thioredoxins.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030-1110, USA
| | | | | |
Collapse
|
47
|
Canistro D, Pozzetti L, Sapone A, Broccoli M, Bonamassa B, Longo V, Lubrano V, Barillari J, Biagi GL, Paolini M. Perturbation of rat hepatic metabolising enzymes by folic acid supplementation. Mutat Res 2008; 637:16-22. [PMID: 17681554 DOI: 10.1016/j.mrfmmm.2007.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/04/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
An adequate folate intake minimizes the risk of various cancers and other disorders such as vascular diseases and neural tube defects. However, meta-analyses revealed difficulties in supporting the relationship between folate intake and the risk of cancer. Interestingly, there have been no reports to date on the potential ability of folate to modulate xenobiotic metabolising enzymes (XMEs), the inhibition of bioactivating Phase-I XMEs and/or induction of detoxifying Phase-II XMEs being one of the most evoked cancer chemopreventive strategies. Here, several CYP-dependent oxidations were studied in liver sub-cellular preparations from Sprague-Dawley rats receiving rodent chow supplemented with folic acid daily, for 1 or 2 consecutive months. Using either specific substrates as probes of different CYP isoforms or the regio- and stereo-selective metabolism of testosterone as a multibiomarker, we found that folic acid markedly inactivated most of the Phase-I XME analysed; up to 54% for the CYP1A1-linked deethylation of ethoxyresorufin in males, and up to 86% for the testosterone 2alpha-hydroxylase (CYP2C11) in females, after 2 months treatment. The Phase-II marker glutathione S-transferase significantly increased (~107%) after 1 month of supplementation in females only. These changes, if reproduced in humans might have public health implications. These data suggest caution in performing folate chemoprevention trials before its overall toxicological characterization has been fully addressed.
Collapse
Affiliation(s)
- D Canistro
- Department of Pharmacology, Molecular Toxicology Unit, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Barillari J, Iori R, Broccoli M, Pozzetti L, Canistro D, Sapone A, Bonamassa B, Biagi GL, Paolini M. Glucoraphasatin and glucoraphenin, a redox pair of glucosinolates of brassicaceae, differently affect metabolizing enzymes in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5505-11. [PMID: 17579433 DOI: 10.1021/jf070558r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Brassica vegetables are an important dietary source of glucosinolates (GLs), whose breakdown products exhibit anticancer activity. The protective properties of Brassicaceae are believed to be due to the inhibition of Phase-I or induction of Phase-II xenobiotic metabolizing enzymes (XMEs), thus enhancing carcinogen clearance. To study whether GLs affect XMEs and the role of their chemical structure, we focused on two alkylthio GLs differing in the oxidation degree of the side chain sulfur. Male Sprague-Dawley rats were supplemented (per oral somministration by gavage) with either glucoraphasatin (4-methylthio-3-butenyl GL; GRH) or glucoraphenin (4-methylsulfinyl-3-butenyl GL; GRE), at 24 or 120 mg/kg body weight in a single or repeated fashion (daily for four consecutive days), and hepatic microsomes were prepared for XME analyses. Both GLs were able to induce XMEs, showing different induction profiles. While the inductive effect was stronger after multiple administration of the higher GRH dosage, the single lower GRE dose was the most effective in boosting cytochrome P-450 (CYP)-associated monooxygenases and the postoxidative metabolism. CYP3A1/2 were the most affected isoforms by GRH treatment, whereas GRE induced mainly CYP1A2 supported oxidase. Glutathione S-transferase increased up to approximately 3.2-fold after a single (lower) GRE dose and UDP-glucuronosyl transferase up to approximately 2-fold after four consecutive (higher) GRH doses. In conclusion, the induction profile of these GLs we found is not in line with the chemopreventive hypothesis. Furthermore, the oxidation degree of the side chain sulfur of GLs seems to exert a crucial role on XME modulation.
Collapse
Affiliation(s)
- Jessica Barillari
- Agricultural Research Council-Research Institute for Industrial Crops, (CRA-ISCI), Via di Corticella 133, 40129 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Van Eylen D, Oey I, Hendrickx M, Van Loey A. Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:2163-70. [PMID: 17305356 DOI: 10.1021/jf062630b] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The Brassicaceae plant family contains high concentrations of glucosinolates, which can be hydrolyzed by myrosinase yielding products having an anticarcinogenic activity. The pressure and temperature stabilities of endogenous broccoli myrosinase, as well as of the synthetic isothiocyanates sulforaphane and phenylethyl isothiocyanate, were studied in broccoli juice on a kinetic basis. At atmospheric pressure, kinetics of thermal (45-60 degrees C) myrosinase inactivation could be described by a consecutive step model. In contrast, only one phase of myrosinase inactivation was observed at elevated pressure (100-600 MPa) combined with temperatures from 10 up to 60 degrees C, indicating inactivation according to first-order kinetics. An antagonistic effect of pressure (up to 200 MPa) on thermal inactivation (50 degrees C and above) of myrosinase was observed indicating that pressure retarded the thermal inactivation. The kinetic parameters of myrosinase inactivation were described as inactivation rate constants (k values), activation energy (Ea values), and activation volume (Va values). On the basis of the kinetic data, a mathematical model describing the pressure and temperature dependence of myrosinase inactivation rate constants was constructed. The stability of isothiocyanates was studied at atmospheric pressure in the temperature range from 60 to 90 degrees C and at elevated pressures in the combined pressure-temperature range from 600 to 800 MPa and from 30 to 60 degrees C. It was found that isothiocyanates were relatively thermolabile and pressure stable. The kinetics of HP/T isothiocyanate degradation could be adequately described by a first-order kinetic model. The obtained kinetic information can be used for process evaluation and optimization to increase the health effect of Brassicaceae.
Collapse
Affiliation(s)
- D Van Eylen
- Faculty of Bioscience Engineering, Department of Microbial and Molecular Systems, Centre for Food and Microbial Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | | | | | | |
Collapse
|
50
|
Bacon JR, Plumb GW, Howie AF, Beckett GJ, Wang W, Bao Y. Dual action of sulforaphane in the regulation of thioredoxin reductase and thioredoxin in human HepG2 and Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:1170-6. [PMID: 17300148 DOI: 10.1021/jf062398+] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We have previously demonstrated that sulforaphane is a potent inducer for thioredoxin reductase in HepG2 and MCF-7 cells (Zhang et al. Carcinogenesis 2003, 24, 497-503; Wang et al. J. Agric. Food Chem. 2005, 53, 1417-1421). In this study, we have shown that sulforaphane is not only an inducer for thioredoxin reductase but also an inducer for its substrate, thioredoxin in HepG2, and undifferentiated Caco-2 cells. Sulforaphane acts at two levels in the regulation of thioredoxin reductase/thioredoxin system by the upregulation of the expression of both the enzyme and the substrate. In human hepatoma HepG2 cells, sulforaphane induced thioredoxin reductase mRNA and protein by 4- and 2-fold, respectively, whereas thioredoxin mRNA was induced 2.9-fold and thioredoxin protein was unchanged in whole cell extracts, but an increase in nuclear accumulation (1.8-fold) was observed. Moreover, the induction of thioredoxin reductase was found faster than that of thioredoxin. The effects of PI3K and MAPK kinase inhibitors, LY294002, PD98059, SP600125, and SB202190, have been investigated on the sulforaphane-induced expression of thioredoxin reductase and thioredoxin. PD98059 abrogates the sulforaphane-induced thioredoxin reductase at both mRNA and protein levels in HepG2 cells, although other inhibitors were found less effective. However, both PD98059 and LY294002 significantly decrease thioredoxin mRNA expression in HepG2 cells. None of the inhibitors tested were able to modulate the level of expression of either thioredoxin reductase mRNA or protein in Caco-2 cells suggesting that there are cell-specific responses to sulforaphane. In summary, the dietary isothiocyanate, sulforaphane, is important in the regulation of thioredoxin reductase/thioredoxin redox system in cells.
Collapse
Affiliation(s)
- James R Bacon
- Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | | | | | | | | | | |
Collapse
|