1
|
O’Donovan SD, Cavill R, Wimmenauer F, Lukas A, Stumm T, Smirnov E, Lenz M, Ertaylan G, Jennen DGJ, van Riel NAW, Driessens K, Peeters RLM, de Kok TMCM. Application of transfer learning to predict drug-induced human in vivo gene expression changes using rat in vitro and in vivo data. PLoS One 2023; 18:e0292030. [PMID: 38032940 PMCID: PMC10688741 DOI: 10.1371/journal.pone.0292030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/11/2023] [Indexed: 12/02/2023] Open
Abstract
The liver is the primary site for the metabolism and detoxification of many compounds, including pharmaceuticals. Consequently, it is also the primary location for many adverse reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line models are often used to evaluate potential toxic effects of a novel compound or candidate drug. However, relating the results of animal and in vitro studies to relevant clinical outcomes for the human in vivo situation still proves challenging. In this study, we incorporate principles of transfer learning within a deep artificial neural network allowing us to leverage the relative abundance of rat in vitro and in vivo exposure data from the Open TG-GATEs data set to train a model to predict the expected pattern of human in vivo gene expression following an exposure given measured human in vitro gene expression. We show that domain adaptation has been successfully achieved, with the rat and human in vitro data no longer being separable in the common latent space generated by the network. The network produces physiologically plausible predictions of human in vivo gene expression pattern following an exposure to a previously unseen compound. Moreover, we show the integration of the human in vitro data in the training of the domain adaptation network significantly improves the temporal accuracy of the predicted rat in vivo gene expression pattern following an exposure to a previously unseen compound. In this way, we demonstrate the improvements in prediction accuracy that can be achieved by combining data from distinct domains.
Collapse
Affiliation(s)
- Shauna D. O’Donovan
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven Artificial Intelligence Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rachel Cavill
- Dept. of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | - Florian Wimmenauer
- Dept. of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | - Alexander Lukas
- Dept. of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | - Tobias Stumm
- Dept. of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | - Evgueni Smirnov
- Dept. of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michael Lenz
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- Preventive Cardiology and Preventative Medicine – Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gokhan Ertaylan
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Sustainable Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Danyel G. J. Jennen
- Dept. of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Natal A. W. van Riel
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven Artificial Intelligence Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kurt Driessens
- Dept. of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ralf L. M. Peeters
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. of Advanced Computing Sciences, Maastricht University, Maastricht, The Netherlands
| | - Theo M. C. M. de Kok
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Comparative Analysis of Transcriptional Responses to Genotoxic and Non-Genotoxic Agents in the Blood Cell Model TK6 and the Liver Model HepaRG. Int J Mol Sci 2022; 23:ijms23073420. [PMID: 35408779 PMCID: PMC8998745 DOI: 10.3390/ijms23073420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Transcript signatures are a promising approach to identify and classify genotoxic and non-genotoxic compounds and are of interest as biomarkers or for future regulatory application. Not much data, however, is yet available about the concordance of transcriptional responses in different cell types or tissues. Here, we analyzed transcriptomic responses to selected genotoxic food contaminants in the human p53-competent lymphoblastoid cell line TK6 using RNA sequencing. Responses to treatment with five genotoxins, as well as with four non-genotoxic liver toxicants, were compared with previously published gene expression data from the human liver cell model HepaRG. A significant overlap of the transcriptomic changes upon genotoxic stress was detectable in TK6 cells, whereas the comparison with the HepaRG model revealed considerable differences, which was confirmed by bioinformatic data mining for cellular upstream regulators or pathways. Taken together, the study presents a transcriptomic signature for genotoxin exposure in the human TK6 blood cell model. The data demonstrate that responses in different cell models have considerable variations. Detection of a transcriptomic genotoxin signature in blood cells indicates that gene expression analyses of blood samples might be a valuable approach to also estimate responses to toxic exposure in target organs such as the liver.
Collapse
|
3
|
O’Donovan SD, Driessens K, Lopatta D, Wimmenauer F, Lukas A, Neeven J, Stumm T, Smirnov E, Lenz M, Ertaylan G, Jennen DGJ, van Riel NAW, Cavill R, Peeters RLM, de Kok TMCM. Use of deep learning methods to translate drug-induced gene expression changes from rat to human primary hepatocytes. PLoS One 2020; 15:e0236392. [PMID: 32780735 PMCID: PMC7418976 DOI: 10.1371/journal.pone.0236392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
In clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep learning techniques to translate the pattern of gene expression measured following an exposure in rodents to humans, circumventing the current reliance on orthologs, and also from in vitro to in vivo experimental designs. Of the applied deep learning architectures applied in this study the convolutional neural network (CNN) and a deep artificial neural network with bottleneck architecture significantly outperform classical machine learning techniques in predicting the time series of gene expression in primary human hepatocytes given a measured time series of gene expression from primary rat hepatocytes following exposure in vitro to a previously unseen compound across multiple toxicologically relevant gene sets. With a reduction in average mean absolute error across 76 genes that have been shown to be predictive for identifying carcinogenicity from 0.0172 for a random regression forest to 0.0166 for the CNN model (p < 0.05). These deep learning architecture also perform well when applied to predict time series of in vivo gene expression given measured time series of in vitro gene expression for rats.
Collapse
Affiliation(s)
- Shauna D. O’Donovan
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Kurt Driessens
- Dept. of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Daniel Lopatta
- Dept. of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Florian Wimmenauer
- Dept. of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Alexander Lukas
- Dept. of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Jelmer Neeven
- Dept. of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Tobias Stumm
- Dept. of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Evgueni Smirnov
- Dept. of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Michael Lenz
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- Preventive Cardiology and Preventative Medicine—Center for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gokhan Ertaylan
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Danyel G. J. Jennen
- Dept. of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Natal A. W. van Riel
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Rachel Cavill
- Dept. of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Ralf L. M. Peeters
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Theo M. C. M. de Kok
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Dept. of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Takeiri A, Matsuzaki K, Motoyama S, Yano M, Harada A, Katoh C, Tanaka K, Mishima M. High-content imaging analyses of γH2AX-foci and micronuclei in TK6 cells elucidated genotoxicity of chemicals and their clastogenic/aneugenic mode of action. Genes Environ 2019; 41:4. [PMID: 30766621 PMCID: PMC6362597 DOI: 10.1186/s41021-019-0117-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background The in vitro micronucleus (MN) test is an important component of a genotoxicity test battery that evaluates chemicals. Although the standard method of manually scoring micronucleated (MNed) cells by microscope is a reliable and standard method, it is laborious and time-consuming. A high-throughput assay system for detecting MN cells automatically has long been desired in the fields of pharmaceutical development or environmental risk monitoring. Although the MN test per se cannot clarify whether the mode of MN induction is aneugenic or clastogenic, this clarification may well be made possible by combining the MN test with an evaluation of γH2AX, a sensitive marker of DNA double strand breaks (DSB). In the present study, we aimed to establish a high-content (HC) imaging assay that automatically detects micronuclei (MNi) and simultaneously measures γH2AX foci in human lymphoblastoid TK6 cells. Results TK6 cells were fixed on the bottom of each well in 96-well plates hypotonically, which spreads the cells thinly to detach MNi from the primary nuclei. Then, the number of MNi and immunocytochemically-stained γH2AX foci were measured using an imaging analyzer. The system correctly judged 4 non-genotoxins and 13 genotoxins, which included 9 clastogens and 4 aneugens representing various genotoxic mechanisms, such as DNA alkylation, cross-linking, topoisomerase inhibition, and microtubule disruption. Furthermore, all the clastogens induced both γH2AX foci and MNi, while the aneugens induced only MNi, not γH2AX foci; therefore, the HC imaging assay clearly discriminated the aneugens from the clastogens. Additionally, the test system could feasibly analyze cell cycle, to add information about a chemical’s mode of action. Conclusions A HC imaging assay to detect γH2AX foci and MNi in TK6 cells was established, and the assay provided information on the aneugenic/clastogenic mode of action. Electronic supplementary material The online version of this article (10.1186/s41021-019-0117-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Takeiri
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Kaori Matsuzaki
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Shigeki Motoyama
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Mariko Yano
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Asako Harada
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Chiaki Katoh
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Kenji Tanaka
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| | - Masayuki Mishima
- Fuji Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513 Japan
| |
Collapse
|
5
|
Bleomycin analogues preferentially cleave at the transcription start sites of actively transcribed genes in human cells. Int J Biochem Cell Biol 2017; 85:56-65. [PMID: 28167289 DOI: 10.1016/j.biocel.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 01/23/2023]
Abstract
Bleomycin (BLM) is a cancer chemotherapeutic agent that is used in the treatment of several types of tumours. The cytotoxicity of three BLM analogues, BLM Z, 6'-deoxy-BLM Z and zorbamycin (ZBM), was determined in human HeLa cells in comparison with BLM. It was found that the IC50 values were 2.9μM for 6'-deoxy-BLM Z, 3.2μM for BLM Z, 4.4μM for BLM and 7.9μM for ZBM in HeLa cells. Using next-generation Illumina DNA sequencing techniques, the genome-wide cleavage of DNA by the BLM analogues was determined in human HeLa cells and compared with BLM. It was ascertained that BLM, 6'-deoxy-BLM Z and ZBM preferentially cleaved at the transcription start sites of actively transcribed genes in human cells. The degree of preferential cleavage at the transcription start sites was quantified and an inverse correlation with the IC50 values was observed. This indicated that the degree of preferential cleavage at transcription start sites is an important component in determining the cytotoxicity of BLM analogues.
Collapse
|
6
|
Páez-Franco JC, González-Sánchez I, Gutiérrez-Nájera NA, Valencia-Turcotte LG, Lira-Rocha A, Cerbón MA, Rodríguez-Sotres R. Proteomic Profiling Reveals the Induction of UPR in Addition to DNA Damage Response in HeLa Cells Treated With the Thiazolo[5,4-b]Quinoline Derivative D3ClP. J Cell Biochem 2016; 118:1164-1173. [DOI: 10.1002/jcb.25753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/28/2016] [Indexed: 12/27/2022]
Affiliation(s)
- José Carlos Páez-Franco
- Departamento de Bioquímica; Facultad de Química; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Ignacio González-Sánchez
- Departamento de Biología; Facultad de Química; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Nora A. Gutiérrez-Nájera
- Consorcio de Estructura de Proteínas; Instituto Nacional de Medicina Genómica; Mexico City Mexico
| | - Lilián G. Valencia-Turcotte
- Departamento de Bioquímica; Facultad de Química; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Alfonso Lira-Rocha
- Departamento de Farmacia; Facultad de Química; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Marco A. Cerbón
- Departamento de Biología; Facultad de Química; Universidad Nacional Autónoma de México; Mexico City Mexico
- Unidad de Investigación en Reproducción Humana; Instituto Nacional de Perinatología; Mexico City Mexico
| | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica; Facultad de Química; Universidad Nacional Autónoma de México; Mexico City Mexico
| |
Collapse
|
7
|
Mhaidat NM, Alzoubi KH, Khabour OF, Alawneh KZ, Raffee LA, Alsatari ES, Hussein EI, Bani-Hani KE. Assessment of genotoxicity of vincristine, vinblastine and vinorelbine in human cultured lymphocytes: a comparative study. Balkan J Med Genet 2016; 19:13-20. [PMID: 27785403 PMCID: PMC5026275 DOI: 10.1515/bjmg-2016-0002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vincristine (VCR), vinblastine (VBL) and vinorelbine (VRL) are anticancer agents from the Vinca alkaloid family that have the potential to induce genotoxic effect. The aim of the present study was to compare the genotoxic effect of VCR, VBL and VRL. Levels of 8-hydroxy-2-deoxy guanosine (8-OHdG) and sister chromatid exchanges (SCEs) were measured in cultured human blood lymphocytes treated with VCR, VBL and VRL at concentrations of 0.01 and 0.1 μg/mL. Results showed that VCR, VBL and VRL significantly increased the 8-OHdG levels (p <0.05), whereas it did not cause a significant increase in the frequencies of SCEs in human blood lymphocytes as compared to controls. On the other hand, all three agents significantly increased cells mitotic index (p <0.05). At both tested concentrations, the magnitude of the increase in 8-OHdG was VBL>VCR>VRL. In conclusion, VCR, VBL and VRL induce DNA damage as indicated by the increase in the 8-OHdG biomarker but with different magnitude.
Collapse
Affiliation(s)
- N M Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - K H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - O F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - K Z Alawneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - L A Raffee
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - E S Alsatari
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - E I Hussein
- Department of Biology, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - K E Bani-Hani
- Faculty of Medicine, Hashemite University, Zarqaa, Jordan
| |
Collapse
|
8
|
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, Corvi R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 795:7-30. [DOI: 10.1016/j.mrgentox.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
|
9
|
Plewa MJ, Wagner ED. Charting a New Path To Resolve the Adverse Health Effects of DBPs. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1190.ch001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael J. Plewa
- Department of Crop Sciences and the Center of Advanced Materials for the Purification of Water with Systems, Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Elizabeth D. Wagner
- Department of Crop Sciences and the Center of Advanced Materials for the Purification of Water with Systems, Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Kiyama R, Zhu Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell Mol Life Sci 2014; 71:2065-82. [PMID: 24399289 PMCID: PMC11113397 DOI: 10.1007/s00018-013-1544-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
We summarize updated information about DNA microarray-based gene expression profiling by focusing on its application to estrogenic chemicals. First, estrogenic chemicals, including natural/industrial estrogens and phytoestrogens, and the methods for detection and evaluation of estrogenic chemicals were overviewed along with a comprehensive list of estrogenic chemicals of natural or industrial origin. Second, gene expression profiling of chemicals using a focused microarray containing estrogen-responsive genes is summarized. Third, silent estrogens, a new type of estrogenic chemicals characterized by their estrogenic gene expression profiles without growth stimulative or inhibitory effects, have been identified so far exclusively by DNA microarray assay. Lastly, the prospect of a microarray assay is discussed, including issues such as commercialization, future directions of applications and quality control methods.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan,
| | | |
Collapse
|
11
|
Alzoubi K, Khabour O, Khader M, Mhaidat N, Al-Azzam S. Evaluation of vitamin B12 effects on DNA damage induced by paclitaxel. Drug Chem Toxicol 2013; 37:276-80. [DOI: 10.3109/01480545.2013.851686] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Sakai R, Kondo C, Oka H, Miyajima H, Kubo K, Uehara T. Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology 2013; 315:8-16. [PMID: 24211769 DOI: 10.1016/j.tox.2013.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 11/15/2022]
Abstract
The in vitro mammalian cytogenetic tests monitor chromosomal aberrations in cultured mammalian cells to test the mutagenicity of compounds. Although these tests are especially useful for evaluating the potential clastogenic effects of chemicals, false positives associated with excessive toxicity occur frequently. There is a growing demand for mechanism-based assays to confirm positive results from cytogenetic tests. We hypothesized that a toxicogenomic approach that is based on gene expression profiles could be used to investigate mechanisms of genotoxicity. Human lymphoblastoid TK6 cells were treated with each of eight different genotoxins that included six DNA damaging compounds-mitomycin C, methyl methanesulfonate, ethyl methanesulfonate, cisplatin, etoposide, hydroxyurea-and two compounds that do not damage DNA-colchicine and adenine. Cells were exposed to each compound for 4h, and Affymetrix U133A microarrays were then used to comprehensively examine gene expression. A statistical analysis was used to select biomarker candidates, and 103 probes met our statistical criteria. Expression of cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21 was ranked highest for discriminating DNA-damaging compounds. To further characterize the biological significance of alterations in gene expression, functional network analysis was performed with the 103 selected probes. Interestingly, a CDKN1A-centered interactome was identified as the most significant network. Together, these findings indicated that DNA-damaging compounds often induced changes in the expression of a large number of these 103 probes and that upregulation of CDKN1A was a common key feature of DNA damage stimuli. The utility of CDKN1A as a biomarker for assessing the genotoxicity of drug candidates was further evaluated; specifically, quantitative RT-PCR was used to assess the effects of 14 additional compounds-including DNA damaging genotoxins and genotoxins that do not damage DNA and five newly-synthesized drug candidates-on CDKN1A expression. In these assays, DNA damage-positive clastogens were clearly separated from DNA damage-negative compounds based on CDKN1A expression. In conclusion, CDKN1A may be a valuable biomarker for identifying DNA damage-inducing clastogens and as a follow-up assay for mammalian cytogenetic tests.
Collapse
Affiliation(s)
- Rina Sakai
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan; Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Chiaki Kondo
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hiroyuki Oka
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hirofumi Miyajima
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Kihei Kubo
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Takeki Uehara
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
13
|
Caiment F, Tsamou M, Jennen D, Kleinjans J. Assessing compound carcinogenicityin vitrousing connectivity mapping. Carcinogenesis 2013; 35:201-7. [DOI: 10.1093/carcin/bgt278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Kuehner S, Holzmann K, Speit G. Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol 2013; 87:1999-2012. [PMID: 23649840 DOI: 10.1007/s00204-013-1060-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
Gene expression analysis has been established as a tool for the characterization of genotoxic mechanisms of chemical mutagens. It has been suggested that expression analysis is capable of distinguishing compounds that cause DNA damage from those that interfere with mitotic spindle function. Formaldehyde (FA) is known to be a DNA-reactive substance which mainly induces chromosomal damage in cultured mammalian cells. However, there has been concern that FA might also induce leukemia-specific aneuploidies, although recent cytogenetic studies excluded a relevant aneugenic potential of FA. We now investigated whether gene expression profiling can be used as a molecular tool to further characterize FA's genotoxic mode of action and to differentiate between clastogenic and aneugenic activity. TK6 cells were exposed to FA for 4 and 24 h, and changes in gene expression were analyzed using a whole-genome human microarray. Results were compared to the expression profiles of two DNA-damaging clastogens (methyl methanesulfonate and ethyl methanesulfonate) and two aneugens (colcemid and vincristine). The genotoxic activity of FA, MMS and EMS under these conditions was confirmed by comet assay experiments. The gene expression profiles indicated that clastogens and aneugens induce discriminable gene expression patterns. Exposure of TK6 cells to FA led to a discrete gene expression pattern, and all toxicogenomics analyses revealed a closer relationship of FA with clastogens than with aneugens.
Collapse
Affiliation(s)
- Stefanie Kuehner
- Institut für Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Karlheinz Holzmann
- Microarray-Core Facility, Universitätsklinikum Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Günter Speit
- Institut für Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany. .,Institut für Humangenetik, Universität Ulm, 89069, Ulm, Germany.
| |
Collapse
|
15
|
da Silva Rocha LB, Dias Elias DB, Barbosa MC, Bandeira ICJ, Gonçalves RP. DNA damage in leukocytes of sickle cell anemia patients is associated with hydroxyurea therapy and with HBB*S haplotype. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:48-52. [DOI: 10.1016/j.mrgentox.2012.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022]
|
16
|
Effect of chemical mutagens and carcinogens on gene expression profiles in human TK6 cells. PLoS One 2012; 7:e39205. [PMID: 22723965 PMCID: PMC3377624 DOI: 10.1371/journal.pone.0039205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/18/2012] [Indexed: 12/19/2022] Open
Abstract
Characterization of toxicogenomic signatures of carcinogen exposure holds significant promise for mechanistic and predictive toxicology. In vitro transcriptomic studies allow the comparison of the response to chemicals with diverse mode of actions under controlled experimental conditions. We conducted an in vitro study in TK6 cells to characterize gene expression signatures of exposure to 15 genotoxic carcinogens frequently used in European industries. We also examined the dose-responsive changes in gene expression, and perturbation of biochemical pathways in response to these carcinogens. TK6 cells were exposed at 3 dose levels for 24 h with and without S9 human metabolic mix. Since S9 had an impact on gene expression (885 genes), we analyzed the gene expression data from cells cultures incubated with S9 and without S9 independently. The ribosome pathway was affected by all chemical-dose combinations. However in general, no similar gene expression was observed among carcinogens. Further, pathways, i.e. cell cycle, DNA repair mechanisms, RNA degradation, that were common within sets of chemical-dose combination were suggested by clustergram. Linear trends in dose–response of gene expression were observed for Trichloroethylene, Benz[a]anthracene, Epichlorohydrin, Benzene, and Hydroquinone. The significantly altered genes were involved in the regulation of (anti-) apoptosis, maintenance of cell survival, tumor necrosis factor-related pathways and immune response, in agreement with several other studies. Similarly in S9+ cultures, Benz[a]pyrene, Styrene and Trichloroethylene each modified over 1000 genes at high concentrations. Our findings expand our understanding of the transcriptomic response to genotoxic carcinogens, revealing the alteration of diverse sets of genes and pathways involved in cellular homeostasis and cell cycle control.
Collapse
|
17
|
Attia SM. Molecular cytogenetic evaluation of the mechanism of genotoxic potential of amsacrine and nocodazole in mouse bone marrow cells. J Appl Toxicol 2011; 33:426-33. [DOI: 10.1002/jat.1753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/10/2011] [Accepted: 09/10/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Sabry M. Attia
- Department of Pharmacology, College of Pharmacy; King Saud University; PO Box 11451; Riyadh; Saudi Arabia
| |
Collapse
|
18
|
Hashimoto K, Nakajima Y, Uematsu R, Matsumura S, Chatani F. Involvement of p53 function in different magnitude of genotoxic and cytotoxic responses in in vitro micronucleus assays. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 726:21-8. [DOI: 10.1016/j.mrgentox.2011.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022]
|
19
|
Morag A, Pasmanik-Chor M, Oron-Karni V, Rehavi M, Stingl JC, Gurwitz D. Genome-wide expression profiling of human lymphoblastoid cell lines identifies CHL1 as a putative SSRI antidepressant response biomarker. Pharmacogenomics 2011; 12:171-84. [PMID: 21332311 DOI: 10.2217/pgs.10.185] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS Selective serotonin reuptake inhibitors (SSRIs) are the most commonly used class of antidepressants for treating major depression. However, approximately 30% of patients do not respond sufficiently to first-line antidepressant drug treatment and require alternative therapeutics. Genome-wide studies searching for SSRI response DNA biomarkers or studies of candidate serotonin-related genes so far have given inconclusive or contradictory results. Here, we present an alternative transcriptome-based genome-wide approach for searching antidepressant drug-response biomarkers by using drug-effect phenotypes in human lymphoblastoid cell lines (LCLs). MATERIALS & METHODS We screened 80 LCLs from healthy adult female individuals for growth inhibition by paroxetine. A total of 14 LCLs with reproducible high and low sensitivities to paroxetine (seven from each phenotypic group) were chosen for genome-wide expression profiling with commercial microarrays. RESULTS The most notable genome-wide transcriptome difference between LCLs displaying high versus low paroxetine sensitivities was a 6.3-fold lower (p = 0.0000256) basal expression of CHL1, a gene coding for a neuronal cell adhesion protein implicated in correct thalamocortical circuitry, schizophrenia and autism. The microarray findings were confirmed by real-time PCR (36-fold lower CHL1 expression levels in the high paroxetine sensitivity group). Several additional genes implicated in synaptogenesis or in psychiatric disorders, including ARRB1, CCL5, DDX60, DDX60L, ENDOD1, ENPP2, FLT1, GABRA4, GAP43, MCTP2 and SPRY2, also differed by more than 1.5-fold and a p-value of less than 0.005 between the two paroxetine sensitivity groups, as confirmed by real-time PCR experiments. CONCLUSION Genome-wide transcriptional profiling of in vitro phenotyped LCLs identified CHL1 and additional genes implicated in synaptogenesis and brain circuitry as putative SSRI response biomarkers. This method might be used as a preliminary tool for searching for potential depression treatment biomarkers.
Collapse
Affiliation(s)
- Ayelet Morag
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
20
|
Antineoplastic activity of the thiazolo[5,4-b]quinoline derivative D3CLP in K-562 cells is mediated through effector caspases activation. Eur J Med Chem 2011; 46:2102-8. [DOI: 10.1016/j.ejmech.2011.02.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/17/2011] [Accepted: 02/24/2011] [Indexed: 12/17/2022]
|
21
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lynch AM, Sasaki JC, Elespuru R, Jacobson-Kram D, Thybaud V, De Boeck M, Aardema MJ, Aubrecht J, Benz RD, Dertinger SD, Douglas GR, White PA, Escobar PA, Fornace A, Honma M, Naven RT, Rusling JF, Schiestl RH, Walmsley RM, Yamamura E, van Benthem J, Kim JH. New and emerging technologies for genetic toxicity testing. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:205-223. [PMID: 20740635 DOI: 10.1002/em.20614] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/02/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing established an Emerging Technologies and New Strategies Workgroup to review the current State of the Art in genetic toxicology testing. The aim of the workgroup was to identify promising technologies that will improve genotoxicity testing and assessment of in vivo hazard and risk, and that have the potential to help meet the objectives of the IVGT. As part of this initiative, HESI convened a workshop in Washington, DC in May 2008 to discuss mature, maturing, and emerging technologies in genetic toxicology. This article collates the abstracts of the New and Emerging Technologies Workshop together with some additional technologies subsequently considered by the workgroup. Each abstract (available in the online version of the article) includes a section addressed specifically to the strengths, weaknesses, opportunities, and threats associated with the respective technology. Importantly, an overview of the technologies and an indication of how their use might be aligned with the objectives of IVGT are presented. In particular, consideration was given with regard to follow-up testing of positive results in the standard IVGT tests (i.e., Salmonella Ames test, chromosome aberration assay, and mouse lymphoma assay) to add weight of evidence and/or provide mechanism of action for improved genetic toxicity risk assessments in humans.
Collapse
|
23
|
Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011; 721:27-73. [PMID: 21238603 DOI: 10.1016/j.mrgentox.2010.12.015] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, United Kingdom.
| | | | | | | |
Collapse
|
24
|
Attene-Ramos MS, Wagner ED, Plewa MJ. Comparative human cell toxicogenomic analysis of monohaloacetic acid drinking water disinfection byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7206-12. [PMID: 20540539 DOI: 10.1021/es1000193] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The monohaloacetic acids (monoHAAs), iodoacetic, bromoacetic and chloroacetic acids are toxic disinfection byproducts. In vitro toxicological end points were integrated with DNA damage and repair pathway-focused toxicogenomic analyses to evaluate monoHAA-induced alterations of gene expression in normal nontransformed human cells. When compared to concurrent control transcriptome profiles, metabolic pathways involved in the cellular responses to toxic agents were identified and provided insight into the biological mechanisms of toxicity. Using the Database for Annotation, Visualization and Integrated Discovery to analyze the gene array data, the majority of the altered transcriptome profiles were associated with genes responding to DNA damage or those regulating cell cycle or apoptosis. The major pathways involved with altered gene expression were ATM, MAPK, p53, BRCA1, BRCA2, and ATR. These latter pathways highlight the involvement of DNA repair, especially the repair of double strand DNA breaks. All of the resolved pathways are involved in human cell stress response to DNA damage and regulate different stages in cell cycle progression or apoptosis.
Collapse
Affiliation(s)
- Matias S Attene-Ramos
- Department of Crop Sciences, College of Agricultural, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
25
|
Hashimoto K, Nakajima Y, Matsumura S, Chatani F. Comparison of four different treatment conditions of extended exposure in the in vitro micronucleus assay using TK6 lymphoblastoid cells. Regul Toxicol Pharmacol 2010; 59:28-36. [PMID: 20800082 DOI: 10.1016/j.yrtph.2010.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/27/2022]
Abstract
In the OECD Guideline 487, a total of four extended exposure treatment conditions are proposed for the in vitro micronucleus (MNvit) assay in the presence and absence of a cytokinesis block and with or without a recovery period. This guideline also states that rodent cell lines and human lymphocytes can be used as shown by many validated studies but that human cell lines such as TK6 and HepG2 are not yet validated. In this present study each extended exposure condition was characterized by investigation using TK6 cells and nine chemicals known to be able to induce micronucleus (MN) in rodent cell lines. The results revealed two concerns: six chemicals did not show significant MN induction in the 'cytokinesis block without recovery period'; two aneugens showed no dose-dependent cytotoxicity in the 'cytokinesis block with recovery period'. Further investigation revealed that 3-4 times higher spontaneous MN frequency than that in the other conditions is a possible reason for the low sensitivity, and this high spontaneous MN frequency was not observed in Chinese hamster lung cells under the identical treatment condition. With regard to the two conditions without cytokinesis block, two negative substances were evaluated and found to be negative, suggesting the validity of the TK6 test system for these conditions. Although our findings showed a few concerns for the treatment with cytokinesis block, the TK6 cells were considered to be a reliable cell line to be used for detecting potential inducers of MN in the in vitro micronucleus assay based on the overall results.
Collapse
Affiliation(s)
- Kiyohiro Hashimoto
- Development Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 17-85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | |
Collapse
|
26
|
Mathijs K, Brauers KJJ, Jennen DGJ, Lizarraga D, Kleinjans JCS, van Delft JHM. Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic compounds. Mutagenesis 2010; 25:561-8. [DOI: 10.1093/mutage/geq040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
27
|
Van Hummelen P, Sasaki J. State-of-the-art genomics approaches in toxicology. Mutat Res 2010; 705:165-71. [PMID: 20466069 DOI: 10.1016/j.mrrev.2010.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/30/2010] [Indexed: 12/14/2022]
Abstract
Genomics may be an effective tool in decreasing the lengthy drug development process and reducing compound attrition. It can generate specific gene expression profiles induced by chemicals that can be linked to dose and response. Toxicogenomics can identify sensitive biomarkers of early deleterious effects, distinguish genotoxic from non-genotoxic carcinogens and can provide information on the mechanism of action. It can help bridge in vitro to in vivo findings and provide context for preclinical data and thus address human health risks. Issues and shortcomings that still need to be resolved or improved for efficient incorporation of genomics in drug development and environmental toxicology research include data analysis, data interpretation tools and accessible data repositories. In addition, implementation of toxicogenomics in early screening or drug discovery phases and effective use of this information by project teams remains a challenge.
Collapse
|
28
|
Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:304-14. [PMID: 20120018 DOI: 10.1002/em.20546] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrogen sulfide (H(2)S), a metabolic end product of sulfate-reducing bacteria, represents a genotoxic insult to the colonic epithelium, which may also be linked with chronic disorders such as ulcerative colitis and colorectal cancer. This study defined the early (30 min) and late (4 hr) response of nontransformed human intestinal epithelial cells (FHs 74 Int) to H(2)S. The genotoxicity of H(2)S was measured using the single-cell gel electrophoresis (comet) assay. Changes in gene expression were analyzed after exposure to a genotoxic, but not cytotoxic, concentration of H(2)S (500 muM H(2)S) using pathway-specific quantitative RT-PCR gene arrays. H(2)S was genotoxic in a concentration range from 250 to 2,000 microM, which is similar to concentrations found in the large intestine. Significant changes in gene expression were predominantly observed at 4 hr, with the greatest responses by PTGS2 (COX-2; 7.92-fold upregulated) and WNT2 (7.08-fold downregulated). COX-2 was the only gene upregulated at both 30 min and 4 hr. Overall, the study demonstrates that H(2)S modulates the expression of genes involved in cell-cycle progression and triggers both inflammatory and DNA repair responses. This study confirms the genotoxic properties of H(2)S in nontransformed human intestinal epithelial cells and identifies functional pathways by which this bacterial metabolite may perturb cellular homeostasis and contribute to the onset of chronic intestinal disorders.
Collapse
Affiliation(s)
- Matias S Attene-Ramos
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
29
|
Muellner MG, Attene-Ramos MS, Hudson ME, Wagner ED, Plewa MJ. Human cell toxicogenomic analysis of bromoacetic acid: a regulated drinking water disinfection by-product. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:205-14. [PMID: 19753638 DOI: 10.1002/em.20530] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The disinfection of drinking water is a major achievement in protecting the public health. However, current disinfection methods also generate disinfection by-products (DBPs). Many DBPs are cytotoxic, genotoxic, teratogenic, and carcinogenic and represent an important class of environmentally hazardous chemicals that may carry long-term human health implications. The objective of this research was to integrate in vitro toxicology with focused toxicogenomic analysis of the regulated DBP, bromoacetic acid (BAA) and to evaluate modulation of gene expression involved in DNA damage/repair and toxic responses, with nontransformed human cells. We generated transcriptome profiles for 168 genes with 30 min and 4 hr exposure times that did not induce acute cytotoxicity. Using qRT-PCR gene arrays, the levels of 25 transcripts were modulated to a statistically significant degree in response to a 30 min treatment with BAA (16 transcripts upregulated and nine downregulated). The largest changes were observed for RAD9A and BRCA1. The majority of the altered transcript profiles are genes involved in DNA repair, especially the repair of double strand DNA breaks, and in cell cycle regulation. With 4 hr of treatment the expression of 28 genes was modulated (12 upregulated and 16 downregulated); the largest fold changes were in HMOX1 and FMO1. This work represents the first nontransformed human cell toxicogenomic study with a regulated drinking water disinfection by-product. These data implicate double strand DNA breaks as a feature of BAA exposure. Future toxicogenomic studies of DBPs will further strengthen our limited knowledge in this growing area of drinking water research.
Collapse
Affiliation(s)
- Mark G Muellner
- College of Agricultural, Consumer and Environmental Sciences, Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
30
|
Mathijs K, Brauers KJJ, Jennen DGJ, Boorsma A, van Herwijnen MHM, Gottschalk RWH, Kleinjans JCS, van Delft JHM. Discrimination for Genotoxic and Nongenotoxic Carcinogens by Gene Expression Profiling in Primary Mouse Hepatocytes Improves with Exposure Time. Toxicol Sci 2009; 112:374-84. [DOI: 10.1093/toxsci/kfp229] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
31
|
Lee ASJ, Kahatapitiya P, Kramer B, Joya JE, Hook J, Liu R, Schevzov G, Alexander IE, McCowage G, Montarras D, Gunning PW, Hardeman EC. Methylguanine DNA methyltransferase-mediated drug resistance-based selective enrichment and engraftment of transplanted stem cells in skeletal muscle. Stem Cells 2009; 27:1098-108. [PMID: 19415780 DOI: 10.1002/stem.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell replacement therapy using stem cell transplantation holds much promise in the field of regenerative medicine. In the area of hematopoietic stem cell transplantation, O(6)-methylguanine-DNA methyltransferase MGMT (P140K) gene-mediated drug resistance-based in vivo enrichment strategy of donor stem cells has been shown to achieve up to 75%-100% donor cell engraftment in the host's hematopoietic stem cell compartment following repeated rounds of selection. This strategy, however, has not been applied in any other organ system. We tested the feasibility of using this MGMT (P140K)-mediated enrichment strategy for cell transplantation in skeletal muscles of mice. We demonstrate that muscle cells expressing an MGMT (P140K) drug resistance gene can be protected and selectively enriched in response to alkylating chemotherapy both in vitro and in vivo. Upon transplantation of MGMT (P140K)-expressing male CD34(+ve) donor stem cells isolated from regenerating skeletal muscle into injured female muscle treated with alkylating chemotherapy, donor cells showed enhanced engraftment in the recipient muscle 7 days following transplantation as examined by quantitative-polymerase chain reaction using Y-chromosome specific primers. Fluorescent in situ hybridization analysis using a Y-chromosome paint probe revealed donor-derived de novo muscle fiber formation in the recipient muscle 14 days following transplantation, with approximately 12.5% of total nuclei within the regenerated recipient muscle being of donor origin. Following engraftment, the chemo-protected donor CD34(+ve) cells induced substantial endogenous regeneration of the chemo-ablated host muscle that is otherwise unable to self-regenerate. We conclude that the MGMT (P140K)-mediated enrichment strategy can be successfully implemented in muscle.
Collapse
Affiliation(s)
- Antonio S J Lee
- Oncology Research Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ellinger-Ziegelbauer H, Fostel JM, Aruga C, Bauer D, Boitier E, Deng S, Dickinson D, Le Fevre AC, Fornace AJ, Grenet O, Gu Y, Hoflack JC, Shiiyama M, Smith R, Snyder RD, Spire C, Tanaka G, Aubrecht J. Characterization and interlaboratory comparison of a gene expression signature for differentiating genotoxic mechanisms. Toxicol Sci 2009; 110:341-52. [PMID: 19465456 DOI: 10.1093/toxsci/kfp103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The genotoxicity testing battery is highly sensitive for detection of chemical carcinogens. However, it features a low specificity and provides only limited mechanistic information required for risk assessment of positive findings. This is especially important in case of positive findings in the in vitro chromosome damage assays, because chromosome damage may be also induced secondarily to cell death. An increasing body of evidence indicates that toxicogenomic analysis of cellular stress responses provides an insight into mechanisms of action of genotoxicants. To evaluate the utility of such a toxicogenomic analysis we evaluated gene expression profiles of TK6 cells treated with four model genotoxic agents using a targeted high density real-time PCR approach in a multilaboratory project coordinated by the Health and Environmental Sciences Institute Committee on the Application of Genomics in Mechanism-based Risk Assessment. We show that this gene profiling technology produced reproducible data across laboratories allowing us to conclude that expression analysis of a relevant gene set is capable of distinguishing compounds that cause DNA adducts or double strand breaks from those that interfere with mitotic spindle function or that cause chromosome damage as a consequence of cytotoxicity. Furthermore, our data suggest that the gene expression profiles at early time points are most likely to provide information relevant to mechanisms of genotoxic damage and that larger gene expression arrays will likely provide richer information for differentiating molecular mechanisms of action of genotoxicants. Although more compounds need to be tested to identify a robust molecular signature, this study confirms the potential of toxicogenomic analysis for investigation of genotoxic mechanisms.
Collapse
|
33
|
Application of toxicogenomics to study mechanisms of genotoxicity and carcinogenicity. Toxicol Lett 2009; 186:36-44. [DOI: 10.1016/j.toxlet.2008.08.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 08/22/2008] [Indexed: 12/11/2022]
|
34
|
Padmanabhan S, Tripathi DN, Vikram A, Ramarao P, Jena GB. Methotrexate-induced cytotoxicity and genotoxicity in germ cells of mice: intervention of folic and folinic acid. Mutat Res 2009; 673:43-52. [PMID: 19110071 DOI: 10.1016/j.mrgentox.2008.11.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/23/2008] [Accepted: 11/29/2008] [Indexed: 05/27/2023]
Abstract
Methotrexate (MTX) is an anti-metabolite widely used in the treatment of neoplastic disorders, rheumatoid arthritis and psoriasis. The basis for its therapeutic efficacy is the inhibition of dihydrofolate reductase (DHFR), a key enzyme in the folic acid (FA) metabolism. FA is a water-soluble vitamin which is involved in the synthesis of purines and pyrimidines, the essential precursors of DNA. Folinic acid (FNA) is the reduced form of FA that circumvents the inhibition of DHFR. Folate supplementation during MTX therapy for psoriasis and inflammatory arthritis reduces both toxicity and side effects without compromising the efficacy. Further, FNA supplementation reduces the common side effects of MTX in the treatment of juvenile idiopathic arthritis. FA and FNA are reported to have protective effects on MTX-induced genotoxicity in the somatic cells; however their protective effects on the germ cells have not been much explored. Previously, we evaluated the cytotoxic and genotoxic effects of MTX in the germ cells of mice. In the present study, we have intervened FA and FNA for the protection of germ cell toxicity induced by MTX in male swiss mice. The animals were pre-treated with FA at the doses of 50, 100 and 200 microg/kg for 4 consecutive days per week and on day five; MTX was administered at the dose of 20mg/kg once. FNA was administered at the doses of 2.5, 5 and 10 mg/kg, 6 h (h) after single administration of MTX at the dose of 20 mg/kg. The dosing regimen was continued up to 10 weeks. The germ cell toxicity was evaluated using testes weight (wt), sperm count, sperm head morphology, sperm comet assay, histology, TUNEL and halo assay in testis. The results clearly demonstrate that prior administration of FA and post-treatment with FNA reduces the germ cell toxicity induced by MTX as evident from the decreased sperm head abnormalities, seminiferous tubule damage, sperm DNA damage, TUNEL positive cells and increased sperm counts. In the present study, we report that FA and FNA ameliorate the germ cell toxicity of MTX in mice.
Collapse
Affiliation(s)
- S Padmanabhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | | | | | | | | |
Collapse
|
35
|
Maluf S, Prá D, Friedrisch JR, Bittar C, da Silva MAL, Henriques JA, Silla L. Length of treatment and dose as determinants of mutagenicity in sickle cell disease patients treated with hydroxyurea. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:26-29. [PMID: 21791393 DOI: 10.1016/j.etap.2008.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/15/2008] [Accepted: 08/08/2008] [Indexed: 05/31/2023]
Abstract
Hydroxyurea (HU) is an antineoplastic drug widely used in the clinical management of patients with sickle cell disease (SCD), and many questions related with its use remain unresolved. Given the severity of SCD, HU benefits, although not thoroughly confirmed, seem to outweigh its potential carcinogenicity. This study aimed to assess the genotoxicity associated with HU dose and treatment length by evaluating mutagenicity in patients with SCD treated with HU (SCHU) using the cytokinesis-block micronucleus assay (CBMN) in white cells. The study was conducted with 35 individuals in the SCHU group and 34 controls matched according to age, sex and smoking habit. CBMN results showed an increase (p=0.032) in the number of micronuclei (MN), but not of nucleoplasmic bridges (NPB) or nuclear buds (NBUD) in the SCHU group. The increased frequency of MN in the SCHU group was significantly correlated with treatment length and final HU dose, which confirms that patients with SCD treated with HU should be carefully monitored to reduce the risk of carcinogenicity.
Collapse
Affiliation(s)
- Sharbel Maluf
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|