1
|
Pazzaglia S, Eidemüller M, Lumniczky K, Mancuso M, Ramadan R, Stolarczyk L, Moertl S. Out-of-field effects: lessons learned from partial body exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:485-504. [PMID: 36001144 PMCID: PMC9722818 DOI: 10.1007/s00411-022-00988-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Partial body exposure and inhomogeneous dose delivery are features of the majority of medical and occupational exposure situations. However, mounting evidence indicates that the effects of partial body exposure are not limited to the irradiated area but also have systemic effects that are propagated outside the irradiated field. It was the aim of the "Partial body exposure" session within the MELODI workshop 2020 to discuss recent developments and insights into this field by covering clinical, epidemiological, dosimetric as well as mechanistic aspects. Especially the impact of out-of-field effects on dysfunctions of immune cells, cardiovascular diseases and effects on the brain were debated. The presentations at the workshop acknowledged the relevance of out-of-field effects as components of the cellular and organismal radiation response. Furthermore, their importance for the understanding of radiation-induced pathologies, for the discovery of early disease biomarkers and for the identification of high-risk organs after inhomogeneous exposure was emphasized. With the rapid advancement of clinical treatment modalities, including new dose rates and distributions a better understanding of individual health risk is urgently needed. To achieve this, a deeper mechanistic understanding of out-of-field effects in close connection to improved modelling was suggested as priorities for future research. This will support the amelioration of risk models and the personalization of risk assessments for cancer and non-cancer effects after partial body irradiation.
Collapse
Affiliation(s)
- S. Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - M. Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - K. Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Albert Florian u. 2-6, 1097 Budapest, Hungary
| | - M. Mancuso
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - R. Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - L. Stolarczyk
- Danish Centre for Particle Therapy, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - S. Moertl
- Federal Office for Radiation Protection, Ingolstädter Landstr. 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
2
|
Yu KN. Radiation-Induced Rescue Effect: Insights from Microbeam Experiments. BIOLOGY 2022; 11:1548. [PMID: 36358251 PMCID: PMC9687443 DOI: 10.3390/biology11111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The present paper reviews a non-targeted effect in radiobiology known as the Radiation-Induced Rescue Effect (RIRE) and insights gained from previous microbeam experiments on RIRE. RIRE describes the mitigation of radiobiological effects in targeted irradiated cells after they receive feedback signals from co-cultured non-irradiated bystander cells, or from the medium previously conditioning those co-cultured non-irradiated bystander cells. RIRE has established or has the potential of establishing relationships with other non-traditional new developments in the fields of radiobiology, including Radiation-Induced Bystander Effect (RIBE), Radiation-Induced Field Size Effect (RIFSE) and ultra-high dose rate (FLASH) effect, which are explained. The paper first introduces RIRE, summarizes previous findings, and surveys the mechanisms proposed for observations. Unique opportunities offered by microbeam irradiations for RIRE research and some previous microbeam studies on RIRE are then described. Some thoughts on future priorities and directions of research on RIRE exploiting unique features of microbeam radiations are presented in the last section.
Collapse
Affiliation(s)
- Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Ventura JA, Donoghue JF, Nowell CJ, Cann LM, Day LRJ, Smyth LML, Forrester HB, Rogers PAW, Crosbie JC. The γH2AX DSB marker may not be a suitable biodosimeter to measure the biological MRT valley dose. Int J Radiat Biol 2021; 97:642-656. [PMID: 33617395 DOI: 10.1080/09553002.2021.1893854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE γH2AX biodosimetry has been proposed as an alternative dosimetry method for microbeam radiation therapy (MRT) because conventional dosimeters, such as ionization chambers, lack the spatial resolution required to accurately measure the MRT valley dose. Here we investigated whether γH2AX biodosimetry should be used to measure the biological valley dose of MRT-irradiated mammalian cells. MATERIALS AND METHODS We irradiated human skin fibroblasts and mouse skin flaps with synchrotron MRT and broad beam (BB) radiation. BB doses of 1-5 Gy were used to generate a calibration curve in order to estimate the biological MRT valley dose using the γH2AX assay. RESULTS Our key finding was that MRT induced a non-linear dose response compared to BB, where doses 2-3 times greater showed the same level of DNA DSB damage in the valley in cell and tissue studies. This indicates that γH2AX may not be an appropriate biodosimeter to estimate the biological valley doses of MRT-irradiated samples. We also established foci yields of 5.9 ± 0 . 04 and 27.4 ± 2 . 5 foci/cell/Gy in mouse skin tissue and human fibroblasts respectively, induced by BB. Using Monte Carlo simulations, a linear dose response was seen in cell and tissue studies and produced predicted peak-to-valley dose ratios (PVDRs) of ∼30 and ∼107 for human fibroblasts and mouse skin tissue respectively. CONCLUSIONS Our report highlights novel MRT radiobiology, attempts to explain why γH2AX may not be an appropriate biodosimeter and suggests further studies aimed at revealing the biological and cellular communication mechanisms that drive the normal tissue sparing effect, which is characteristic of MRT.
Collapse
Affiliation(s)
- Jessica A Ventura
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Leonie M Cann
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Liam R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - Lloyd M L Smyth
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Helen B Forrester
- School of Science, RMIT University, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
4
|
The role of connexin proteins and their channels in radiation-induced atherosclerosis. Cell Mol Life Sci 2021; 78:3087-3103. [PMID: 33388835 PMCID: PMC8038956 DOI: 10.1007/s00018-020-03716-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.
Collapse
|
5
|
Du Y, Du S, Liu L, Gan F, Jiang X, Wangrao K, Lyu P, Gong P, Yao Y. Radiation-Induced Bystander Effect can be Transmitted Through Exosomes Using miRNAs as Effector Molecules. Radiat Res 2020; 194:89-100. [PMID: 32343639 DOI: 10.1667/rade-20-00019.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023]
Abstract
The radiation-induced bystander effect (RIBE) is a destructive reaction in nonirradiated cells and is one primary factor in determining the efficacy and success of radiation therapy in the field of cancer treatment. Previously reported studies have shown that the RIBE can be mediated by exosomes that carry miRNA components within. Exosomes, which are one type of cell-derived vesicle, exist in different biological conditions and serve as an important additional pathway for signal exchange between cells. In addition, exosome-derived miRNAs are confirmed to play an important role in RIBE, activating the bystander effect and genomic instability after radiotherapy. After investigating the field of RIBE, it is important to understand the mechanisms and consequences of biological effects as well as the role of exosomes and exosomal miRNAs therein, from different sources and under different circumstances, respectively. More discoveries could help to establish early interventions against RIBE while improving the efficacy of radiotherapy. Meanwhile, measures that would alleviate or even inhibit RIBE to some extent may exist in the near future.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feihong Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaijuan Wangrao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Kwan WS, Nikezic D, Roy VAL, Yu KN. Multiple Stressor Effects of Radon and Phthalates in Children: Background Information and Future Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2898. [PMID: 32331399 PMCID: PMC7215282 DOI: 10.3390/ijerph17082898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
The present paper reviews available background information for studying multiple stressor effects of radon (222Rn) and phthalates in children and provides insights on future directions. In realistic situations, living organisms are collectively subjected to many environmental stressors, with the resultant effects being referred to as multiple stressor effects. Radon is a naturally occurring radioactive gas that can lead to lung cancers. On the other hand, phthalates are semi-volatile organic compounds widely applied as plasticizers to provide flexibility to plastic in consumer products. Links of phthalates to various health effects have been reported, including allergy and asthma. In the present review, the focus on indoor contaminants was due to their higher concentrations and to the higher indoor occupancy factor, while the focus on the pediatric population was due to their inherent sensitivity and their spending more time close to the floor. Two main future directions in studying multiple stressor effects of radon and phthalates in children were proposed. The first one was on computational modeling and micro-dosimetric studies, and the second one was on biological studies. In particular, dose-response relationship and effect-specific models for combined exposures to radon and phthalates would be necessary. The ideas and methodology behind such proposed research work are also applicable to studies on multiple stressor effects of collective exposures to other significant airborne contaminants, and to population groups other than children.
Collapse
Affiliation(s)
- W. S. Kwan
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| | - D. Nikezic
- Department of Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, RS-36300 Novi Pazar, Serbia;
- Faculty of Science, University of Kragujevac, R. Domanovica 12, 34000 Kragujevac, Serbia
| | | | - K. N. Yu
- Department of Physics, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China;
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Ramadan R, Vromans E, Anang DC, Goetschalckx I, Hoorelbeke D, Decrock E, Baatout S, Leybaert L, Aerts A. Connexin43 Hemichannel Targeting With TAT-Gap19 Alleviates Radiation-Induced Endothelial Cell Damage. Front Pharmacol 2020; 11:212. [PMID: 32210810 PMCID: PMC7066501 DOI: 10.3389/fphar.2020.00212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence indicates an excess risk of late occurring cardiovascular diseases, especially atherosclerosis, after thoracic cancer radiotherapy. Ionizing radiation (IR) induces cellular effects which may induce endothelial cell dysfunction, an early marker for atherosclerosis. In addition, intercellular communication through channels composed of transmembrane connexin proteins (Cxs), i.e. Gap junctions (direct cell-cell coupling) and hemichannels (paracrine release/uptake pathway) can modulate radiation-induced responses and therefore the atherosclerotic process. However, the role of endothelial hemichannel in IR-induced atherosclerosis has never been described before. MATERIALS AND METHODS Telomerase-immortalized human Coronary Artery/Microvascular Endothelial cells (TICAE/TIME) were exposed to X-rays (0.1 and 5 Gy). Production of reactive oxygen species (ROS), DNA damage, cell death, inflammatory responses, and senescence were assessed with or without applying a Cx43 hemichannel blocker (TAT-Gap19). RESULTS We report here that IR induces an increase in oxidative stress, cell death, inflammatory responses (IL-8, IL-1β, VCAM-1, MCP-1, and Endothelin-1) and premature cellular senescence in TICAE and TIME cells. These effects are significantly reduced in the presence of the Cx43 hemichannel-targeting peptide TAT-Gap19. CONCLUSION Our findings suggest that endothelial Cx43 hemichannels contribute to various IR-induced processes, such as ROS, cell death, inflammation, and senescence, resulting in an increase in endothelial cell damage, which could be protected by blocking these hemichannels. Thus, targeting Cx43 hemichannels may potentially exert radioprotective effects.
Collapse
Affiliation(s)
- Raghda Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Els Vromans
- Centre for Environmental Health Sciences, Hasselt University, Hasselt, Belgium
| | - Dornatien Chuo Anang
- Biomedical Research Institute and Transnational University of Limburg, Hasselt University, Hasselt, Belgium
| | - Ines Goetschalckx
- Protein Chemistry, Proteomics and Epigenetic Signaling Group, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Hoorelbeke
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Elke Decrock
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Fundamental and Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
8
|
An Integrated Preprocessing Approach for Exploring Single-Cell Gene Expression in Rare Cells. Sci Rep 2019; 9:19758. [PMID: 31875032 PMCID: PMC6930255 DOI: 10.1038/s41598-019-55831-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023] Open
Abstract
Exploring the variability in gene expressions of rare cells at the single-cell level is critical for understanding mechanisms of differentiation in tissue function and development as well as for disease diagnostics and cancer treatment. Such studies, however, have been hindered by major difficulties in tracking the identity of individual cells. We present an approach that combines single-cell picking, lysing, reverse transcription and digital polymerase chain reaction to enable the isolation, tracking and gene expression analysis of rare cells. The approach utilizes a photocleavage bead-based microfluidic device to synthesize and deliver stable cDNA for downstream gene expression analysis, thereby allowing chip-based integration of multiple reactions and facilitating the minimization of sample loss or contamination. The utility of the approach was demonstrated with QuantStudio digital PCR by analyzing the radiation and bystander effect on individual IMR90 human lung fibroblasts. Expression levels of the Cyclin-dependent kinase inhibitor 1a (CDKN1A), Growth/differentiation factor 15 (GDF15), and Prostaglandin-endoperoxide synthase 2 (PTGS2) genes, previously shown to have different responses to direct and bystander irradiation, were measured across individual control, microbeam-irradiated or bystander IMR90 cells. In addition to the confirmation of accurate tracking of cell treatments through the system and efficient analysis of single-cell responses, the results enable comparison of activation levels of different genes and provide insight into signaling pathways within individual cells.
Collapse
|
9
|
Wound fluids collected postoperatively from patients with breast cancer induce epithelial to mesenchymal transition but intraoperative radiotherapy impairs this effect by activating the radiation-induced bystander effect. Sci Rep 2019; 9:7891. [PMID: 31133667 PMCID: PMC6536501 DOI: 10.1038/s41598-019-44412-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Wound fluids (WF) are believed to play a role in the local recurrences by inducing an inflammatory process in scar tissue area. Given that most local relapse in primary breast cancer patients occur within the scar tissue area, researchers have investigated whether localized radiotherapy, such as intraoperative radiotherapy (IORT), could be more effective than postoperative RT in inhibiting local tumor recurrence. The epithelial-mesenchymal transition (EMT) program plays a critical role in promoting metastasis in epithelium-derived carcinoma. Given this background the main aim of the present study was to determine the mechanisms by which IORT decreases the tumorigenic potential of WF. We assumed that postoperative fluids from patients would activate the radiation-induced bystander effect (RIBE) in treated cells, thus altering the tumor microenvironment. To confirm this hypothesis, WF collected from patients after breast conserving surgery (BCS) alone, after BCS followed by IORT treatment or WF from BCS patients together with RIBE medium were incubated with MCF7 and MDA-MB-468 cells. Changes in the CSC phenotype, in EMT program and potential to migrate were performed to determine the possible role of WF on the migration of breast cancer cells. Our findings show that wound fluids stimulate the CSC phenotype and EMT program in breast cancer cell lines. This effect was partially abrogated when the cells were incubated in wound fluids collected from patients after breast-conserving surgery followed by IORT. Additionally, we confirmed the role of radiation-induced bystander effect in altering the properties of the WF to induce the CSC phenotype and EMT program.
Collapse
|
10
|
Targeted and non-targeted effects of ionizing radiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2015.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Yu KN. Radiation-induced rescue effect. JOURNAL OF RADIATION RESEARCH 2019; 60:163-170. [PMID: 30624744 PMCID: PMC6430251 DOI: 10.1093/jrr/rry109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 05/10/2023]
Abstract
Radiation-induced rescue effect (RIRE) refers to the phenomenon in which detrimental effects in targeted irradiated cells are reduced upon receiving feedback signals from partnered non-irradiated bystander cells, or from the medium previously conditioning these partnered non-irradiated bystander cells. For convenience, in the current review we define two types of RIRE: (i) Type 1 RIRE (reduced detrimental effects in targeted cells upon receiving feedback signals from bystander cells) and (ii) Type 2 RIRE (exacerbated detrimental effects in targeted cells upon receiving feedback signals from bystander cells). The two types of RIRE, as well as the associated mechanisms and chemical messengers, have been separately reviewed. The recent report on the potential effects of RIRE on the traditional colony-formation assays has also been reviewed. Finally, future priorities and directions for research into RIRE are discussed.
Collapse
Affiliation(s)
- Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong
- Corresponding author. Tel: +852-344-27812; Fax: +852-344-20538;
| |
Collapse
|
12
|
Reis P, Lourenço J, Carvalho FP, Oliveira J, Malta M, Mendo S, Pereira R. RIBE at an inter-organismic level: A study on genotoxic effects in Daphnia magna exposed to waterborne uranium and a uranium mine effluent. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:206-214. [PMID: 29554637 DOI: 10.1016/j.aquatox.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
The induction of RIBE (Radiation Induced Bystander Effect) is a non-target effect of low radiation doses that has already been verified at an inter-organismic level in fish and small mammals. Although the theoretical impact in the field of environmental risk assessment (ERA) is possible, there is a gap of knowledge regarding this phenomenon in invertebrate groups and following environmentally relevant exposures. To understand if RIBE should be considered for ERA of radionuclide-rich wastewaters, we exposed Daphnia magna (<24 h and 5d old) to a 2% diluted uranium mine effluent for 48 h, and to a matching dose of waterborne uranium (55.3 μg L-1). Then the exposed organisms were placed (24 and 48 h) in a clean medium together with non-exposed neonates. The DNA damage observed for the non-exposed organisms was statistically significant after the 24 h cohabitation for both uranium (neonates p = 0.002; 5 d-old daphnids p = <0.001) and uranium mine effluent exposure (only for neonates p = 0.042). After 48 h cohabitation significant results were obtained only for uranium exposure (neonates p = 0.017; 5 d-old daphnids p = 0.013). Although there may be some variability associated to age and exposure duration, the significant DNA damage detected in non-exposed organisms clearly reveals the occurrence of RIBE in D. magna. The data obtained and here presented are a valuable contribution for the discussion about the relevance of RIBE for environmental risk assessment.
Collapse
Affiliation(s)
- P Reis
- Department of Biology & GreenUPorto, Faculty of Sciences of the University of Porto, Portugal
| | - J Lourenço
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - F P Carvalho
- Instituto Superior Técnico/Laboratório de Proteção e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066, Bobadela LRS, Portugal
| | - J Oliveira
- Instituto Superior Técnico/Laboratório de Proteção e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066, Bobadela LRS, Portugal
| | - M Malta
- Instituto Superior Técnico/Laboratório de Proteção e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066, Bobadela LRS, Portugal
| | - S Mendo
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - R Pereira
- Department of Biology & GreenUPorto, Faculty of Sciences of the University of Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal.
| |
Collapse
|
13
|
Shi J, Mitchison TJ. Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic. Endocr Relat Cancer 2017; 24:T83-T96. [PMID: 28249963 PMCID: PMC5557680 DOI: 10.1530/erc-17-0003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
Anti-mitotic cancer drugs include classic microtubule-targeting drugs, such as taxanes and vinca alkaloids, and the newer spindle-targeting drugs, such as inhibitors of the motor protein; Kinesin-5 (aka KSP, Eg5, KIF11); and Aurora-A, Aurora-B and Polo-like kinases. Microtubule-targeting drugs are among the first line of chemotherapies for a wide spectrum of cancers, but patient responses vary greatly. We still lack understanding of how these drugs achieve a favorable therapeutic index, and why individual patient responses vary. Spindle-targeting drugs have so far shown disappointing results in the clinic, but it is possible that certain patients could benefit if we understand their mechanism of action better. Pre-clinical data from both cell culture and mouse tumor models showed that the cell death response is the most variable point of the drug action. Hence, in this review we focus on current mechanistic understanding of the cell death response to anti-mitotics. We first draw on extensive results from cell culture studies, and then cross-examine them with the more limited data from animal tumor models and the clinic. We end by discussing how cell type variation in cell death response might be harnessed to improve anti-mitotic chemotherapy by better patient stratification, new drug combinations and identification of novel targets for drug development.
Collapse
Affiliation(s)
- Jue Shi
- Department of Physics and Department of BiologyCenter for Quantitative Systems Biology, Hong Kong Baptist University, Hong Kong, China
| | - Timothy J Mitchison
- Department of Systems BiologyHarvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Kong EY, Cheng SH, Yu KN. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation. Int J Mol Sci 2016; 17:ijms17122108. [PMID: 27983682 PMCID: PMC5187908 DOI: 10.3390/ijms17122108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionizing radiations (IRs) is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA) damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review.
Collapse
Affiliation(s)
- Eva Yi Kong
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Kwan Ngok Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Shi X, Seymour C, Mothersill C. The effects of chronic, low doses of Ra-226 on cultured fish and human cells. ENVIRONMENTAL RESEARCH 2016; 148:303-309. [PMID: 27093471 DOI: 10.1016/j.envres.2016.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
PURPOSE To determine the chronic low-dose radiation effects caused by α-particle radiation from (226)Ra over multiple cell generations in CHSE/F fish cells and HaCaT human cells. METHODS CHSE/F cells and HaCaT cells were cultured in medium containing (226)Ra to deliver the chronic low-dose α-particle radiation. Clonogenic assay was used to test the clonogenic survival fractions of cells with or without being exposed to radiation from (226)Ra. RESULTS The chronic low-dose radiation from (226)Ra does have effects on the clonogenic survival of CHSE/F cells and HaCaT cells. When CHSE/F cells were cultured in (226)Ra-medium over 9 passages for about 134 days, the clonogenic surviving fractions for cells irradiated at dose rates ranging from 0.00066 to 0.66mGy/d were significantly lower than that of cells sham irradiated. For HaCaT cells grown in medium containing the same range of (226)Ra activity, the clonogenic surviving fraction decreased at first and reached the lowest value at about 42 days (8 passages). After that, the clonogenic survival began to increase, and was significantly higher than that of control cells by the end of the experimental period. CONCLUSION The chronic, low-dose high LET radiation from (226)Ra can influence the clonogenic survival of irradiated cells. CHSE/F cells were sensitized by the radiation, and HaCaT cells were initially sensitized but later appeared to be adapted. The results could have implications for determining risk from chronic versus acute exposures to radium.
Collapse
Affiliation(s)
- Xiaopei Shi
- Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
17
|
Turchan WT, Shapiro RH, Sevigny GV, Chin-Sinex H, Pruden B, Mendonca MS. Irradiated human endothelial progenitor cells induce bystander killing in human non-small cell lung and pancreatic cancer cells. Int J Radiat Biol 2016; 92:427-33. [PMID: 27258472 DOI: 10.1080/09553002.2016.1186299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose To investigate whether irradiated human endothelial progenitor cells (hEPC) could induce bystander killing in the A549 non-small cell lung cancer (NSCLC) cells and help explain the improved radiation-induced tumor cures observed in A549 tumor xenografts co-injected with hEPC. Materials and methods We investigated whether co-injection of CBM3 hEPC with A549 NSCLC cells would alter tumor xenograft growth rate or tumor cure after a single dose of 0 or 5 Gy of X-rays. We then utilized dual chamber Transwell dishes, to test whether medium from irradiated CBM3 and CBM4 hEPC would induce bystander cell killing in A549 cells, and as an additional control, in human pancreatic cancer MIA PaCa-2 cells. The CBM3 and CBM4 hEPC were plated into the upper Transwell chamber and the A549 or MIA PaCa-2 cells were plated in the lower Transwell chamber. The top inserts with the CBM3 or CBM4 hEPC cells were subsequently removed, irradiated, and then placed back into the Transwell dish for 3 h to allow for diffusion of any potential bystander factors from the irradiated hEPC in the upper chamber through the permeable membrane to the unirradiated cancer cells in the lower chamber. After the 3 h incubation, the cancer cells were re-plated for clonogenic survival. Results We found that co-injection of CBM3 hEPC with A549 NSCLC cells significantly increased the tumor growth rate compared to A549 cells alone, but paradoxically also increased A549 tumor cure after a single dose of 5 Gy of X-rays (p < 0.05). We hypothesized that irradiated hEPC may be inducing bystander killing in the A549 NSCLC cells in tumor xenografts, thus improving tumor cure. Bystander studies clearly showed that exposure to the medium from irradiated CBM3 and CBM4 hEPC induced significant bystander killing and decreased the surviving fraction of A549 and MIA PaCa-2 cells to 0.46 (46%) ± 0.22 and 0.74 ± 0.07 (74%) respectively (p < 0.005, p < 0.0001). In addition, antibody depletion studies demonstrated that the bystander killing induced in both A549 and MIA PaCa-2 cells was mediated by the cytokines TNF-α and TGF-β (p < 0.05). Conclusions These data provide evidence that irradiated hEPC can induce strong bystander killing in A549 and MIA PaCa-2 human cancer cells and that this bystander killing is mediated by the cytokines TNF-α and TGF-β.
Collapse
Affiliation(s)
- William T Turchan
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Ronald H Shapiro
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Garrett V Sevigny
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Helen Chin-Sinex
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Benjamin Pruden
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA
| | - Marc S Mendonca
- a Department of Radiation Oncology, Radiation and Cancer Biology Laboratory , Indianapolis , IN 46202 , USA ;,b Department of Medical and Molecular Genetics , Indiana University School of Medicine , Indianapolis , IN 46202 , USA
| |
Collapse
|
18
|
Nikitaki Z, Mavragani IV, Laskaratou DA, Gika V, Moskvin VP, Theofilatos K, Vougas K, Stewart RD, Georgakilas AG. Systemic mechanisms and effects of ionizing radiation: A new 'old' paradigm of how the bystanders and distant can become the players. Semin Cancer Biol 2016; 37-38:77-95. [PMID: 26873647 DOI: 10.1016/j.semcancer.2016.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 12/26/2022]
Abstract
Exposure of cells to any form of ionizing radiation (IR) is expected to induce a variety of DNA lesions, including double strand breaks (DSBs), single strand breaks (SSBs) and oxidized bases, as well as loss of bases, i.e., abasic sites. The damaging potential of IR is primarily related to the generation of electrons, which through their interaction with water produce free radicals. In their turn, free radicals attack DNA, proteins and lipids. Damage is induced also through direct deposition of energy. These types of IR interactions with biological materials are collectively called 'targeted effects', since they refer only to the irradiated cells. Earlier and sometimes 'anecdotal' findings were pointing to the possibility of IR actions unrelated to the irradiated cells or area, i.e., a type of systemic response with unknown mechanistic basis. Over the last years, significant experimental evidence has accumulated, showing a variety of radiation effects for 'out-of-field' areas (non-targeted effects-NTE). The NTE involve the release of chemical and biological mediators from the 'in-field' area and thus the communication of the radiation insult via the so called 'danger' signals. The NTE can be separated in two major groups: bystander and distant (systemic). In this review, we have collected a detailed list of proteins implicated in either bystander or systemic effects, including the clinically relevant abscopal phenomenon, using improved text-mining and bioinformatics tools from the literature. We have identified which of these genes belong to the DNA damage response and repair pathway (DDR/R) and made protein-protein interaction (PPi) networks. Our analysis supports that the apoptosis, TLR-like and NOD-like receptor signaling pathways are the main pathways participating in NTE. Based on this analysis, we formulate a biophysical hypothesis for the regulation of NTE, based on DNA damage and apoptosis gradients between the irradiation point and various distances corresponding to bystander (5mm) or distant effects (5cm). Last but not least, in order to provide a more realistic support for our model, we calculate the expected DSB and non-DSB clusters along the central axis of a representative 200.6MeV pencil beam calculated using Monte Carlo DNA damage simulation software (MCDS) based on the actual beam energy-to-depth curves used in therapy.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Ifigeneia V Mavragani
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Danae A Laskaratou
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Violeta Gika
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vadim P Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Konstantinos Vougas
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, USA
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece.
| |
Collapse
|
19
|
Mavragani IV, Laskaratou DA, Frey B, Candéias SM, Gaipl US, Lumniczky K, Georgakilas AG. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res (Camb) 2016; 5:12-33. [PMID: 30090323 PMCID: PMC6061884 DOI: 10.1039/c5tx00222b] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
Organisms respond to physical, chemical and biological threats by a potent inflammatory response, aimed at preserving tissue integrity and restoring tissue homeostasis and function. Systemic effects in an organism refer to an effect or phenomenon which originates at a specific point and can spread throughout the body affecting a group of organs or tissues. Ionizing radiation (IR)-induced systemic effects arise usually from a local exposure of an organ or part of the body. This stress induces a variety of responses in the irradiated cells/tissues, initiated by the DNA damage response and DNA repair (DDR/R), apoptosis or immune response, including inflammation. Activation of this IR-response (IRR) system, especially at the organism level, consists of several subsystems and exerts a variety of targeted and non-targeted effects. Based on the above, we believe that in order to understand this complex response system better one should follow a 'holistic' approach including all possible mechanisms and at all organization levels. In this review, we describe the current status of knowledge on the topic, as well as the key molecules and main mechanisms involved in the 'spreading' of the message throughout the body or cells. Last but not least, we discuss the danger-signal mediated systemic immune effects of radiotherapy for the clinical setup.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Danae A Laskaratou
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Benjamin Frey
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Serge M Candéias
- iRTSV-LCBM , CEA , Grenoble F-38000 , France
- IRTSV-LCBM , CNRS , Grenoble F-38000 , France
- iRTSV-LCBM , Univ. Grenoble Alpes , Grenoble F-38000 , France
| | - Udo S Gaipl
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Katalin Lumniczky
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Alexandros G Georgakilas
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| |
Collapse
|
20
|
|
21
|
Rithidech KN, Honikel LM, Reungpathanaphong P, Tungjai M, Jangiam W, Whorton EB. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ((28)Si) ions. Mutat Res 2015; 781:22-31. [PMID: 26398320 DOI: 10.1016/j.mrfmmm.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/18/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to (28)Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n (28)Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p<0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n (28)Si ions. Slight increases in the levels of 5 mC were observed in all treatment groups, as compared to the sham-control level. In contrast, there was a significant reduction in levels of 5 hmC (ANOVA, p<0.01). Since these endpoints were evaluated in the same mouse, our data suggested for the first time a link between a reduction in 5 hmC and genomic instability in HSPC-derived myeloid colonies of CBA/CaJ mice exposed to 300 MeV/n (28)Si ions.
Collapse
Affiliation(s)
| | - Louise M Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - Paiboon Reungpathanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Chatuchuck, Bangkok 10900, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691, USA; Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| | | |
Collapse
|
22
|
Lam RKK, Fung YK, Han W, Li L, Chiu SK, Cheng SH, Yu KN. Modulation of NF-κB in rescued irradiated cells. RADIATION PROTECTION DOSIMETRY 2015; 167:37-43. [PMID: 25911412 DOI: 10.1093/rpd/ncv217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studies by different groups on the rescue effect, where unirradiated bystander cells mitigated the damages in the irradiated cells, since its discovery by the authors' group in 2011 were first reviewed. The properties of the rescue effect were then examined using a novel experimental set-up to physically separate the rescue signals from the bystander signals. The authors' results showed that the rescue effect was mediated through activation of the nuclear factor-κB (NF-κB) response pathway in the irradiated cells, and that the NF-κB activation inhibitor BAY-11-7082 did not affect the activation of this response pathway in the irradiated cells induced by direct irradiation.
Collapse
Affiliation(s)
- R K K Lam
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - Y K Fung
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - W Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - L Li
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - S K Chiu
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - S H Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| |
Collapse
|
23
|
Lam RKK, Han W, Yu KN. Unirradiated cells rescue cells exposed to ionizing radiation: Activation of NF-κB pathway in irradiated cells. Mutat Res 2015; 782:23-33. [PMID: 26524645 DOI: 10.1016/j.mrfmmm.2015.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 12/29/2022]
Abstract
We studied the involvement of NF-κB pathway activation in the rescue effect in HeLa and NIH/3T3 cells irradiated by α particles. Firstly, upon irradiation by 5 cGy of α particles, for both cell lines, the numbers of 53BP1 foci/cell at 12 h post-irradiation were significantly smaller when only 2.5% of the cell population was irradiated as compared to 100% irradiation, which demonstrated the rescue effect. Secondly, we studied the effect of NF-κB on the rescue effect through the use of the NF-κB activation inhibitor BAY-11-7082. Novel experimental setup and procedures were designed to prepare the medium (CM) which had conditioned the bystander cells previously partnered with irradiated cells, to ensure physical separation between rescue and bystander signals. BAY-11-7082 itself did not inflict DNA damages in the cells or have effects on activation of the NF-κB response pathway in the irradiated cells through direct irradiation. The rescue effect was induced in both cell lines by the CM, which was abrogated if BAY-11-7082 was added to the CM. Thirdly, we studied the effect of NF-κB on the rescue effect through staining for phosphorylated NF-κB (p-NF-κB) expression using the anti-NF-κB p65 (phospho S536) antibody. When the fraction of irradiated cells dropped from 100% to 2.5%, the p-NF-κB expression in the cell nuclei of irradiated NIH/3T3 cells increased significantly, while that in the cell nuclei of irradiated HeLa cells also increased although not significantly. Moreover, the p-NF-κB expression in the cell nuclei of irradiated HeLa cells and NIH/3T3 cells treated with CM also increased significantly.
Collapse
Affiliation(s)
- R K K Lam
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - Wei Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
24
|
Matsumoto Y, Hamada N, Aoki-Nakano M, Funayama T, Sakashita T, Wada S, Kakizaki T, Kobayashi Y, Furusawa Y. Dependence of the bystander effect for micronucleus formation on dose of heavy-ion radiation in normal human fibroblasts. RADIATION PROTECTION DOSIMETRY 2015; 166:152-156. [PMID: 26242975 DOI: 10.1093/rpd/ncv177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ionising radiation-induced bystander effects are well recognised, but its dependence on dose or linear energy transfer (LET) is still a matter of debate. To test this, 49 sites in confluent cultures of AG01522D normal human fibroblasts were targeted with microbeams of carbon (103 keV µm(-1)), neon (375 keV µm(-1)) and argon ions (1260 keV µm(-1)) and evaluated for the bystander-induced formation of micronucleus that is a kind of a chromosome aberration. Targeted exposure to neon and argon ions significantly increased the micronucleus frequency in bystander cells to the similar extent irrespective of the particle numbers per site of 1-6. In contrast, the bystander micronucleus frequency increased with increasing the number of carbon-ion particles in a range between 1 and 3 particles per site and was similar in a range between 3 and 8 particles per site. These results suggest that the bystander effect of heavy ions for micronucleus formation depends on dose.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan Present Address: Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8576, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Mizuho Aoki-Nakano
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tetsuya Sakashita
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Seiichi Wada
- Department of Veterinary Medicine, Kitasato University Graduate School of Veterinary Medicine and Animal Sciences, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Takehiko Kakizaki
- Department of Veterinary Medicine, Kitasato University Graduate School of Veterinary Medicine and Animal Sciences, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
25
|
Chaudhary P, Marshall TI, Currell FJ, Kacperek A, Schettino G, Prise KM. Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams. Int J Radiat Oncol Biol Phys 2015; 95:86-94. [PMID: 26452569 PMCID: PMC4840231 DOI: 10.1016/j.ijrobp.2015.07.2279] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 12/25/2022]
Abstract
Purpose To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams. Methods and Materials Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, and distal positions of SOBP and the entrance and peak position for the pristine beam. Results A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci. Conclusions The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Thomas I Marshall
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Frederick J Currell
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast, United Kingdom
| | - Andrzej Kacperek
- Douglas Cyclotron, Clatterbridge Cancer Centre, Bebbington, Wirral, United Kingdom
| | | | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
26
|
Kong EY, Choi VWY, Cheng SH, Yu KN. Some properties of the signals involved in unirradiated zebrafish embryos rescuing α-particle irradiated zebrafish embryos. Int J Radiat Biol 2015; 90:1133-42. [PMID: 24913297 DOI: 10.3109/09553002.2014.932031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The in vivo radiation-induced bystander effect (RIBE) and radiation-induced rescue effect (RIRE) induced between embryos of the zebrafish (Danio rerio) by alpha-particle irradiation were studied through the number of apoptotic signals revealed at 24 h post fertilization (hpf) through vital dye acridine orange staining. MATERIALS AND METHODS RIBE and RIRE were verified through the significant increase and decrease in apoptotic signals in the partnered bystander and irradiated embryos, respectively. RESULTS The medium transfer experiment where irradiated zebrafish embryos were rescued through immersion in the medium previously conditioned by a larger number of irradiated zebrafish embryos showed (a) the involvement of a released stress signal in the induction of RIRE, and (b) RIBE and RIRE signals had the same function. With the help of 500 μM of the specific nitric oxide (NO) scavenger cPTIO (2-(4carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), NO was confirmed as an essential signaling molecule for inducing both the RIBE and RIRE. On the other hand, the treatment with 20 μM of the carbon monoxide (CO) releasing chemical CORM-3 (tricarbonylchloro(glycinato)ruthenium (II)) suppressed the manifestations of RIBE but did not suppress RIRE. CONCLUSIONS In conclusion, unirradiated zebrafish embryos need NO but not NO-induced damages to rescue α-particle irradiated zebrafish embryos.
Collapse
Affiliation(s)
- E Y Kong
- Department of Physics and Materials Science, City University of Hong Kong
| | | | | | | |
Collapse
|
27
|
Lam RKK, Fung YK, Han W, Yu KN. Rescue effects: irradiated cells helped by unirradiated bystander cells. Int J Mol Sci 2015; 16:2591-609. [PMID: 25625514 PMCID: PMC4346853 DOI: 10.3390/ijms16022591] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/16/2014] [Accepted: 01/13/2015] [Indexed: 12/28/2022] Open
Abstract
The rescue effect describes the phenomenon where irradiated cells or organisms derive benefits from the feedback signals sent from the bystander unirradiated cells or organisms. An example of the benefit is the mitigation of radiation-induced DNA damages in the irradiated cells. The rescue effect can compromise the efficacy of radioimmunotherapy (RIT) (and actually all radiotherapy). In this paper, the discovery and subsequent confirmation studies on the rescue effect were reviewed. The mechanisms and the chemical messengers responsible for the rescue effect studied to date were summarized. The rescue effect between irradiated and bystander unirradiated zebrafish embryos in vivo sharing the same medium was also described. In the discussion section, the mechanism proposed for the rescue effect involving activation of the nuclear factor κB (NF-κB) pathway was scrutinized. This mechanism could explain the promotion of cellular survival and correct repair of DNA damage, dependence on cyclic adenosine monophosphate (cAMP) and modulation of intracellular reactive oxygen species (ROS) level in irradiated cells. Exploitation of the NF-κB pathway to improve the effectiveness of RIT was proposed. Finally, the possibility of using zebrafish embryos as the model to study the efficacy of RIT in treating solid tumors was also discussed.
Collapse
Affiliation(s)
- R K K Lam
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| | - Y K Fung
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| | - W Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
28
|
Sun R, Sbai A, Ganem G, Boudabous M, Collin F, Marcy PY, Doglio A, Thariat J. [Non-targeted effects (bystander, abscopal) of external beam radiation therapy: an overview for the clinician]. Cancer Radiother 2014; 18:770-8. [PMID: 25451674 DOI: 10.1016/j.canrad.2014.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/21/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022]
Abstract
Radiotherapy is advocated in the treatment of cancer of over 50 % of patients. It has long been considered as a focal treatment only. However, the observation of effects, such as fatigue and lymphopenia, suggests that systemic effects may also occur. The description of bystander and abscopal effects suggests that irradiated cells may exert an action on nearby or distant unirradiated cells, respectively. A third type of effect that involves feedback interactions between irradiated cells was more recently described (cohort effect). This new field of radiation therapy is yet poorly understood and the definitions suffer from a lack of reproducibility in part due to the variety of experimental models. The bystander effect might induce genomic instability in non-irradiated cells and is thus extensively studied for a potential risk of radiation-induced cancer. From a therapeutic perspective, reproducing an abscopal effect by using a synergy between ionizing radiation and immunomodulatory agents to elicit or boost anticancer immune responses is an interesting area of research. Many applications are being developed in particular in the field of hypofractionated stereotactic irradiation of metastatic disease.
Collapse
Affiliation(s)
- R Sun
- Département de radiothérapie, hôpital de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - A Sbai
- Centre régional d'oncologie Hassan-II, BP 2013, Oued Nachef, Oujda, Maroc
| | - G Ganem
- Centre Jean-Bernard, clinique Victor-Hugo, 9, rue Beauverger, 72000 Le Mans, France
| | - M Boudabous
- Université Nice-Sophia Antipolis, 33, avenue Valombrose, 06189 Nice, France
| | - F Collin
- UMR 152 Pharma-Dev, université Toulouse-3, 31062 Toulouse cedex 09, France; UMR 152 Pharma-Dev, institut de recherche pour le développement (IRD), 31062 Toulouse cedex 09, France
| | - P-Y Marcy
- Département de radiologie, centre Antoine-Lacassagne, 33, avenue Valombrose, 06189 Nice, France
| | - A Doglio
- Unité de thérapie cellulaire et génique, faculté de médecine, université Nice-Sophia Antipolis, 33, avenue Valombrose, 06189 Nice, France
| | - J Thariat
- Université Nice-Sophia Antipolis, 33, avenue Valombrose, 06189 Nice, France; Département de radiothérapie, centre Antoine-Lacassagne, 227, avenue de la Lanterne, 06200 Nice, France.
| |
Collapse
|
29
|
Marín A, Martín M, Liñán O, Alvarenga F, López M, Fernández L, Büchser D, Cerezo L. Bystander effects and radiotherapy. Rep Pract Oncol Radiother 2014; 20:12-21. [PMID: 25535579 DOI: 10.1016/j.rpor.2014.08.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/16/2014] [Accepted: 08/06/2014] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.
Collapse
Affiliation(s)
- Alicia Marín
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Margarita Martín
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Olga Liñán
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Felipe Alvarenga
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Mario López
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Laura Fernández
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - David Büchser
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| | - Laura Cerezo
- Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
30
|
Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant Tempol. Cancer Lett 2014; 353:248-57. [PMID: 25069035 DOI: 10.1016/j.canlet.2014.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/18/2022]
Abstract
Recently we found that mice bearing subcutaneous non-metastatic tumors exhibited elevated levels of two types of complex DNA damage, i.e., double-strand breaks and oxidatively-induced clustered DNA lesions in various tissues throughout the body, both adjacent to and distant from the tumor site. This DNA damage was dependent on CCL2, a cytokine involved in the recruitment and activation of macrophages, suggesting that this systemic DNA damage was mediated via tumor-induced chronic inflammatory responses involving cytokines, activation of macrophages, and consequent free radical production. If free radicals are involved, then a diet containing an antioxidant may decrease the distant DNA damage. Here we repeated our standard protocol in cohorts of two syngeneic tumor-bearing C57BL/6NCr mice that were on a Tempol-supplemented diet. We show that double-strand break and oxidatively-induced clustered DNA lesion levels were considerably decreased, about two- to three fold, in the majority of tissues studied from the tumor-bearing mice fed the antioxidant Tempol compared to the control tumor-bearing mice. Similar results were also observed in nude mice suggesting that the Tempol effects are independent of functioning adaptive immunity. This is the first in vivo study demonstrating the effect of a dietary antioxidant on abscopal DNA damage in tissues distant from a localized source of genotoxic stress. These findings may be important for understanding the mechanisms of genomic instability and carcinogenesis caused by chronic stress-induced systemic DNA damage and for developing preventative strategies.
Collapse
|
31
|
Guo S, Zhou J, Chen X, Yu Y, Ren M, Hu G, Liu Y, Zou F. Bystander effects of PC12 cells treated with Pb²⁺ depend on ROS-mitochondria-dependent apoptotic signaling via gap-junctional intercellular communication. Toxicol Lett 2014; 229:150-7. [PMID: 24960054 DOI: 10.1016/j.toxlet.2014.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 12/07/2022]
Abstract
The demonstration of bystander effect, which means injured cells propagate damage to neighboring cells, in whole organisms has clear implication of the potential relevance of the non-targeted response to human health. Here we show that 10 μM lead acetate, the optimum concentration for inducing apoptosis confirmed by the expression levels of Bax and Bcl-2, can also induce rat pheochromocytoma (PC12) cells to exert bystander effects to neighboring cells. In a novel co-culture system, GFP-PC12 (Pb(2+)) cells, which were stable transfected with EF1A-eGFP and pre-exposed with lead acetate, were co-cultured with unexposed PC12 cells at a 1:5 ratio. Parachute assays demonstrated the functional gap-junctional intercellular communication (GJIC) formed between Pb(2+)-exposed and unexposed cells. The Pb(2+)-exposed cells induced very similar effects on neighboring unexposed cells to apoptosis coincide with intracellular ROS generation and the collapse of mitochondrial membrane potential (Δψm). Furthermore, carbenoxolone (CBX), a blocker of GJIC, inhibited the bystander effects. The results indicate that the Pb(2+)-induced insults propagate through GJIC between PC12 cells, while inducing the bystander cells to apoptosis via ROS-mitochondria-dependent apoptotic signaling.
Collapse
Affiliation(s)
- Shu Guo
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, No. 1838, North Guangzhou Road, Guangzhou 510515, PR China; Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, No. 7 Yuancunxi Street, Guangzhou 510655, PR China
| | - Jin Zhou
- Department of Ophthalmology, Guangzhou Women and Children's Medical Center, No. 9 Jinsui Street, Tianhe District, Guangzhou 510623, PR China
| | - Xuemei Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, No. 1838, North Guangzhou Road, Guangzhou 510515, PR China
| | - Yunjiang Yu
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, No. 7 Yuancunxi Street, Guangzhou 510655, PR China
| | - Mingzhong Ren
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, No. 7 Yuancunxi Street, Guangzhou 510655, PR China
| | - Guocheng Hu
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, No. 7 Yuancunxi Street, Guangzhou 510655, PR China
| | - Yun Liu
- Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection, No. 7 Yuancunxi Street, Guangzhou 510655, PR China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, No. 1838, North Guangzhou Road, Guangzhou 510515, PR China.
| |
Collapse
|
32
|
Sasi SP, Song J, Park D, Enderling H, McDonald JT, Gee H, Garrity B, Shtifman A, Yan X, Walsh K, Natarajan M, Kishore R, Goukassian DA. TNF-TNFR2/p75 signaling inhibits early and increases delayed nontargeted effects in bone marrow-derived endothelial progenitor cells. J Biol Chem 2014; 289:14178-93. [PMID: 24711449 DOI: 10.1074/jbc.m114.567743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1-5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3-5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general.
Collapse
Affiliation(s)
- Sharath P Sasi
- From the Cardiovascular Research Center, Steward Research and Specialty Projects Corporation, Brighton, Massachusetts 02135
| | - Jin Song
- From the Cardiovascular Research Center, Steward Research and Specialty Projects Corporation, Brighton, Massachusetts 02135
| | - Daniel Park
- From the Cardiovascular Research Center, Steward Research and Specialty Projects Corporation, Brighton, Massachusetts 02135
| | - Heiko Enderling
- the Center of Cancer Systems Biology, GeneSys Research Institute, Boston, Massachusetts 02135, Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - J Tyson McDonald
- the Center of Cancer Systems Biology, GeneSys Research Institute, Boston, Massachusetts 02135, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Hannah Gee
- From the Cardiovascular Research Center, Steward Research and Specialty Projects Corporation, Brighton, Massachusetts 02135
| | - Brittany Garrity
- From the Cardiovascular Research Center, Steward Research and Specialty Projects Corporation, Brighton, Massachusetts 02135
| | - Alexander Shtifman
- From the Cardiovascular Research Center, Steward Research and Specialty Projects Corporation, Brighton, Massachusetts 02135, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Xinhua Yan
- From the Cardiovascular Research Center, Steward Research and Specialty Projects Corporation, Brighton, Massachusetts 02135, the Center of Cancer Systems Biology, GeneSys Research Institute, Boston, Massachusetts 02135, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Kenneth Walsh
- the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mohan Natarajan
- the University of Texas Health Science Center, San Antonio, Texas 78229, and
| | - Raj Kishore
- the Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois 60611
| | - David A Goukassian
- From the Cardiovascular Research Center, Steward Research and Specialty Projects Corporation, Brighton, Massachusetts 02135, Tufts University School of Medicine, Boston, Massachusetts 02111, the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
33
|
Mukherjee D, Coates PJ, Lorimore SA, Wright EG. Responses to ionizing radiation mediated by inflammatory mechanisms. J Pathol 2014; 232:289-99. [PMID: 24254983 DOI: 10.1002/path.4299] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/20/2023]
Abstract
Since the early years of the twentieth century, the biological consequences of exposure to ionizing radiation have been attributed solely to mutational DNA damage or cell death induced in irradiated cells at the time of exposure. However, numerous observations have been at variance with this dogma. In the 1950s, attention was drawn to abscopal effects in areas of the body not directly irradiated. In the 1960s reports began appearing that plasma factors induced by irradiation could affect unirradiated cells, and since 1990 a growing literature has documented an increased rate of DNA damage in the progeny of irradiated cells many cell generations after the initial exposure (radiation-induced genomic instability) and responses in non-irradiated cells neighbouring irradiated cells (radiation-induced bystander effects). All these studies have in common the induction of effects not in directly irradiated cells but in unirradiated cells as a consequence of intercellular signalling. Recently, it has become clear that all the various effects demonstrated in vivo may reflect an ongoing inflammatory response to the initial radiation-induced injury that, in a genotype-dependent manner, has the potential to contribute primary and/or ongoing damage displaced in time and/or space from the initial insult. Importantly, there is direct evidence that non-steroidal anti-inflammatory drug treatment reduces such damage in vivo. These new findings highlight the importance of tissue responses and indicate additional mechanisms of radiation action, including the likelihood that radiation effects are not restricted to the initiation stage of neoplastic diseases, but may also contribute to tumour promotion and progression. The various developments in understanding the responses to radiation exposures have implications not only for radiation pathology but also for therapeutic interventions.
Collapse
Affiliation(s)
- Debayan Mukherjee
- Centre for Oncology and Molecular Medicine, University of Dundee Medical School, Dundee, DD1 9SY, UK
| | | | | | | |
Collapse
|
34
|
Jella KK, Rani S, O'Driscoll L, McClean B, Byrne HJ, Lyng FM. Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells. Radiat Res 2014; 181:138-45. [PMID: 24502353 DOI: 10.1667/rr13337.1] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is much evidence supporting the existence of bystander effects in cells that were never exposed to radiation. Directly irradiated cells and bystander cells can communicate with each other using gap junctional intercellular communication or by releasing soluble factors into the surrounding medium. Exosomes and microvesicles are also known to mediate communication between cells. The main aim of this study is to establish whether exosomes and microvesicles are involved in radiation induced bystander signaling. Human keratinocytes, HaCaT cells, were irradiated (0.005, 0.05 and 0.5 Gy) using γ rays produced from a cobalt 60 teletherapy unit. After irradiation, the cells were incubated for 1 h and the irradiated cell conditioned medium (ICCM) was harvested. Exosomes were isolated from the ICCM using ultracentrifugation. Exosomes were characterized using light scattering analysis (LSA) and scanning transmission electron microscopy (STEM). Cytotoxicity and reactive oxygen species assays and real time calcium imaging were performed either with ICCM from which exosomes and microvesicles were removed or with the exosome fraction resuspended in cell culture media. The characterization data showed a particle size distribution indicative of both exosomes (30-100 nm) and microvesicles (>100 nm) and the light scattering analysis showed increased concentration of both exosomes and microvesicles with increasing dose. Western blotting confirmed the presence of an exosomal protein marker, TSG 101. Treatment of unirradiated cells with ICCM in which exosomes and microvesicles were removed resulted in abrogation of ICCM induced effects such as reduction in viability, calcium influx and production of reactive oxygen species. Addition of exosomes to fresh media produced similar effects to complete ICCM. These results suggest a role for exosomes and microvesicles in radiation induced bystander signaling.
Collapse
Affiliation(s)
- K Kumar Jella
- a DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Dublin 8, Ireland
| | | | | | | | | | | |
Collapse
|
35
|
Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer Lett 2013; 356:34-42. [PMID: 24333869 DOI: 10.1016/j.canlet.2013.11.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 11/22/2022]
Abstract
Radiation-induced bystander effects (RIBE), demonstrate the induction of biological non-targeted effects in cells which have not directly hit by radiation or by free radicals produced by ionization events. Although RIBE have been demonstrated using a variety of biological endpoints the mechanism(s) of this phenomenon still remain unclear. The controversial results of the in vitro RIBE and the evidence of non-targeted effects in various in vivo systems are discussed. The experimental evidence on RIBE, indicate that a more analytical and mechanistic in depth approach is needed to secure an answer to one of the most intriguing questions in radiobiology.
Collapse
|
36
|
Brooks AL. Thirty-sixth Lauriston S. Taylor Lecture on radiation protection and measurements--from the field to the laboratory and back: the what ifs, wows, and who cares of radiation biology. HEALTH PHYSICS 2013; 105:407-421. [PMID: 24077038 DOI: 10.1097/hp.0b013e31829dc2ac] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
My scientific journey started at the University of Utah chasing fallout. It was on everything, in everything, and was distributed throughout the ecosystem. This resulted in radiation doses to humans and caused me great concern. From this concern I asked the question, "Are there health effects from these radiation doses and levels of radioactive contamination?" I have invested my scientific career trying to address this basic question. While conducting research, I got acquainted with many of the What ifs of radiation biology. The major What if in my research was, "What if we have underestimated the radiation risk for internally-deposited radioactive material?" While conducting research to address this important question, many other What ifs came up related to dose, dose rate, and dose distribution. I also encountered a large number of Wows. One of the first was when I went from conducting environmental fallout studies to research in a controlled laboratory. The activity in fallout was expressed as pCi L⁻¹, whereas it was necessary to inject laboratory animals with μCi g⁻¹ body weight to induce measurable biological changes, chromosome aberrations, and cancer. Wow! That is seven to nine orders of magnitude above the activity levels found in the environment. Other Wows have made it necessary for the field of radiation biology to make important paradigm shifts. For example, one shift involved changing from "hit theory" to total tissue responses as the result of bystander effects. Finally, Who cares? While working at U.S. Department of Energy headquarters and serving on many scientific committees, I found that science does not drive regulatory and funding decisions. Public perception and politics seem to be major driving forces. If scientific data suggested that risk had been underestimated, everyone cared. When science suggested that risk had been overestimated, no one cared. This result-dependent Who cares? was demonstrated as we tried to generate interactions by holding meetings with individuals involved in basic low-dose research, regulators, and the news media. As the scientists presented their "exciting data" that suggested that risk was overestimated, many of the regulators simply said, "We cannot use such data." The newspaper people said, "It is not possible to get such information by my editors." In spite of these difficulties, research results from basic science must be made available and considered by members of the public as well as by those that make regulatory recommendations. Public outreach of the data is critical and must continue to be a future focus to address properly the question of, "Who cares?" My journey in science, like many of yours, has been a mixture of chasing money, beatings, and the joys of unique and interesting research results. Perhaps through our experiences, we can improve research environments, funding, and use of the valuable information that is generated. Scientists that study at all levels of biological organization, from the environment to the laboratory and human epidemiology, must share expertise and data to address the What Ifs, Wows, and Who Cares of radiation biology.
Collapse
|
37
|
Choi VWY, Yu KN. Embryos of the zebrafish Danio rerio in studies of non-targeted effects of ionizing radiation. Cancer Lett 2013; 356:91-104. [PMID: 24176822 DOI: 10.1016/j.canlet.2013.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 01/17/2023]
Abstract
The use of embryos of the zebrafish Danio rerio as an in vivo tumor model for studying non-targeted effects of ionizing radiation was reviewed. The zebrafish embryo is an animal model, which enables convenient studies on non-targeted effects of both high-linear-energy-transfer (LET) and low-LET radiation by making use of both broad-beam and microbeam radiation. Zebrafish is also a convenient embryo model for studying radiobiological effects of ionizing radiation on tumors. The embryonic origin of tumors has been gaining ground in the past decades, and efforts to fight cancer from the perspective of developmental biology are underway. Evidence for the involvement of radiation-induced genomic instability (RIGI) and the radiation-induced bystander effect (RIBE) in zebrafish embryos were subsequently given. The results of RIGI were obtained for the irradiation of all two-cell stage cells, as well as 1.5 hpf zebrafish embryos by microbeam protons and broad-beam alpha particles, respectively. In contrast, the RIBE was observed through the radioadaptive response (RAR), which was developed against a subsequent challenging dose that was applied at 10 hpf when <0.2% and <0.3% of the cells of 5 hpf zebrafish embryos were exposed to a priming dose, which was provided by microbeam protons and broad-beam alpha particles, respectively. Finally, a perspective on the field, the need for future studies and the significance of such studies were discussed.
Collapse
Affiliation(s)
- V W Y Choi
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
38
|
Radiation-induced bystander effect: early process and rapid assessment. Cancer Lett 2013; 356:137-44. [PMID: 24139967 DOI: 10.1016/j.canlet.2013.09.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/09/2013] [Accepted: 09/26/2013] [Indexed: 11/21/2022]
Abstract
Radiation-induced bystander effect (RIBE) is a biological process that has received attention over the past two decades. RIBE refers to a plethora of biological effects in non-irradiated cells, including induction of genetic damages, gene expression, cell transformation, proliferation and cell death, which are initiated by receiving bystander signals released from irradiated cells. RIBE brings potential hazards to normal tissues in radiotherapy, and imparts a higher risk from low-dose radiation than we previously thought. Detection with proteins related to DNA damage and repair, cell cycle control, proliferation, etc. have enabled rapid assessment of RIBE in a number of research systems such as cultured cells, three-dimensional tissue models and animal models. Accumulated experimental data have suggested that RIBE may be initiated rapidly within a time frame as short as several minutes after radiation. These have led to the requirement of techniques capable of rapidly assessing RIBE itself as well as assessing the early processes involved.
Collapse
|
39
|
Kim JK, Jackson TL. Mechanisms that enhance sustainability of p53 pulses. PLoS One 2013; 8:e65242. [PMID: 23755198 PMCID: PMC3670918 DOI: 10.1371/journal.pone.0065242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/26/2013] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 protein shows various dynamic responses depending on the types and extent of cellular stresses. In particular, in response to DNA damage induced by γ-irradiation, cells generate a series of p53 pulses. Recent research has shown the importance of sustaining repeated p53 pulses for recovery from DNA damage. However, far too little attention has been paid to understanding how cells can sustain p53 pulses given the complexities of genetic heterogeneity and intrinsic noise. Here, we explore potential molecular mechanisms that enhance the sustainability of p53 pulses by developing a new mathematical model of the p53 regulatory system. This model can reproduce many experimental results that describe the dynamics of p53 pulses. By simulating the model both deterministically and stochastically, we found three potential mechanisms that improve the sustainability of p53 pulses: 1) the recently identified positive feedback loop between p53 and Rorα allows cells to sustain p53 pulses with high amplitude over a wide range of conditions, 2) intrinsic noise can often prevent the dampening of p53 pulses even after mutations, and 3) coupling of p53 pulses in neighboring cells via cytochrome-c significantly reduces the chance of failure in sustaining p53 pulses in the presence of heterogeneity among cells. Finally, in light of these results, we propose testable experiments that can reveal important mechanisms underlying p53 dynamics.
Collapse
Affiliation(s)
- Jae Kyoung Kim
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Trachette L. Jackson
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
40
|
Merrifield M, Kovalchuk O. Epigenetics in radiation biology: a new research frontier. Front Genet 2013; 4:40. [PMID: 23577019 PMCID: PMC3616258 DOI: 10.3389/fgene.2013.00040] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 03/06/2013] [Indexed: 11/13/2022] Open
Abstract
The number of people that receive exposure to ionizing radiation (IR) via occupational, diagnostic, or treatment-related modalities is progressively rising. It is now accepted that the negative consequences of radiation exposure are not isolated to exposed cells or individuals. Exposure to IR can induce genome instability in the germline, and is further associated with transgenerational genomic instability in the offspring of exposed males. The exact molecular mechanisms of transgenerational genome instability have yet to be elucidated, although there is support for it being an epigenetically induced phenomenon. This review is centered on the long-term biological effects associated with IR exposure, mainly focusing on the epigenetic mechanisms (DNA methylation and small RNAs) involved in the molecular etiology of IR-induced genome instability, bystander and transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms, and demonstrate how a novel, male germline-specific, small RNA pathway is posited to play a major role in the epigenetic inheritance of genome instability.
Collapse
Affiliation(s)
- Matt Merrifield
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | | |
Collapse
|
41
|
Choi VWY, Konishi T, Oikawa M, Cheng SH, Yu KN. The threshold number of protons to induce an adaptive response in zebrafish embryos. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2013; 33:91-100. [PMID: 23295938 DOI: 10.1088/0952-4746/33/1/91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, microbeam protons were used to provide the priming dose to induce an in vivo radioadaptive response (RAR) in the embryos of zebrafish, Danio rerio, against subsequent challenging doses provided by x-ray photons. The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed. The embryos were dechorionated at 4 h post fertilisation (hpf) and irradiated at 5 hpf by microbeam protons. For each embryo, one irradiation point was chosen, to which 5, 10, 20, 30, 40, 50, 100, 200, 300 and 500 protons each with an energy of 3.4 MeV were delivered. The embryos were returned to the incubator until 10 hpf to further receive the challenging exposure, which was achieved using 2 Gy of x-ray irradiation, and then again returned to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labelling (TUNEL) assay. The results revealed that at least 200 protons (with average radiation doses of about 300 and 650 mGy absorbed by an irradiated epithelial and deep cell, respectively) would be required to induce RAR in the zebrafish embryos in vivo. Our previous investigation showed that 5 protons delivered at 10 points on an embryo would already be sufficient to induce RAR in the zebrafish embryos. The difference was explained in terms of the radiation-induced bystander effect as well as the rescue effect.
Collapse
Affiliation(s)
- V W Y Choi
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | | | | | | | | |
Collapse
|
42
|
Mariotti LG, Bertolotti A, Ranza E, Babini G, Ottolenghi A. Investigation of the mechanisms underpinning IL-6 cytokine release in bystander responses: the roles of radiation dose, radiation quality and specific ROS/RNS scavengers. Int J Radiat Biol 2012; 88:751-62. [PMID: 22709338 DOI: 10.3109/09553002.2012.703365] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the mechanisms regulating the pathways of the bystander transmission in vitro, focusing on the radiation-perturbed signalling (via Interleukine 6, IL-6) of the irradiated cells after exposure to low doses of different radiation types. MATERIALS AND METHODS An integrated 'systems radiation biology' approach was adopted. Experimentally the level of the secreted cytokine from human fibroblasts was detected with ELISA (Enzyme-Linked ImmunoSorbent Assay) method and subsequently the data were analyzed and coupled with a phenomenological model based on differential equations to evaluate the single-cell release mechanisms. RESULTS The data confirmed the important effect of radiation on the IL-6 pathway, clearly showing a crucial role of the ROS (Reactive Oxygen Species) in transducing the effect of initial radiation exposure and the subsequent long-term release of IL-6. Furthermore, a systematic investigation of radiation dose/radiation quality dependence seems to indicate an increasing efficiency of high LET (Linear Energy Transfer) irradiation in the release of the cytokine. Basic hypotheses were tested, on the correlation between direct radiobiological damage and signal release and on the radiation target for this endpoint (secretion of IL-6). CONCLUSIONS The results demonstrate the role of reactive oxygen and nitrogen species in the signaling pathways of IL-6. Furthermore the systems radiation biology approach here adopted, allowed us to test and verify hypotheses on the behavior of the single cell in the release of cytokine, after the exposure to different doses and different qualities of ionizing radiation.
Collapse
Affiliation(s)
- Luca G Mariotti
- Department of Physics, University of Pavia, Pavia, and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Italy.
| | | | | | | | | |
Collapse
|
43
|
Comparison of partial splenic embolization versus splenic irradiation as a treatment of hypersplenism in advanced cirrhosis. EGYPTIAN LIVER JOURNAL 2012. [DOI: 10.1097/01.elx.0000415482.05652.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Abstract
Cytotoxic cancer chemotherapy drugs are believed to gain selectivity by targeting cells that proliferate rapidly. However, the proliferation rate is low in many chemosensitive human cancers, and it is not clear how a drug that only kills dividing cells could promote tumor regression. Four potential solutions to this “proliferation rate paradox” are discussed for the microtubule-stabilizing drug paclitaxel: drug retention in tumors, killing of quiescent cells, targeting of noncancer cells in the tumor, and bystander effects. Testing these potential mechanisms of drug action will facilitate rational improvement of antimitotic chemotherapy and perhaps cytotoxic chemotherapy more generally.
Collapse
Affiliation(s)
- Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Mozdarani H. Biological complexities in radiation carcinogenesis and cancer radiotherapy: impact of new biological paradigms. Genes (Basel) 2012; 3:90-114. [PMID: 24704845 PMCID: PMC3899963 DOI: 10.3390/genes3010090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/07/2012] [Accepted: 01/13/2012] [Indexed: 12/31/2022] Open
Abstract
Although radiation carcinogenesis has been shown both experimentally and epidemiologically, the use of ionizing radiation is also one of the major modalities in cancer treatment. Various known cellular and molecular events are involved in carcinogenesis. Apart from the known phenomena, there could be implications for carcinogenesis and cancer prevention due to other biological processes such as the bystander effect, the abscopal effect, intrinsic radiosensitivity and radioadaptation. Bystander effects have consequences for mutation initiated cancer paradigms of radiation carcinogenesis, which provide the mechanistic justification for low-dose risk estimates. The abscopal effect is potentially important for tumor control and is mediated through cytokines and/or the immune system (mainly cell-mediated immunity). It results from loss of growth and stimulatory and/or immunosuppressive factors from the tumor. Intrinsic radiosensitivity is a feature of some cancer prone chromosomal breakage syndromes such as ataxia telangectiasia. Radiosensitivity is manifested as higher chromosomal aberrations and DNA repair impairment is now known as a good biomarker for breast cancer screening and prediction of prognosis. However, it is not yet known whether this effect is good or bad for those receiving radiation or radiomimetic agents for treatment. Radiation hormesis is another major concern for carcinogenesis. This process which protects cells from higher doses of radiation or radio mimic chemicals, may lead to the escape of cells from mitotic death or apoptosis and put cells with a lower amount of damage into the process of cancer induction. Therefore, any of these biological phenomena could have impact on another process giving rise to genome instability of cells which are not in the field of radiation but still receiving a lower amount of radiation. For prevention of radiation induced carcinogenesis or risk assessment as well as for successful radiation therapy, all these phenomena should be taken into account.
Collapse
Affiliation(s)
- Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran.
| |
Collapse
|
46
|
Choi VWY, Ng CYP, Cheng SH, Yu KN. α-Particle irradiated zebrafish embryos rescued by bystander unirradiated zebrafish embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:226-231. [PMID: 22103474 DOI: 10.1021/es2016928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report data demonstrating that zebrafish embryos irradiated by α-particles can release a stress signal into the water, which can be communicated to the unirradiated zebrafish embryos sharing the same water medium, and then these unirradiated zebrafish embryos can release a feedback stress signal back to the irradiated embryos. The effects of radiation on the whole embryos were studied through quantification of apoptotic signals at 24 h post fertilization through staining with the vital dye acridine orange, followed by counting the stained cells under a microscope. We refer to this phenomenon as the "rescue effect", where the unirradiated embryos successfully helped the irradiated embryos mitigate the radiation induced DNA damages. The results showed that the number of apoptotic signals in the irradiated embryos was smaller when they were partnered with bystander unirradiated embryos in the same medium. The results also showed significantly fewer apoptotic signals in the irradiated embryos when the population of bystander embryos increased from 10 to 30, while keeping the population of irradiated embryos at 10. These data suggest that the stress communicated between the unirradiated zebrafish embryos and the irradiated embryos sharing the same medium will help "rescue" the irradiated embryos, and that the strength of the rescue effect depends on the number of rescuing bystander unirradiated embryos.
Collapse
Affiliation(s)
- V W Y Choi
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Widel M, Przybyszewski WM, Cieslar-Pobuda A, Saenko YV, Rzeszowska-Wolny J. Bystander normal human fibroblasts reduce damage response in radiation targeted cancer cells through intercellular ROS level modulation. Mutat Res 2011; 731:117-24. [PMID: 22210495 DOI: 10.1016/j.mrfmmm.2011.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022]
Abstract
The radiation-induced bystander effect is a well-established phenomenon which results in damage in non-irradiated cells in response to signaling from irradiated cells. Since communication between irradiated and bystander cells could be reciprocal, we examined the mutual bystander response between irradiated cells and co-cultured with them non-irradiated recipients. Using a transwell culture system, irradiated human melanoma (Me45) cells were co-cultured with non-irradiated Me45 cells or normal human dermal fibroblasts (NHDF) and vice versa. The frequency of micronuclei and of apoptosis, ROS level, and mitochondrial membrane potential were used as the endpoints. Irradiated Me45 and NHDF cells induced conventional bystander effects detected as modest increases of the frequency of micronuclei and apoptosis in both recipient neighbors; the increase of apoptosis was especially high in NHDF cells co-cultured with irradiated Me45 cells. However, the frequencies of micronuclei and apoptosis in irradiated Me45 cells co-cultured with NHDF cells were significantly reduced in comparison with those cultured alone. This protective effect was not observed when irradiated melanomas were co-cultured with non-irradiated cells of the same line, or when irradiated NHDF fibroblasts were co-cultured with bystander melanomas. The increase of micronuclei and apoptosis in irradiated Me45 cells was paralleled by an increase in the level of intracellular reactive oxygen species (ROS), which was reduced significantly when they were co-cultured for 24h with NHDF cells. A small but significant elevation of ROS level in NHDF cells shortly after irradiation was also reduced by co-culture with non-irradiated NHDF cells. We propose that in response to signals from irradiated cells, non-irradiated NHDF cells trigger rescue signals, whose nature remains to be elucidated, which modify the redox status in irradiated cells. This inverse bystander effect may potentially have implications in clinical radiotherapy.
Collapse
Affiliation(s)
- Maria Widel
- Department of Automatics, Silesian University of Technology, Gliwice, Poland.
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Effects of exogenous carbon monoxide on radiation-induced bystander effect in zebrafish embryos in vivo. Appl Radiat Isot 2011; 70:1075-9. [PMID: 22119559 DOI: 10.1016/j.apradiso.2011.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/06/2011] [Indexed: 01/26/2023]
Abstract
In the present work, the influence of a low concentration of exogenous carbon monoxide (CO) liberated from tricarbonylchloro(glycinato)ruthenium (II) (CORM-3) on the radiation induced bystander effect (RIBE) in vivo between embryos of the zebrafish was studied. RIBE was assessed through the number of apoptotic signals revealed on embryos at 25 h post fertilization (hpf). A significant attenuation of apoptosis on the bystander embryos induced by RIBE in a CO concentration dependent manner was observed.
Collapse
|
50
|
Blyth BJ, Sykes PJ. Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 2011; 176:139-57. [PMID: 21631286 DOI: 10.1667/rr2548.1] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The term radiation-induced bystander effect is used to describe radiation-induced biological changes that manifest in unirradiated cells remaining within an irradiated cell population. Despite their failure to fit into the framework of classical radiobiology, radiation-induced bystander effects have entered the mainstream and have become established in the radiobiology vocabulary as a bona fide radiation response. However, there is still no consensus on a precise definition of radiation-induced bystander effects, which currently encompasses a number of distinct signal-mediated effects. These effects are classified here into three classes: bystander effects, abscopal effects and cohort effects. In this review, the data have been evaluated to define, where possible, various features specific to radiation-induced bystander effects, including their timing, range, potency and dependence on dose, dose rate, radiation quality and cell type. The weight of evidence supporting these defining features is discussed in the context of bystander experimental systems that closely replicate realistic human exposure scenarios. Whether the manifestation of bystander effects in vivo is intrinsically limited to particular radiation exposure scenarios is considered. The conditions under which radiation-induced bystander effects are induced in vivo will ultimately determine their impact on radiation-induced carcinogenic risk.
Collapse
Affiliation(s)
- Benjamin J Blyth
- Haematology and Genetic Pathology, Flinders University, Bedford Park, South Australia 5042, Australia
| | | |
Collapse
|