1
|
Do TM, Nguyen QHN, Le NHD, Nguyen HD, Phung AHT, Tran TS, Nguyen TV, Ho-Pham LT. Association between dietary factors and breast cancer risk: a matched case-control study in Vietnam. BMC Cancer 2024; 24:1224. [PMID: 39363187 PMCID: PMC11448273 DOI: 10.1186/s12885-024-12918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND The role of diet in breast cancer prevention is controversial and limited in low-middle-income countries (LMICs). This study aimed to investigate the association between different dietary factors and breast cancer risk in Vietnamese women. METHODS Three hundred seventy newly histologically confirmed breast cancer cases and 370 controls matched by 5-year age from September 2019 to March 2020 in Ho Chi Minh City were recorded dietary intake using a validated food frequency questionnaire. Odds ratios (OR) and 95% confidence intervals (95% CI) were evaluated using conditional logistic regression and adjusted with potential confounders. RESULTS Compared to the lowest quartile of intake, we found that the highest intake of vegetables, fruit, soybean products, coffee, and egg significantly decreased breast cancer risk, including dark green vegetables (OR 0.46, 95% CI 0.27-0.78, ptrend=0.022), legumes (OR 0.19, 95% CI 0.08-0.44, ptrend <0.001), starchy vegetables (OR 0.37, 95% CI 0.21-0.66, ptrend=0.003), other vegetables (OR 0.46, 95% CI 0.28-0.77, ptrend=0.106), fruits (OR 0.44, 95% CI 0.26-0.74, ptrend <0.001), soybean product (OR 0.45, 95% CI 0.24-0.86, ptrend=0.311), coffee (OR 0.47, 95% CI 0.23-0.95, ptrend 0.004), and egg (OR 0.4, 95% CI 0.23-0.71, ptrend=0.002). CONCLUSION Greater consumption of vegetables, fruit, soybean products, coffee, and eggs is associated with a lower risk of breast cancer. This study provides evidence of breast cancer prevention by increasing the intake of these dietary groups, especially in LMICs.
Collapse
Affiliation(s)
- Tam M Do
- BioMedical Research Center, Pham Ngoc Thach University of Medicine, 02 Duong Quang Trung Street, District 10, Ho Chi Minh City, Vietnam
- Saigon Precision Medicine Center, LL2 Ba Vi Street, District 10, Ho Chi Minh City, Vietnam
| | - Quynh H N Nguyen
- Saigon Precision Medicine Center, LL2 Ba Vi Street, District 10, Ho Chi Minh City, Vietnam
| | - Nguyen H D Le
- Medical Oncology of Breast, Gastroenterology, Hepatology and Urology Department, Ho Chi Minh City Oncology Hospital, 03 No Trang Long Street, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Hien D Nguyen
- BioMedical Research Center, Pham Ngoc Thach University of Medicine, 02 Duong Quang Trung Street, District 10, Ho Chi Minh City, Vietnam
- Saigon Precision Medicine Center, LL2 Ba Vi Street, District 10, Ho Chi Minh City, Vietnam
| | - An H T Phung
- Saigon Precision Medicine Center, LL2 Ba Vi Street, District 10, Ho Chi Minh City, Vietnam
| | - Thach S Tran
- School of Biomedical Engineering, University of Technology Sydney, PO Box 123, Sydney, NSW, 2007, Australia
| | - Tuan V Nguyen
- School of Biomedical Engineering, University of Technology Sydney, PO Box 123, Sydney, NSW, 2007, Australia
- School of Population Health, UNSW Medicine, UNSW Sydney, Sydney, Australia
- Tam Anh Research Institute, Tam Anh General Hospital, Ho Chi Minh City, Vietnam
| | - Lan T Ho-Pham
- BioMedical Research Center, Pham Ngoc Thach University of Medicine, 02 Duong Quang Trung Street, District 10, Ho Chi Minh City, Vietnam.
- Saigon Precision Medicine Center, LL2 Ba Vi Street, District 10, Ho Chi Minh City, Vietnam.
| |
Collapse
|
2
|
Guzel B, Gumus D, Kizil M. Comparing application methods of reishi mushroom (Ganoderma lucidum) extract in deep-fried meatballs: impact on heterocyclic aromatic amine formation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5826-5833. [PMID: 38407784 DOI: 10.1002/jsfa.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The present research was conducted to investigate the impact of reishi mushroom extract (RME) on the formation of heterocyclic aromatic amines (HAAs) in meatballs. Sample preparations involved applying RME using either the spreading or addition method, with varying concentrations (0%, 0.25%, 0.5%, and 1% of RME), followed by deep-frying at temperatures of 150 and 190 °C for 3 min. RESULTS The types and levels of HAAs varied based on the frying temperature, method of extract application, and the extract concentration. Notably, total HAA contents increased with rising the frying temperature (P < 0.01) and varied from undetectable levels to 4.91 ng g-1 across all analyzed meatballs. The addition method was more effective than the spreading method (P < 0.01), and among the concentrations tested 0.25% RME exhibited the highest efficacy in reducing total HAAs (P < 0.05). Furthermore, the addition method inhibited lipid oxidation more efficiently compared to the surface spreading method (P < 0.05). CONCLUSION This study demonstrated that RME had mitigating effects on HAAs depending on the concentration and frying conditions in deep-fried meatball samples. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Bengu Guzel
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Damla Gumus
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Mevlude Kizil
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024:10.1038/s41576-024-00748-4. [PMID: 38918545 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
4
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Caffeic Acid and Diseases-Mechanisms of Action. Int J Mol Sci 2022; 24:ijms24010588. [PMID: 36614030 PMCID: PMC9820408 DOI: 10.3390/ijms24010588] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Caffeic acid belongs to the polyphenol compounds we consume daily, often in the form of coffee. Even though it is less explored than caffeic acid phenethyl ester, it still has many positive effects on human health. Caffeic acid can affect cancer, diabetes, atherosclerosis, Alzheimer's disease, or bacterial and viral infections. This review focuses on the molecular mechanisms of how caffeic acid achieves its effects.
Collapse
|
6
|
Deng P, Xue C, He Z, Wang Z, Qin F, Oz E, Chen J, El Sheikha AF, Proestos C, Oz F, Zeng M. Synergistic Inhibitory Effects of Selected Amino Acids on the Formation of 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) in both Benzaldehyde- and Phenylacetaldehyde-Creatinine Model Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10858-10871. [PMID: 36007151 DOI: 10.1021/acs.jafc.2c03122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although various inhibitors have been employed to react with phenylacetaldehyde to form adducts and thus interrupt the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), high concentrations of PhIP remain in the final system. It remains unknown whether other critical aldehyde or ketone intermediates are involved in the generation of PhIP, and scavenging these reactive carbonyls simultaneously may achieve higher inhibitory efficiency of PhIP. In this study, reactive carbonyls in a glucose/creatinine/phenylalanine model system were first identified by gas chromatography-mass spectrometry (GC-MS), and then the single and synergistic effects of nonprecursor amino acids (cysteine, methionine, proline, histidine, arginine, and leucine) on scavenging reactive carbonyls were investigated to find out promising combination partners. The obtained results showed that the concentrations of benzaldehyde and phenylacetaldehyde in the glucose/creatinine/phenylalanine model system reached 0.49 ± 0.01 and 6.22 ± 0.21 μg/mL, respectively. Heating these carbonyl compounds in the presence of creatinine resulted in the quantity of PhIP produced increasing linearly with the added quantity of benzaldehyde (r = 0.9733, P = 0.0002) and phenylacetaldehyde (r = 0.9746, P = 0.0002), indicating that both compounds are key intermediates for PhIP generation. Among the investigated amino acids, histidine produced the maximum inhibition of PhIP formation (78-99%) in the benzaldehyde/creatinine model system, and proline produced the maximum inhibition of PhIP formation (13-97%) in the phenylacetaldehyde/creatinine model system, where both compounds decreased PhIP formation in a dose-dependent manner. Histidine in combination with proline enhanced the inhibitory effect against PhIP formation at a low addition level, where the highest inhibitory efficiency was obtained using a 1:3 mass ratio of histidine to proline (2 mg/mL in total), reducing PhIP formation by 96%. These findings suggest that histidine-proline combinations can scavenge benzaldehyde and phenylacetaldehyde simultaneously, enhancing the suppression of PhIP formation.
Collapse
Affiliation(s)
- Peng Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Aly Farag El Sheikha
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, Ontario K1N 6N5, Canada
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, 32511 Shibin El Kom, Egypt
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Olalekan Adeyeye SA, Ashaolu TJ. Heterocyclic Amine Formation and Mitigation in Processed Meat and Meat Products: A Mini-Review. J Food Prot 2021; 84:1868-1877. [PMID: 33956955 DOI: 10.4315/jfp-20-471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/05/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This review provides an assessment of heterocyclic amine (HCA) formation and mitigation in processed meat and meat products. HCAs are formed when amino acids react with creatine during thermal processing of meat and meat products. The formation of HCAs depends on various factors, including the temperature, cooking time, fat contents, and presence of HCA precursors such as water, lipids, and marinades. Additional factors that could affect HCA formation are pH, meat type, and ingredients added during cooking such as antioxidants, amino acids, ions, fat, and sugars, which promote production of HCAs. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline, 2-amino-3-methylimidazo-[4,5-f]quinoline, and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline are HCAs of importance because of their link to cancer in humans. More than 25 HCAs have been identified in processed foods. Of these, nine HCAs are possible human carcinogens (group 2B) and one is a probable human carcinogen (group 2A). To mitigate HCA generation during heat processing, various techniques have been used, including recipe variations, adjustments of thermal processing conditions, addition of flavorings, pretreatments such as microwave heating, and addition of naturally occurring and artificial antioxidants. HIGHLIGHTS
Collapse
Affiliation(s)
- Samuel Ayofemi Olalekan Adeyeye
- Department for Management of Science & Technology Development and Faculty of Environment and Labor Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development and Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
8
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
9
|
Shamovsky I, Ripa L, Narjes F, Bonn B, Schiesser S, Terstiege I, Tyrchan C. Mechanism-Based Insights into Removing the Mutagenicity of Aromatic Amines by Small Structural Alterations. J Med Chem 2021; 64:8545-8563. [PMID: 34110134 DOI: 10.1021/acs.jmedchem.1c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic and heteroaromatic amines (ArNH2) are activated by cytochrome P450 monooxygenases, primarily CYP1A2, into reactive N-arylhydroxylamines that can lead to covalent adducts with DNA nucleobases. Hereby, we give hands-on mechanism-based guidelines to design mutagenicity-free ArNH2. The mechanism of N-hydroxylation of ArNH2 by CYP1A2 is investigated by density functional theory (DFT) calculations. Two putative pathways are considered, the radicaloid route that goes via the classical ferryl-oxo oxidant and an alternative anionic pathway through Fenton-like oxidation by ferriheme-bound H2O2. Results suggest that bioactivation of ArNH2 follows the anionic pathway. We demonstrate that H-bonding and/or geometric fit of ArNH2 to CYP1A2 as well as feasibility of both proton abstraction by the ferriheme-peroxo base and heterolytic cleavage of arylhydroxylamines render molecules mutagenic. Mutagenicity of ArNH2 can be removed by structural alterations that disrupt geometric and/or electrostatic fit to CYP1A2, decrease the acidity of the NH2 group, destabilize arylnitrenium ions, or disrupt their pre-covalent transition states with guanine.
Collapse
|
10
|
Blueberry, raspberry, and strawberry extracts reduce the formation of carcinogenic heterocyclic amines in fried camel, beef and chicken meats. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Sub-chronic exposure to PhIP induces oxidative damage and DNA damage, and disrupts the amino acid metabolism in the colons of Wistar rats. Food Chem Toxicol 2021; 153:112249. [PMID: 33945839 DOI: 10.1016/j.fct.2021.112249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Heterocyclic amines (HCAs) are a group of mutagenic compounds produced during thermal processing of protein-rich foods. One of the most abundant HCAs, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) has potential carcinogenic and mutagenic effects on human organs, especially the colon. This study aimed to explore the toxic effects of PhIP on amino acid metabolism in the colon of Wistar rats using RNA-seq and LC-MS/MS. Exposure to PhIP for 4 weeks induced oxidative damage and DNA damage in the colons, and disrupted the expression of related genes involved in tryptophan metabolism, beta(β)-alanine metabolism, valine, leucine, and isoleucine degradation, and glutathione metabolic pathways. Moreover, the levels of fecal metabolites related to amino acid metabolism were affected by PhIP. Cumulatively, these results indicate that PhIP can induce colonic oxidative injury and disorders related to amino acid metabolism, thereby providing a new theoretical basis for the study of PhIP toxicity.
Collapse
|
12
|
Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. Health-Promoting Role of Lactiplantibacillus plantarum Isolated from Fermented Foods. Microorganisms 2021; 9:349. [PMID: 33578806 PMCID: PMC7916596 DOI: 10.3390/microorganisms9020349] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Fermentation processes have been used for centuries for food production and preservation. Besides the contribution of fermentation to food quality, recently, scientific interest in the beneficial nature of fermented foods as a reservoir of probiotic candidates is increasing. Fermented food microbes are gaining attention for their health-promoting potential and for being genetically related to human probiotic bacteria. Among them, Lactiplantibacillus (Lpb.) plantarum strains, with a long history in the food industry as starter cultures in the production of a wide variety of fermented foods, are being investigated for their beneficial properties which are similar to those of probiotic strains, and they are also applied in clinical interventions. Food-associated Lpb. plantarum showed a good adaptation and adhesion ability in the gastro-intestinal tract and the potential to affect host health through various beneficial activities, e.g., antimicrobial, antioxidative, antigenotoxic, anti-inflammatory and immunomodulatory, in several in vitro and in vivo studies. This review provides an overview of fermented-associated Lpb. plantarum health benefits with evidence from clinical studies. Probiotic criteria that fermented-associated microbes need to fulfil are also reported.
Collapse
Affiliation(s)
| | | | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100 Teramo, Italy; (N.G.-G.); (N.B.); (A.C.)
| | | |
Collapse
|
13
|
Screening for Ames mutagenicity of food flavor chemicals by (quantitative) structure-activity relationship. Genes Environ 2020; 42:32. [PMID: 33292765 PMCID: PMC7706032 DOI: 10.1186/s41021-020-00171-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background (Quantitative) Structure-Activity Relationship ((Q)SAR) is a promising approach to predict the potential adverse effects of chemicals based on their structure without performing toxicological studies. We evaluate the mutagenicity of food flavor chemicals by (Q) SAR tools, identify potentially mutagenic chemicals, and verify their mutagenicity by actual Ames test. Results The Ames mutagenicity of 3942 food flavor chemicals was predicted using two (Q)SAR) tools, DEREK Nexus and CASE Ultra. Three thousand five hundred seventy-five chemicals (91%) were judged to be negative in both (Q) SAR tools, and 75 chemicals (2%) were predicted to be positive in both (Q) SAR tools. When the Ames test was conducted on ten of these positive chemicals, nine showed positive results. Conclusion The (Q) SAR method can be used for screening the mutagenicity of food flavors. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-020-00171-1.
Collapse
|
14
|
Inflammation as a Driver of Prostate Cancer Metastasis and Therapeutic Resistance. Cancers (Basel) 2020; 12:cancers12102984. [PMID: 33076397 PMCID: PMC7602551 DOI: 10.3390/cancers12102984] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Prostate cancer is the most common malignancy in men, with a high mortality rate when disease progresses to metastasis and therapeutic resistance. Evidence implicates inflammation as a driver of prostate cancer risk and has a significant impact on processes in the tumor microenvironment that facilitate progression to advanced therapeutically resistant disease. In this review, we discuss the sources of inflammation in the prostate, the functional contribution of the critical inflammatory effectors to prostate cancer initiation and metastatic progression, and the therapeutic challenges that they impose on treatment of advanced disease and overcoming therapeutic resistance. Full understanding of the role of inflammation in prostate cancer progression to advanced metastatic disease and tumor relapse will aid in the development of personalized predictive biomarkers and therapy to reduce the burden and mortality in prostate cancer patients. Abstract Prostate cancer is the most common malignancy among men, and progression to metastasis and the emergence of therapeutically resistant disease confers a high mortality rate. Growing evidence implicates inflammation as a driver of prostate cancer development and progression, resulting in increased cancer risk for prostate cancer. Population-based studies revealed that the use of antinflammatory drugs led to a 23% risk reduction prostate cancer occurrence, a negative association that was stronger in men who specifically used COX-2 inhibitors. Furthermore, patients that were taking aspirin had a 21% reduction in prostate cancer risk, and further, long-term users of daily low dose aspirin had a 29% prostate cancer risk reduction as compared to the controls. Environmental exposure to bacterial and viral infections, exposure to mutagenic agents, and genetic variations predispose the prostate gland to inflammation, with a coordinated elevated expression of inflammatory cytokines (IL-6, TGF-β). It is the dynamics within the tumor microenvironment that empower these cytokines to promote survival and growth of the primary tumor and facilitate disease progression by navigating the immunoregulatory network, phenotypic epithelial-mesenchymal transition (EMT), angiogenesis, anoikis resistance, and metastasis. In this review, we discuss the sources of inflammation in the prostate, the functional contribution of the critical inflammatory effectors to prostate cancer initiation and metastatic progression, and the therapeutic challenges that they impose on treatment of advanced disease and overcoming therapeutic resistance. Growing mechanistic evidence supports the significance of inflammation in localized prostate cancer, and the systemic impact of the process within the tumor microenvironment on disease progression to advanced therapeutically-resistant prostate cancer. Rigorous exploitation of the role of inflammation in prostate cancer progression to metastasis and therapeutic resistance will empower the development of precise biomarker signatures and effective targeted therapeutics to reduce the clinical burden and lethal disease in the future.
Collapse
|
15
|
Linghu Z, Karim F, Taghvaei M, Albashabsheh Z, Houser TA, Smith JS. Amino acids effects on heterocyclic amines formation and physicochemical properties in pan-fried beef patties. J Food Sci 2020; 85:1361-1370. [PMID: 32147842 DOI: 10.1111/1750-3841.15078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/08/2019] [Accepted: 01/20/2020] [Indexed: 11/28/2022]
Abstract
The effects of surface application of amino acids on the formation of heterocyclic amines (HCAs) and meat quality properties were evaluated in pan-fried beef patties (230 °C/15 min). Tryptophan, lysine, leucine, and proline at three concentrations, 0.05%, 0.20%, and 0.50% (w/w), were tested. The meat crusts were analyzed for HCA content using liquid chromatography-tandem mass spectrometry. Results showed that surface application of all tested amino acids significantly reduced total HCA content (P < 0.05), and the interaction of amino acid type and concentration significantly affected (P < 0.05) both individual and total HCA formation. Tryptophan at 0.50% reduced total HCAs the most (0.92 ng/g, 93% inhibition), followed by 0.50% lysine (1.94 ng/g, 84% inhibition), while leucine (3.95 ng/g, 64% inhibition) and proline (4.71 ng/g, 56% inhibition) were less effective at 0.50%. In addition, applying amino acids to meat surface significantly influenced (P < 0.05) pH and surface color change of beef crusts; particularly, lysine at 0.20% and 0.50% increased pH and a* (redness) but reduced b* (yellowness), while tryptophan and leucine at 0.50% increased L* (whiteness). No significant effect was observed on cooking loss. Adding amino acids at 0.50% affected (P < 0.05) formation of aldehydes and pyrazines (as the key flavor compounds of fried beef). Overall, the results of this study suggested that adding amino acids to ground beef patties could effectively mitigate mutagenic HCA formation during cooking.
Collapse
Affiliation(s)
- Ziyi Linghu
- Food Science Inst., Dept. of Animal Sciences and Industry, Kansas State Univ., 208 Call Hall, 1530 Mid-Campus Drive North, Manhattan, KS, 66506, U.S.A
| | - Faris Karim
- Food Science Inst., Dept. of Animal Sciences and Industry, Kansas State Univ., 208 Call Hall, 1530 Mid-Campus Drive North, Manhattan, KS, 66506, U.S.A
| | - Mostafa Taghvaei
- Food Science Inst., Dept. of Animal Sciences and Industry, Kansas State Univ., 208 Call Hall, 1530 Mid-Campus Drive North, Manhattan, KS, 66506, U.S.A
| | - Zaher Albashabsheh
- Food Science Inst., Dept. of Animal Sciences and Industry, Kansas State Univ., 208 Call Hall, 1530 Mid-Campus Drive North, Manhattan, KS, 66506, U.S.A
| | - Terry A Houser
- Food Science Inst., Dept. of Animal Sciences and Industry, Kansas State Univ., 208 Call Hall, 1530 Mid-Campus Drive North, Manhattan, KS, 66506, U.S.A
| | - J Scott Smith
- Food Science Inst., Dept. of Animal Sciences and Industry, Kansas State Univ., 208 Call Hall, 1530 Mid-Campus Drive North, Manhattan, KS, 66506, U.S.A
| |
Collapse
|
16
|
Linghu Z, Karim F, Taghvaei M, Smith JS. Determination of Heterocyclic Amines in Meat Matrices Using Enhanced Matrix Removal‐Lipid Extraction and Liquid Chromatography–Tandem Mass Spectrometry. J Food Sci 2019; 84:1992-2002. [DOI: 10.1111/1750-3841.14674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Ziyi Linghu
- Food Science Inst.Kansas State Univ. 208 Call Hall, 1530 Mid‐Campus Drive North Manhattan KS 66506 U.S.A
| | - Faris Karim
- Food Science Inst.Kansas State Univ. 208 Call Hall, 1530 Mid‐Campus Drive North Manhattan KS 66506 U.S.A
| | - Mostafa Taghvaei
- Food Science Inst.Kansas State Univ. 208 Call Hall, 1530 Mid‐Campus Drive North Manhattan KS 66506 U.S.A
| | - J. Scott Smith
- Food Science Inst.Kansas State Univ. 208 Call Hall, 1530 Mid‐Campus Drive North Manhattan KS 66506 U.S.A
| |
Collapse
|
17
|
Wan WX, Chen Y, Zhang J, Shen F, Luo L, Deng SH, Xiao H, Zhou W, Deng OP, Yang H, Xiao YL, Huang CR, Tian D, He JS, Wang YJ. Mechanism-based structure-activity relationship (SAR) analysis of aromatic amines and nitroaromatics carcinogenicity via statistical analyses based on CPDB. Toxicol In Vitro 2019; 58:13-25. [PMID: 30878698 DOI: 10.1016/j.tiv.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of human mortality around the globe. In this study, mechanism-based SAR (Structure-Activity Relationship) was employed to investigate the carcinogenicity of aromatic amines and nitroaromatics based on CPDB. Principal component analysis and cluster analysis were used to construct the SAR model. Principle component analysis generated three principal components from 12 mechanism-based descriptors. The extracted principal components were later used for cluster analysis, which divided the selected 55 chemicals into six clusters. The three principal components were proposed to describe the "transport", "reactivity" and "electrophilicity" properties of the chemicals. Cluster analysis indicated that the relevant "transport" properties positively correlated with the carcinogenic potential and were contributing factors in determining the carcinogenicity of the studied chemicals. The mechanism-based SAR analysis suggested the electron donating groups, electron withdrawing groups and planarity are significant factors in determining the carcinogenic potency for studied aromatic compounds. The present study may provide insights into the relationship between the three proposed properties and the carcinogenesis of aromatic amines and nitroaromatics.
Collapse
Affiliation(s)
- Wen-Xin Wan
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Yi Chen
- Environmental Monitoring Center of Chengdu, Sichuan province, Chengdu, 610041, Sichuan, China
| | - Jing Zhang
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610056, Sichuan province, China.
| | - Fei Shen
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Ling Luo
- Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Shi-Huai Deng
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Hong Xiao
- Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Wei Zhou
- College of Resource, Sichuan Agricultural University, Chengdu, 610030, Sichuan province, China
| | - Ou-Ping Deng
- College of Resource, Sichuan Agricultural University, Chengdu, 610030, Sichuan province, China
| | - Hua Yang
- College of Forestry, Sichuan Agricultural University, Chengdu, 610030, Sichuan province, China
| | - Yin-Long Xiao
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China
| | - Chu-Rui Huang
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China
| | - Dong Tian
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Jin-Song He
- Institute of Ecological and Environmental Science, Sichuan Agriculture University, Chengdu 611130, Sichuan province, China; Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| | - Ying-Jun Wang
- Colleges of the Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan province, China
| |
Collapse
|
18
|
Arora M, Baldi A, Kapila N, Bhandari S, Jeet K. Impact of Probiotics and Prebiotics on Colon Cancer: Mechanistic Insights and Future Approaches. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180724122042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colon cancer is one of the most common and most diagnosed types of cancer. It is a
major cause of increased rate of morbidity and mortality across the globe. Currently, the focus has
been shifted towards natural remedies for the treatment of colon cancer. These new methods of
treatment include prebiotics and probiotics, as they offer great potential for alleviating symptoms
of cancer. These are more promising and have lesser side effects than existing medications. Probiotics
are living organisms which confer health benefits when ingested into adequate amounts.
Prebiotics are non-digestible ingredients which promote the growth of beneficial bacteria, which
produce metabolites for stimulation of apoptosis of colonic cancer cell lines. Apart from it,
prebiotics are helpful to modify the activity of enzymes to be produced by beneficial bacteria as
well as for inhibition of several bacteria able to produce carcinogenic enzymes. This review has
been collated to present tremendous benefits and future potential of pro- and prebiotics in the
treatment of colon cancer and to overview the mechanisms of probiotic actions along with their
impact on humans.
Collapse
Affiliation(s)
- Malika Arora
- Multi Disciplinary Research Unit, Guru Gobind Singh Medical College and Hospital, Faridkot, Punjab, India
| | - Ashish Baldi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Nitesh Kapila
- Department of Quality Assurance, Faculty of Pharmacy, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Saurav Bhandari
- Department of Quality Assurance, Faculty of Pharmacy, I.S.F. College of Pharmacy, Moga, Punjab, India
| | - Kamal Jeet
- IKG Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
19
|
Adeyeye SAO. Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Cooked Meat Products: A Review. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1559208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Samuel Ayofemi Olalekan Adeyeye
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: Friend or foe? Exp Gerontol 2018; 117:76-90. [PMID: 30458224 DOI: 10.1016/j.exger.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Advanced glycation end products (AGEs) are formed in in vivo, and accumulate in tissues and body fluids during ageing. Endogenous AGE-modified proteins show altered structure and function, and may interact with receptor for AGEs (RAGE) resulting in production of reactive oxygen species, inflammatory, atherogenic and diabetogenic responses. AGEs are also formed in thermally processed foods. Studies in rodents document that dietary AGEs are partially absorbed into circulation, and accumulate in different tissues. Knowledge on the health effects of high dietary intake of AGEs is incomplete and contradictory. In this overview we discuss the data from experimental and clinical studies, either those supporting the assumption that restriction of dietary AGEs associated with health benefits, or data suggesting that dietary intake of AGEs associates with positive health outcomes. We polemicize whether the effects of exaggerated intake or restriction of highly thermally processed foods might be straightforward interpreted as the effects of AGEs-rich vs. AGEs-restricted diets. We also underline the lack of studies, and thus a poor knowledge, on the effects of different single chemically defined AGEs administration, concurrent intake of different dietary AGEs, of load with dietary AGEs corresponding to the habitual diet in humans, and on those of dietary AGEs in vulnerable populations, such as infants and particularly elderly.
Collapse
Affiliation(s)
- Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, Bratislava, Slovakia.
| | - Katarína Brouder Šebeková
- Intensive Care Unit, John Radcliffe Hospital, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
21
|
Habas K, Abdulmwli M, Demir E, Jacob BK, Najafzadeh M, Anderson D. DNA damage protection by bulk and nano forms of quercetin in lymphocytes of patients with chronic obstructive pulmonary disease exposed to the food mutagen 2-amino-3-methylimidazo [4,5-f]quinolone (IQ). ENVIRONMENTAL RESEARCH 2018; 166:10-15. [PMID: 29807314 DOI: 10.1016/j.envres.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) in humans, describes a group of lung conditions characterised by airflow limitation that is poorly reversible. The airflow limitation usually progresses slowly and is related to an abnormal inflammatory response of the lung to toxic particles. COPD is characterised by oxidative stress and an increased risk of lung carcinoma. The 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) is one of a number of mutagenic/carcinogenic heterocyclic amines found mainly in well-cooked meats which are thus part of the regular diet. Antioxidants are very important in order to protect the cells against oxidative damage. The aim of the present study was to assess the effects of IQ on the level of DNA damage and susceptibility to a potent mutagen in peripheral blood cells of COPD patients. DNA damage and the frequency of micronuclei (MNi) were evaluated using the Comet and micronucleus assays, respectively. Differential expressions of both mRNA and protein of the endogenous antioxidant enzyme catalase were evaluated with quantitative polymerase chain reaction (qPCR) and Western blot analysis, respectively. Furthermore, the effect of bulk and nano forms of quercetin and their combination with IQ were examined. Results of the present study clearly demonstrated that MNi frequency in the peripheral blood lymphocytes exhibited a positive correlation with the DNA damage as evident from the different Comet assay parameters. Increase of the endogenous antioxidant catalase also showed there was a stimulation of this enzyme system by IQ. Whereas, the endogenous antioxidant quercetin significantly reduced oxidative stress in COPD patients and healthy individuals.
Collapse
Affiliation(s)
- Khaled Habas
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| | - Mhamoued Abdulmwli
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| | - Eşref Demir
- Giresun University, Faculty of Engineering, Department of Genetics and Bioengineering, 28200 Güre, Giresun, Turkey
| | - Badie K Jacob
- Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Duckworth Lane, Bradford, West Yorkshire BD9 6RJ, UK
| | - Mojgan Najafzadeh
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| | - Diana Anderson
- Division of Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK.
| |
Collapse
|
22
|
Ahmad Kamal NH, Selamat J, Sanny M. Simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:848-869. [DOI: 10.1080/19440049.2018.1425553] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nor Hasyimah Ahmad Kamal
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jinap Selamat
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Malaysia
| | - Maimunah Sanny
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
23
|
da Silva MAS, Abreu DS, Costa LA, Aguiar NDA, Paulo TF, Longhinotti E, Diógenes ICN. Chitosan Film Containing an Iron Complex: Synthesis and Prospects for Heterocyclic Aromatic Amines (HAAs) Recognition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1387-1394. [PMID: 28124904 DOI: 10.1021/acs.jafc.6b03742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hybrid organic-inorganic materials have been seen as a promising approach to produce sensors for the detection and/or recognition of heterocyclic aromatic amines (HAAs). This work shows the synthesis of a hybrid film as a result of the incorporation of [Fe(CN)5(NH3)]3- into chitosan (CS); CS-[(CN)5Fe(NH3)]3-. The sensitivity of CS-[(CN)5Fe(NH3)]3- toward HAA-like species was evaluated by using pyrazine (pz) as probe molecule in vapor phase by means of electrochemistry and spectroscopic techniques. The crystallinity (SEM-EDS and XRD) decrease of CS-[(CN)5Fe(NH3)]3- in comparison to CS was assigned to the disturbance of the hydrogen bond network within the polymer. Such conclusion was reinforced by the water contact angle measurements. The results presented in this work indicate physical and intermolecular interactions, mostly hydrogen bond, between [Fe(CN)5(NH3)]3- and CS, where the complex is likely trapped in the polymer with its sixth coordination site available for substitution reactions.
Collapse
Affiliation(s)
- Maria Aparecida S da Silva
- Departamento de Quı́mica Orgânica e Inorgânica, Universidade Federal do Ceará , Cx. Postal 6021, 60455-760 Fortaleza, Ceará, Brazil
| | - Dieric S Abreu
- Departamento de Quı́mica Orgânica e Inorgânica, Universidade Federal do Ceará , Cx. Postal 6021, 60455-760 Fortaleza, Ceará, Brazil
| | - Leandro A Costa
- Departamento de Quı́mica Orgânica e Inorgânica, Universidade Federal do Ceará , Cx. Postal 6021, 60455-760 Fortaleza, Ceará, Brazil
| | - Natanna de A Aguiar
- Departamento de Quı́mica Orgânica e Inorgânica, Universidade Federal do Ceará , Cx. Postal 6021, 60455-760 Fortaleza, Ceará, Brazil
| | - Tércio F Paulo
- Departamento de Quı́mica Orgânica e Inorgânica, Universidade Federal do Ceará , Cx. Postal 6021, 60455-760 Fortaleza, Ceará, Brazil
| | - Elisane Longhinotti
- Departamento de Quı́mica Analı́tica e Fı́sico-Quı́mica, Universidade Federal do Ceará , 60440-900 Fortaleza, Ceará, Brazil
| | - Izaura C N Diógenes
- Departamento de Quı́mica Orgânica e Inorgânica, Universidade Federal do Ceará , Cx. Postal 6021, 60455-760 Fortaleza, Ceará, Brazil
| |
Collapse
|
24
|
Nowak A, Czyżowska A, Huben K, Sójka M, Kuberski S, Otlewska A, Śliżewska K. Prebiotics and age, but not probiotics affect the transformation of 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) by fecal microbiota - An in vitro study. Anaerobe 2016; 39:124-35. [PMID: 27034248 DOI: 10.1016/j.anaerobe.2016.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 01/06/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are carcinogens which are formed in meat cooked using high-temperature methods. The human gastrointestinal (GI) microbiota plays a crucial role in maintaining health in humans of different ages, and especially in the elderly. However, the GI microbiota, whose metabolism and composition changes with age, may also be responsible for the activation of mutagenic substances reaching the colon with diet. Probiotics and prebiotics are promising in terms of reducing the destructive effects of HAAs. The aim of the study was to determine if fecal microbiota derived from the feces of 27 volunteers: infants (up to 18 months), adults (aged 23-39 years), the sub-elderly (aged 64-65 years), and the elderly (aged 76-87 years), and the presence of probiotics or prebiotics, affected the transformation of IQ (2-amino-3-methylimidazo[4,5-f]quinoline) to 7-OH-IQ (2-amino-3,6-dihydro-3-methyl-7H-imidazo[4,5-f]quinoline-7-one). The compounds were identified using LC-MS(n), NMR, and FTIR. Their genotoxicity was compared in the comet assay. Individual strains capable of IQ transformation were also identified. 7-OH-IQ was detected in six persons (two children and four elderly individuals). The degree of IQ conversion ranged from 26% (4-month-old girl) to 94% (81-year-old woman) of the initial quantity. Four Enterococcus isolates: two Enterococcus faecium and two Enterococcus faecalis strains, as well as one Clostridium difficile strain (LOCK 1030, from the culture collection) converted IQ to 7-OH-IQ. The genotoxicity of samples containing 7-OH-IQ was even three times higher (P < 0.05) than those with IQ and was correlated with the degree of IQ conversion and 7-OH-IQ concentration.
Collapse
Affiliation(s)
- Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland.
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland
| | - Krzysztof Huben
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Michał Sójka
- Institute of Chemical Technology of Food, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Sławomir Kuberski
- Faculty of Process and Environmental Engineering, Division of Molecular Engineering, Lodz University of Technology, Wólczańska 213, 90-924 Lodz, Poland
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-924 Lodz, Poland
| |
Collapse
|
25
|
Abstract
Diet may play a role in both promoting and inhibiting human breast cancer development. In this review, nutritional risk factors such as consumption of dietary fat, meat, fiber, and alcohol, and intake of phytoestrogen, vitamin D, iron, and folate associated with breast cancer are reviewed. These nutritional factors have a variety of associations with breast cancer risk. Type of fat consumed has different effects on risk of breast cancer: consumption of meat is associated with heterocyclic amine (HCA) exposure; different types of plant fiber have various effects on breast cancer risk; alcohol consumption may increase the risk of breast cancer by producing acetaldehyde and reactive oxygen species (ROS); intake of phytoestrogen may reduce risk of breast cancer through genomic and non-genomic action; vitamin D can reduce the risk of breast cancer by inhibiting the process of cancer invasion and metastasis; intake of dietary iron may lead to oxidative stress, DNA damage, and lipid peroxidation; and lower intake of folate may be linked to a higher risk of breast cancer.
Collapse
|
26
|
Pan SY, Gao SH, Lin RC, Zhou SF, Dong HG, Tang MK, Yu ZL, Ko KM. New perspectives on dietary-derived treatments and food safety-antinomy in a new era. Crit Rev Food Sci Nutr 2016; 55:1836-59. [PMID: 24915382 DOI: 10.1080/10408398.2011.654286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite the advances in science and technology and wide use of chemical drugs, dietary intervention (or food therapy) remains useful in preventing or treating many human diseases. A huge body of evidence shows that the dietary pattern or habit is also an important contributing factor to the development of chronic diseases such as hypertension, type 2 diabetes, hyperlipidemia, and cancers. In recent years, over-the-counter health foods, nutraceuticals, and plant-derived medicinal products have been gaining popularity all over the world, particularly in developed countries. Unfortunately, owing to the contamination with various harmful substances in foods and the presence of toxic food components, food-borne diseases have also become increasingly problematic. Incidents of food poisonings or tainted food have been increasing worldwide, particularly in China and other developing countries. Therefore, the government should put in a greater effort in enforcing food safety by improving the surveillance mechanism and exerting highest standards of quality control for foods.
Collapse
Affiliation(s)
- Si-Yuan Pan
- a Beijing University of Chinese Medicine , Beijing , China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Red meat, poultry, and fish intake and breast cancer risk among Hispanic and Non-Hispanic white women: The Breast Cancer Health Disparities Study. Cancer Causes Control 2016; 27:527-43. [PMID: 26898200 DOI: 10.1007/s10552-016-0727-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE There is suggestive but limited evidence for a relationship between meat intake and breast cancer (BC) risk. Few studies included Hispanic women. We investigated the association between meats and fish intake and BC risk among Hispanic and NHW women. METHODS The study included NHW (1,982 cases and 2,218 controls) and the US Hispanics (1,777 cases and 2,218 controls) from two population-based case-control studies. Analyses considered menopausal status and percent Native American ancestry. We estimated pooled ORs combining harmonized data from both studies, and study- and race-/ethnicity-specific ORs that were combined using fixed or random effects models, depending on heterogeneity levels. RESULTS When comparing highest versus lowest tertile of intake, among NHW we observed an association between tuna intake and BC risk (pooled OR 1.25; 95 % CI 1.05-1.50; trend p = 0.006). Among Hispanics, we observed an association between BC risk and processed meat intake (pooled OR 1.42; 95% CI 1.18-1.71; trend p < 0.001), and between white meat (OR 0.80; 95% CI 0.67-0.95; trend p = 0.01) and BC risk, driven by poultry. All these findings were supported by meta-analysis using fixed or random effect models and were restricted to estrogen receptor-positive tumors. Processed meats and poultry were not associated with BC risk among NHW women; red meat and fish were not associated with BC risk in either race/ethnic groups. CONCLUSIONS Our results suggest the presence of ethnic differences in associations between meat and BC risk that may contribute to BC disparities.
Collapse
|
28
|
de Carvalho AM, Carioca AAF, Fisberg RM, Qi L, Marchioni DM. Joint association of fruit, vegetable, and heterocyclic amine intake with DNA damage levels in a general population. Nutrition 2016; 32:260-4. [DOI: 10.1016/j.nut.2015.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
|
29
|
Conti L, Crebelli R. Evaluation of the mutagenicity of simple substituted quinoxalines in Salmonella typhimurium. Drug Chem Toxicol 2015; 39:213-6. [PMID: 26365056 DOI: 10.3109/01480545.2015.1079917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Limited information is available on the genotoxicity of simple quinoxalines, distinct from the food related carcinogenic derivatives bearing an aromatic amino group. Isolated positive results, with no apparent structure-activity relationships, were reported in earlier studies on alkyl substituted quinoxalines, raising a safety concern in some regulatory authorities in view of the potential human exposure related to their use as food flavors. In order to elucidate the genotoxic hazard posed by simple quinoxalines, in this work a random set of mono- and bi-substituted methyl, chloro- and hydroxyl- quinoxalines have been tested in an OECD-compliant bacterial reversion test (TG 471). The results obtained do not highlight any genotoxic potential in the set of quinoxalines examined, and suggest that this may be a common trait for other simple substituted quinoxalines. Earlier published positive findings were not confirmed in this work, which call for a cautious approach in the use of literature data for regulatory purpose.
Collapse
Affiliation(s)
- Luigi Conti
- a Department of Environment and Primary Prevention , Istituto Superiore di Sanità , Rome , Italy
| | - Riccardo Crebelli
- a Department of Environment and Primary Prevention , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
30
|
Dietary factors in the etiology of Parkinson's disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:672838. [PMID: 25688361 PMCID: PMC4320877 DOI: 10.1155/2015/672838] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The majority of cases do not arise from purely genetic factors, implicating an important role of environmental factors in disease pathogenesis. Well-established environmental toxins important in PD include pesticides, herbicides, and heavy metals. However, many toxicants linked to PD and used in animal models are rarely encountered. In this context, other factors such as dietary components may represent daily exposures and have gained attention as disease modifiers. Several in vitro, in vivo, and human epidemiological studies have found a variety of dietary factors that modify PD risk. Here, we critically review findings on association between dietary factors, including vitamins, flavonoids, calorie intake, caffeine, alcohol, and metals consumed via food and fatty acids and PD. We have also discussed key data on heterocyclic amines that are produced in high-temperature cooked meat, which is a new emerging field in the assessment of dietary factors in neurological diseases. While more research is clearly needed, significant evidence exists that specific dietary factors can modify PD risk.
Collapse
|
31
|
Li N, Bhattacharya P, Karavalakis G, Williams K, Gysel N, Rivera-Rios N. Emissions from commercial-grade charbroiling meat operations induce oxidative stress and inflammatory responses in human bronchial epithelial cells. Toxicol Rep 2014; 1:802-811. [PMID: 28962293 PMCID: PMC5598377 DOI: 10.1016/j.toxrep.2014.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023] Open
Abstract
Commercial charbroiling emissions are a significant source of ambient particulate matter (PM) in urban settings. The objective of this study was to determine whether organic extract of PM emissions from commercial charbroiling meat operations could induce an inflammatory response in human bronchial epithelial cells and whether this effect was mediated by oxidative stress. PM samples were collected during cooking hamburgers on a commercial-grade under-fired charbroiler and sequentially extracted with water and methanol to obtain the aqueous PM suspension (AqPM) and organic extract (OE). The pro-oxidative and pro-inflammatory effects of OE were assessed using human bronchial epithelial cell line BEAS-2B. While AqPM did not have any effect, OE effectively induced the expression of heme oxygennase-1 and cyclooxygenase-2 in BEAS-2B cells. OE also up-regulated the levels of IL-6, IL-8, and prostaglandin E2. OE-induced cellular inflammatory response could be effectively suppressed by the antioxidant N-acetyl cysteine, nuclear factor (erythroid-derived 2)-like 2 activator sulforaphane and p38 MAPK inhibitor SB203580. In conclusion, organic chemicals emitted from commercial charbroiling meat operations could induce an inflammatory response in human bronchial epithelial cells, which was mediated by oxidative stress and p38 MAPK.
Collapse
Key Words
- AqPM, aqueous PM suspension
- COX, cyclooxygenase
- Commercial charbroiling meat emissions
- DEP, diesel exhaust particles
- Environmental and occupational health
- HO-1, heme oxygenase-1
- Human bronchial epithelial cells
- Inflammatory response
- MAPK, mitogen activated protein kinase
- NAC, N-acetyl cysteine
- OC, organic carbon
- OE, organic extract
- Oxidative stress
- PAH, polycyclic aromatic hydrocarbon
- PG, prostaglandin
- PM, particulate matter
- SFN, sulforaphane
- SOD2, superoxide dismutase 2
- TSLP, thymic stromal lymphopoietin
- UFP, ultrafine particles
- p38 MAPK
Collapse
Affiliation(s)
- Ning Li
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Poulomi Bhattacharya
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Georgios Karavalakis
- Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, Riverside, CA, USA
| | - Keisha Williams
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Nicholas Gysel
- Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, Riverside, CA, USA
| | - Nachamari Rivera-Rios
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Nowak A, Śliżewska K, Błasiak J, Libudzisz Z. The influence of Lactobacillus casei DN 114 001 on the activity of faecal enzymes and genotoxicity of faecal water in the presence of heterocyclic aromatic amines. Anaerobe 2014; 30:129-36. [PMID: 25280921 DOI: 10.1016/j.anaerobe.2014.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/01/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
High activity of bacterial enzymes in human colon and genotoxicity of faecal water (FW) are biomarkers of the harmful action of microbiota. The aim of the present study was to assess the activity of β-glucuronidase and β-glucosidase and the genotoxicity of FW in vitro after incubation with 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) or 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP) and probiotic Lactobacillus casei DN 114 001 (Actimel). Our results indicate, that IQ and PhIP greatly increased the activity of faecal enzymes (it was up to four times higher, as measured by spectrophotometric methods) and the genotoxicity of FW (% DNA in the tail was up to 3.2 times higher, as evaluated by the comet assay on Caco-2 cells) in 15 individuals from three age-dependent groups (breast-fed children, adults aged 30-40 years, elderly aged 75-85 years). Lb. casei DN 114 001 decreased the activity of faecal enzymes and the genotoxicity of FW exposed to PhIP and IQ mostly to control values. The activity of faecal enzymes after incubation with IQ was reduced by 71.8% in the FW of children, 37.5% in adults and 64.2% in elderly (β-glucuronidase); as well as by 59.9% in children and 87.9% in elderly (β-glucosidase). For PhIP the reduction was by 59.0% in the FW of children, 50.0% in adults and 81.2% in elderly (β-glucuronidase) and by 20.2% in children, 20.7% in adults and 84.1% in elderly (β-glucosidase). Lb. casei DN 114 001 also decreased the genotoxicity of FW to the greatest extent in adults after incubation with IQ (by 65.4%) and PhIP (by 69.6%) and it was found to correlate positively with the decrease in faecal enzymes activity. In conclusion, Lb. casei DN 114 001 may exert the protective effects against genotoxic and possibly pro-carcinogenic effects of food processing-derived chemicals present in faecal water.
Collapse
Affiliation(s)
- Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Zdzisława Libudzisz
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| |
Collapse
|
33
|
Mandair D, Rossi RE, Pericleous M, Whyand T, Caplin ME. Prostate cancer and the influence of dietary factors and supplements: a systematic review. Nutr Metab (Lond) 2014; 11:30. [PMID: 24976856 PMCID: PMC4073189 DOI: 10.1186/1743-7075-11-30] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/24/2014] [Indexed: 12/20/2022] Open
Abstract
Background Prostate cancer is the second most common cause of cancer worldwide after lung cancer. There is increasing evidence that diet and lifestyle plays a crucial role in prostate cancer biology and tumourigenesis. Prostate cancer itself represents a good model of cancer in which to look for chemopreventive agents due to the high disease prevalence, slowly progressive nature, and long latency period. Dietary agents have gained considerable attention, often receiving much publicity in the media. Aim To review the key evidence available for potential chemopreventive nutrients. Methods The methodology for this review involved a PubMed search from 1990 to 2013 using the key-words “diet and prostate cancer”, “nutrition and prostate cancer”, “dietary factors and prostate cancer”, “prostate cancer epidemiology”, “prostate cancer prevention”, “prostate cancer progression”. Results Red meat, dietary fat and milk intake should be minimised as they appear to increase the risk of prostate cancer. Fruit and vegetables and polyphenols may be preventive in prostate cancer, but further studies are needed to draw more solid conclusions and to clarify their role in patients with an established diagnosis of prostate cancer. Selenium and vitamin supplements cannot be advocated for the prevention of prostate cancer and indeed higher doses may be associated with a worse prognosis. There is no specific evidence regarding benefits of probiotics or prebiotics in prostate cancer. Conclusions From the wealth of evidence available, many recommendations can be made although more randomised control trials are required. These need to be carefully designed due to the many confounding factors and heterogeneity of the population.
Collapse
Affiliation(s)
- Dalvinder Mandair
- Centre for Gastroenterology, Royal Free Hospital, Pond Street, London NW3 2QG, UK ; Cancer Institute, University College London, Huntley Street, London, UK
| | - Roberta Elisa Rossi
- Centre for Gastroenterology, Royal Free Hospital, Pond Street, London NW3 2QG, UK ; Department of Pathophysiology and Organ Transplant, Universita' degli Studi di Milano and Gastroenterology Unit II, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marinos Pericleous
- Centre for Gastroenterology, Royal Free Hospital, Pond Street, London NW3 2QG, UK
| | - Tara Whyand
- Department of Nutrition and Dietetics, Royal Free Hospital, London, UK
| | - Martyn Evan Caplin
- Centre for Gastroenterology, Royal Free Hospital, Pond Street, London NW3 2QG, UK
| |
Collapse
|
34
|
Ripa L, Mee C, Sjö P, Shamovsky I. Theoretical Studies of the Mechanism of N-Hydroxylation of Primary Aromatic Amines by Cytochrome P450 1A2: Radicaloid or Anionic? Chem Res Toxicol 2014; 27:265-78. [DOI: 10.1021/tx400376u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lena Ripa
- Department of Medicinal Chemistry, RIA iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Christine Mee
- Genetic Toxicology, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K
| | - Peter Sjö
- Department of Medicinal Chemistry, RIA iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Igor Shamovsky
- Department of Medicinal Chemistry, RIA iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| |
Collapse
|
35
|
Woziwodzka A, Gołuński G, Wyrzykowski D, Kaźmierkiewicz R, Piosik J. Caffeine and other methylxanthines as interceptors of food-borne aromatic mutagens: inhibition of Trp-P-1 and Trp-P-2 mutagenic activity. Chem Res Toxicol 2013; 26:1660-73. [PMID: 24102551 DOI: 10.1021/tx4002513] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Caffeine is one of the most important biologically active food components. In this article, we demonstrate that caffeine and other methylxanthines significantly reduce the mutagenic activity of two food-derived heterocyclic aromatic amines, Trp-P-1 and Trp-P-2 in the Salmonella typhimurium TA98 strain. Moreover, protection against Trp-P-1-induced mutagenicity was independent of liver S9 enzymatic fraction, suggesting that mechanisms other than modulation of mutagen bioactivation can contribute to the observed protective effects. UV-vis spectroscopy and computational studies revealed that methylxanthines intercept Trp-P-1 and Trp-P-2 in noncovalent molecular complexes, with association constants (KAC) in the 10(2) M(-1) range. Enthalpy values (ΔH about -30 kJ·mol(-1)) of mutagen-methylxanthine heterocomplexation obtained microcalorimetrically correspond to stacking (π-π) interactions. Finally, we demonstrated that the biological activity of Trp-P-1 and Trp-P-2 is strictly dependent on the presence of the mutagen in a free (unbound with methylxanthine) form, suggesting that mutagen sequestration in stacking heterocomplexes with methylxanthines can decrease its bioavailability and diminish its biological effects.
Collapse
Affiliation(s)
- Anna Woziwodzka
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG , Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | | | |
Collapse
|
36
|
Kataoka H, Inoue T, Ikekita N, Saito K. Development of exposure assessment method based on the analysis of urinary heterocyclic amines as biomarkers by on-line in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 2013; 406:2171-8. [DOI: 10.1007/s00216-013-7420-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/21/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
37
|
Imaoka T, Nishimura M, Doi K, Tani S, Ishikawa KI, Yamashita S, Ushijima T, Imai T, Shimada Y. Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis. Int J Cancer 2013; 134:1529-38. [PMID: 24105445 DOI: 10.1002/ijc.28480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/27/2013] [Indexed: 11/06/2022]
Abstract
Although various mechanisms have been inferred for combinatorial actions of multiple carcinogens, these mechanisms have not been well demonstrated in experimental carcinogenesis models. We evaluated mammary carcinogenesis initiated by combined exposure to various doses of radiation and chemical carcinogens. Female rats at 7 weeks of age were γ-irradiated (0.2-2 Gy) and/or exposed to 1-methyl-1-nitrosourea (MNU) (20 or 40 mg/kg, single intraperitoneal injection) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (40 mg/kg/day by gavage for 10 days) and were observed until 50 weeks of age. The incidence of mammary carcinoma increased steadily as a function of radiation dose in the absence of chemicals; mathematical analysis supported an additive increase when radiation was combined with a chemical carcinogen, irrespective of the chemical species and its dose. Hras mutations were characteristic of carcinomas that developed after chemical carcinogen treatments and were overrepresented in carcinomas induced by the combination of radiation and MNU (but not PhIP), indicating an interaction of radiation and MNU at the level of initiation. The expression profiles of seven classifier genes, previously shown to distinguish two classes of rat mammary carcinomas, categorized almost all examined carcinomas that developed after individual or combined treatments with radiation (1 Gy) and chemicals as belonging to a single class; more comprehensive screening using microarrays and a separate test sample set failed to identify differences in gene expression profiles among these carcinomas. These results suggest that a complex, multilevel interaction underlies the combinatorial action of radiation and chemical carcinogens in the experimental model.
Collapse
Affiliation(s)
- Tatsuhiko Imaoka
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Japan; Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kataoka H, Inoue T, Saito K, Kato H, Masuda K. Analysis of heterocyclic amines in hair by on-line in-tube solid-phase microextraction coupled with liquid chromatography−tandem mass spectrometry. Anal Chim Acta 2013; 786:54-60. [DOI: 10.1016/j.aca.2013.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/03/2013] [Accepted: 05/05/2013] [Indexed: 11/25/2022]
|
39
|
Raman M, Ambalam P, Kondepudi KK, Pithva S, Kothari C, Patel AT, Purama RK, Dave J, Vyas B. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 2013; 4:181-92. [PMID: 23511582 PMCID: PMC3669163 DOI: 10.4161/gmic.23919] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Colorectal Cancer (CRC) is the second leading cause of cancer-related mortality and is the fourth most common malignant neoplasm in USA. Escaping apoptosis and cell mutation are the prime hallmarks of cancer. It is apparent that balancing the network between DNA damage and DNA repair is critical in preventing carcinogenesis. One-third of cancers might be prevented by nutritious healthy diet, maintaining healthy weight and physical activity. In this review, an attempt is made to abridge the role of carcinogen in colorectal cancer establishment and prognosis, where special attention has been paid to food-borne mutagens and functional role of beneficial human gut microbiome in evading cancer. Further the significance of tailor-made prebiotics, probiotics and synbiotics in cancer management by bio-antimutagenic and desmutagenic activity has been elaborated. Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host. Prebiotics are a selectively fermentable non-digestible oligosaccharide or ingredient that brings specific changes, both in the composition and/or activity of the gastrointestinal microflora, conferring health benefits. Synbiotics are a combination of probiotic bacteria and the growth promoting prebiotic ingredients that purport "synergism."
Collapse
Affiliation(s)
- Maya Raman
- Department of Biotechnology; Bhupat and Jyoti Mehta School of Biosciences and Bioengineering; Indian Institute of Technology; Chennai, India
| | - Padma Ambalam
- Department of Biotechnology; Christ College; Rajkot, India,Correspondence to: Padma Ambalam,
| | | | - Sheetal Pithva
- Department of Biosciences; Saurashtra University; Rajkot, India
| | - Charmy Kothari
- Department of Biotechnology; Christ College; Rajkot, India
| | - Arti T. Patel
- SMC College of Dairy Science; Anand Agricultural University; Anand, India
| | | | | | - B.R.M. Vyas
- Department of Biosciences; Saurashtra University; Rajkot, India
| |
Collapse
|
40
|
Klenovics KS, Boor P, Somoza V, Celec P, Fogliano V, Sebeková K. Advanced glycation end products in infant formulas do not contribute to insulin resistance associated with their consumption. PLoS One 2013; 8:e53056. [PMID: 23301020 PMCID: PMC3534663 DOI: 10.1371/journal.pone.0053056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/27/2012] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Infant formula-feeding is associated with reduced insulin sensitivity. In rodents and healthy humans, advanced glycation end product (AGE)-rich diets exert diabetogenic effects. In comparison with human breast-milk, infant formulas contain high amounts of AGEs. We assessed the role of AGEs in infant-formula-consumption-associated insulin resistance. METHODS Total plasma levels of N(ε)-(carboxymethyl)lysine (CML), AGEs-associated fluorescence (λ(ex) = 370 nm/λ(em) = 445 nm), soluble adhesion molecules, markers of micro- binflammation (hsCRP), oxidative stress (malondialdehyde, 8-isoprostanes) and leptinemia were determined, and correlated with insulin sensitivity in a cross-sectional study in 166 healthy term infants aged 3-to-14 months, subdivided according to feeding regimen (breast-milk- vs. infant formula-fed) and age (3-to-6-month-olds, 7-to-10-month-olds, and 11-to-14-month-old infants). Effects of the consumption of low- vs. high-CML-containing formulas were assessed. 36 infants aged 5.8 ± 0.3 months were followed-up 7.5 ± 0.3 months later. RESULTS Cross-sectional study: 3-to-6-month-olds and 7-to-10-month-old formula-fed infants presented higher total plasma CML levels and AGEs-associated fluorescence (p<0.01, both), while only the 3-to-6-month-olds displayed lower insulin sensitivity (p<0.01) than their breast-milk-fed counterparts. 3-to-6-month-olds fed low-CML-containing formulas presented lower total plasma CML levels (p<0.01), but similar insulin sensitivity compared to those on high-CML-containing formulas. Markers of oxidative stress and inflammation, levels of leptin and adhesion molecules did not differ significantly between the groups. Follow-up study: at initial investigation, the breast-milk-consuming infants displayed lower total plasma CML levels (p<0.01) and AGEs-associated fluorescence (p<0.05), but higher insulin sensitivity (p<0.05) than the formulas-consuming infants. At follow-up, the groups did not differ significantly in either determined parameter. CONCLUSIONS In healthy term infants, high dietary load with CML does not play a pathophysiological role in the induction of infant formula-associated insulin resistance. Whether a high load of AGEs in early childhood affects postnatal programming remains to be elucidated.
Collapse
Affiliation(s)
- Kristína Simon Klenovics
- Department of Clinical and Experimental Pharmacotherapy, Medical Faculty, Slovak Medical University, Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
41
|
Uccello M, Malaguarnera G, Basile F, D'agata V, Malaguarnera M, Bertino G, Vacante M, Drago F, Biondi A. Potential role of probiotics on colorectal cancer prevention. BMC Surg 2012; 12 Suppl 1:S35. [PMID: 23173670 PMCID: PMC3499195 DOI: 10.1186/1471-2482-12-s1-s35] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Colorectal cancer represents the most common malignancy of the gastrointestinal tract. Owing to differences in dietary habits and lifestyle, this neoplasm is more common in industrialized countries than in developing ones. Evidence from a wide range of sources supports the assumption that the link between diet and colorectal cancer may be due to an imbalance of the intestinal microflora. Discussion Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a healthy benefit on the host, and they have been investigated for their protective anti-tumor effects. In vivo and molecular studies have displayed encouraging findings that support a role of probiotics in colorectal cancer prevention. Summary Several mechanisms could explain the preventive action of probiotics against colorectal cancer onset. They include: alteration of the intestinal microflora; inactivation of cancerogenic compounds; competition with putrefactive and pathogenic microbiota; improvement of the host’s immune response; anti-proliferative effects via regulation of apoptosis and cell differentiation; fermentation of undigested food; inhibition of tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Mario Uccello
- International PhD programme in Neuropharmacology, University of Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shamovsky I, Ripa L, Blomberg N, Eriksson LA, Hansen P, Mee C, Tyrchan C, O'Donovan M, Sjö P. Theoretical Studies of Chemical Reactivity of Metabolically Activated Forms of Aromatic Amines toward DNA. Chem Res Toxicol 2012; 25:2236-52. [DOI: 10.1021/tx300313b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Igor Shamovsky
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Niklas Blomberg
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Leif A. Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-412 96 Göteborg, Sweden
| | - Peter Hansen
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Christine Mee
- Genetic Toxicology, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom
| | - Christian Tyrchan
- Department of Medicinal Chemistry, CVGI iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Mike O'Donovan
- Genetic Toxicology, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom
| | - Peter Sjö
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| |
Collapse
|
43
|
Rounds L, Havens CM, Feinstein Y, Friedman M, Ravishankar S. Plant extracts, spices, and essential oils inactivate Escherichia coli O157:H7 and reduce formation of potentially carcinogenic heterocyclic amines in cooked beef patties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3792-3799. [PMID: 22397498 DOI: 10.1021/jf204062p] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Meats need to be heated to inactivate foodborne pathogens such as Escherichia coli O157:H7. High-temperature treatment used to prepare well-done meats increases the formation of carcinogenic heterocyclic amines (HCAs). We evaluated the ability of plant extracts, spices, and essential oils to simultaneously inactivate E. coli O157:H7 and suppress HCA formation in heated hamburger patties. Ground beef with added antimicrobials was inoculated with E. coli O157:H7 (10(7) CFU/g). Patties were cooked to reach 45 °C at the geometric center, flipped, and cooked for 5 min. Samples were then taken for microbiological and mass spectrometry analysis of HCAs. Some compounds were inhibitory only against E. coli or HCA formation, while some others inhibited both. Addition of 5% olive or apple skin extracts reduced E. coli O157:H7 populations to below the detection limit and by 1.6 log CFU/g, respectively. Similarly, 1% lemongrass oil reduced E. coli O157:H7 to below detection limits, while clove bud oil reduced the pathogen by 1.6 log CFU/g. The major heterocyclic amines 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were concurrently reduced with the addition of olive extract by 79.5% and 84.3% and with apple extract by 76.1% and 82.1%, respectively. Similar results were observed with clove bud oil: MeIQx and PhIP were reduced by 35% and 52.1%, respectively. Addition of onion powder decreased formation of PhIP by 94.3%. These results suggest that edible natural plant compounds have the potential to prevent foodborne infections as well as carcinogenesis in humans consuming heat-processed meat products.
Collapse
Affiliation(s)
- Liliana Rounds
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | |
Collapse
|
44
|
Ollberding NJ, Wilkens LR, Henderson BE, Kolonel LN, Le Marchand L. Meat consumption, heterocyclic amines and colorectal cancer risk: the Multiethnic Cohort Study. Int J Cancer 2012; 131:E1125-33. [PMID: 22438055 DOI: 10.1002/ijc.27546] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/20/2012] [Indexed: 01/04/2023]
Abstract
Greater consumption of red and processed meat has been associated with an increased risk of colorectal cancer in several recent meta-analyses. Heterocyclic amines (HCAs) have been hypothesized to underlie this association. In this prospective analysis conducted within the Multiethnic Cohort Study, we examined whether greater consumption of total, red or processed meat was associated with the risk of colorectal cancer among 165,717 participants who completed a detailed food frequency questionnaire at baseline. In addition, we examined whether greater estimated intake of HCAs was associated with the risk of colorectal cancer among 131,763 participants who completed a follow-up questionnaire that included a meat-cooking module. A total of 3,404 and 1,757 invasive colorectal cancers were identified from baseline to the end of follow-up and from the date of administration of the meat-cooking module to the end of follow-up, respectively. Proportional hazard models were used to estimate basic and multivariable-adjusted relative risks (RRs) and 95% confidence intervals for colorectal cancer associated with dietary exposures. In multivariable models, no association with the risk of colorectal cancer was detected for density-adjusted total meat (RR(Q5 vs. Q1) = 0.93 [0.83-1.05]), red meat (RR = 1.02 [0.91-1.16]) or processed meat intake (RR = 1.06 [0.94-1.19]) or for total (RR = 0.90 [0.76-1.05]) or specific HCA intake whether comparing quintiles of dietary exposure or using continuous variables. Although our results do not support a role for meat or for HCAs from meat in the etiology of colorectal cancer, we cannot rule out the possibility of a modest effect.
Collapse
|
45
|
|
46
|
Major JM, Cross AJ, Watters JL, Hollenbeck AR, Graubard BI, Sinha R. Patterns of meat intake and risk of prostate cancer among African-Americans in a large prospective study. Cancer Causes Control 2011; 22:1691-8. [PMID: 21971816 PMCID: PMC3403708 DOI: 10.1007/s10552-011-9845-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/15/2011] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Given the large racial differences in prostate cancer risk, further investigation of diet and prostate cancer is warranted among high-risk groups. The purpose of this study was to examine the association between type of meat intake and prostate cancer risk among African-American men. METHODS In the large, prospective NIH-AARP Diet and Health Study, we analyzed baseline (1995-1996) data from African-American participants, aged 50-71 years. Incident prostate cancer cases (n = 1,089) were identified through 2006. Dietary and risk factor data were ascertained by questionnaires administered at baseline. Cox models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) within intake quantiles. RESULTS Neither white nor processed meat intake was associated with prostate cancer, regardless of meat-cooking method. Red meats cooked at high temperatures were associated with an increased risk of prostate cancer (HR = 1.18, 95% CI = 1.00-1.38 and HR = 1.22, 95% CI = 1.03-1.44, for the upper two intake tertiles). Intake of the heterocyclic amine (HCA), 2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline (DiMeIQx) was positively associated with prostate cancer (HR = 1.30; 95% CI = 1.05-1.61, p = 0.02). No associations were observed for intake of other HCAs. CONCLUSION Red meats cooked at high temperatures were positively associated with prostate cancer risk among African-American men. Further studies are needed to replicate these findings.
Collapse
Affiliation(s)
- Jacqueline M Major
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 6120 Executive Boulevard, Rockville, MD 20852, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Ambalam P, Dave J, Nair BM, Vyas B. In vitro Mutagen binding and antimutagenic activity of human Lactobacillus rhamnosus 231. Anaerobe 2011; 17:217-22. [DOI: 10.1016/j.anaerobe.2011.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/20/2011] [Accepted: 07/01/2011] [Indexed: 02/03/2023]
|
48
|
Shamovsky I, Ripa L, Börjesson L, Mee C, Nordén B, Hansen P, Hasselgren C, O’Donovan M, Sjö P. Explanation for Main Features of Structure–Genotoxicity Relationships of Aromatic Amines by Theoretical Studies of Their Activation Pathways in CYP1A2. J Am Chem Soc 2011; 133:16168-85. [DOI: 10.1021/ja206427u] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Igor Shamovsky
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Lena Börjesson
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Christine Mee
- Genetic Toxicology, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - Bo Nordén
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Peter Hansen
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | | | - Mike O’Donovan
- Genetic Toxicology, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - Peter Sjö
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| |
Collapse
|
49
|
Fu Z, Deming SL, Fair AM, Shrubsole MJ, Wujcik DM, Shu XO, Kelley M, Zheng W. Well-done meat intake and meat-derived mutagen exposures in relation to breast cancer risk: the Nashville Breast Health Study. Breast Cancer Res Treat 2011; 129:919-28. [PMID: 21537933 DOI: 10.1007/s10549-011-1538-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/19/2011] [Indexed: 01/07/2023]
Abstract
Previous studies of the association of meat intake and meat-derived mutagen exposure with breast cancer risk have produced inconsistent results. We evaluated this association in a population-based case-control study of incident breast cancer conducted in Nashville, Tennessee, United States, including 2,386 breast cancer cases and 1,703 healthy women controls. Telephone interviews were conducted to obtain information related to meat intake including amount, cooking methods, and doneness levels, as well as other known or hypothesized risk factors for breast cancer. Unconditional logistic regression was used to derive odds ratios (ORs) after adjusting for potential confounders. High intake of red meat was associated with a significantly elevated risk of breast cancer (P-trend < 0.001). The association was particularly strong for high intake of well-done red meat (P-trend < 0.001), with an adjusted OR of 1.5 (95% CI = 1.3-1.9) for the highest versus the lowest quartile. Associations between red meat and breast cancer risk were slightly stronger for postmenopausal women than for premenopausal women. Meat-derived mutagens such as 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline, were significantly associated with increased breast cancer risk among postmenopausal women only (P-trend = 0.002 and 0.003, respectively). The results from this study provide strong support for the hypotheses that high red meat intake and meat-derived mutagen exposure may be associated with an increase in breast cancer risk.
Collapse
Affiliation(s)
- Zhenming Fu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th floor, Suite 800, Nashville, TN 37203-1738, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lanou AJ, Svenson B. Reduced cancer risk in vegetarians: an analysis of recent reports. Cancer Manag Res 2010; 3:1-8. [PMID: 21407994 PMCID: PMC3048091 DOI: 10.2147/cmr.s6910] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This report reviews current evidence regarding the relationship between vegetarian eating patterns and cancer risk. Although plant-based diets including vegetarian and vegan diets are generally considered to be cancer protective, very few studies have directly addressed this question. Most large prospective observational studies show that vegetarian diets are at least modestly cancer protective (10%-12% reduction in overall cancer risk) although results for specific cancers are less clear. No long-term randomized clinical trials have been conducted to address this relationship. However, a broad body of evidence links specific plant foods such as fruits and vegetables, plant constituents such as fiber, antioxidants and other phytochemicals, and achieving and maintaining a healthy weight to reduced risk of cancer diagnosis and recurrence. Also, research links the consumption of meat, especially red and processed meats, to increased risk of several types of cancer. Vegetarian and vegan diets increase beneficial plant foods and plant constituents, eliminate the intake of red and processed meat, and aid in achieving and maintaining a healthy weight. The direct and indirect evidence taken together suggests that vegetarian diets are a useful strategy for reducing risk of cancer.
Collapse
Affiliation(s)
- Amy Joy Lanou
- Department of Health and Wellness, University of North Carolina Asheville, Asheville, NC, USA
| | | |
Collapse
|