1
|
Chao MR, Chang YJ, Cooke MS, Hu CW. Multi-adductomics: Advancing mass spectrometry techniques for comprehensive exposome characterization. Trends Analyt Chem 2024; 180:117900. [PMID: 39246549 PMCID: PMC11375889 DOI: 10.1016/j.trac.2024.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Adductomics, an emerging field within the 'omics sciences, focuses on the formation and prevalence of DNA, RNA, and protein adducts induced by endogenous and exogenous agents in biological systems. These modifications often result from exposure to environmental pollutants, dietary components, and xenobiotics, impacting cellular functions and potentially leading to diseases such as cancer. This review highlights advances in mass spectrometry (MS) that enhance the detection of these critical modifications and discusses current and emerging trends in adductomics, including developments in MS instrument use, screening techniques, and the study of various biomolecular modifications from mono-adducts to complex hybrid crosslinks between different types of biomolecules. The review also considers challenges, including the need for specialized MS spectra databases and multi-omics integration, while emphasizing techniques to distinguish between exogenous and endogenous modifications. The future of adductomics possesses significant potential for enhancing our understanding of health in relation to environmental exposures and precision medicine.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
2
|
Cao M, Zhang X. DNA Adductomics: A Narrative Review of Its Development, Applications, and Future. Biomolecules 2024; 14:1173. [PMID: 39334939 PMCID: PMC11430648 DOI: 10.3390/biom14091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA adductomics is the global study of all DNA adducts and was first proposed in 2006 by the Matsuda group. Its development has been greatly credited to the advances in mass spectrometric techniques, particularly tandem and multiple-stage mass spectrometry. In fact, liquid chromatography-mass spectrometry (LC-MS)-based methods are virtually the sole technique with practicality for DNA adductomic studies to date. At present, DNA adductomics is primarily used as a tool to search for DNA adducts, known and unknown, providing evidence for exposure to exogenous genotoxins and/or for the molecular mechanisms of their genotoxicity. Some DNA adducts discovered in this way have the potential to predict cancer risks and/or to be associated with adverse health outcomes. DNA adductomics has been successfully used to identify and determine exogenous carcinogens that may contribute to the etiology of certain cancers, including bacterial genotoxins and an N-nitrosamine. Also using the DNA adductomic approach, multiple DNA adducts have been observed to show age dependence and may serve as aging biomarkers. These achievements highlight the capability and power of DNA adductomics in the studies of medicine, biological science, and environmental science. Nonetheless, DNA adductomics is still in its infancy, and great advances are expected in the future.
Collapse
Affiliation(s)
- Mengqiu Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Ragi N, Walmsley SJ, Jacobs FC, Rosenquist TA, Sidorenko VS, Yao L, Maertens LA, Weight CJ, Balbo S, Villalta PW, Turesky RJ. Screening DNA Damage in the Rat Kidney and Liver by Untargeted DNA Adductomics. Chem Res Toxicol 2024; 37:340-360. [PMID: 38194517 PMCID: PMC10922321 DOI: 10.1021/acs.chemrestox.3c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Air pollution, tobacco smoke, and red meat are associated with renal cell cancer (RCC) risk in the United States and Western Europe; however, the chemicals that form DNA adducts and initiate RCC are mainly unknown. Aristolochia herbaceous plants are used for medicinal purposes in Asia and worldwide. They are a significant risk factor for upper tract urothelial carcinoma (UTUC) and RCC to a lesser extent. The aristolochic acid (AA) 8-methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I), a component of Aristolochia herbs, contributes to UTUC in Asian cohorts and in Croatia, where AA-I exposure occurs from ingesting contaminated wheat flour. The DNA adduct of AA-I, 7-(2'-deoxyadenosin-N6-yl)-aristolactam I, is often detected in patients with UTUC, and its characteristic A:T-to-T:A mutational signature occurs in oncogenes and tumor suppressor genes in AA-associated UTUC. Identifying DNA adducts in the renal parenchyma and pelvis caused by other chemicals is crucial to gaining insights into unknown RCC and UTUC etiologies. We employed untargeted screening with wide-selected ion monitoring tandem mass spectrometry (wide-SIM/MS2) with nanoflow liquid chromatography/Orbitrap mass spectrometry to detect DNA adducts formed in rat kidneys and liver from a mixture of 13 environmental, tobacco, and dietary carcinogens that may contribute to RCC. Twenty DNA adducts were detected. DNA adducts of 3-nitrobenzanthrone (3-NBA), an atmospheric pollutant, and AA-I were the most abundant. The nitrophenanthrene moieties of 3-NBA and AA-I undergo reduction to their N-hydroxy intermediates to form 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) adducts. We also discovered a 2'-deoxycytidine AA-I adduct and dA and dG adducts of 10-methoxy-6-nitro-phenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-III), an AA-I isomer and minor component of the herbal extract assayed, signifying AA-III is a potent kidney DNA-damaging agent. The roles of AA-III, other nitrophenanthrenes, and nitroarenes in renal DNA damage and human RCC warrant further study. Wide-SIM/MS2 is a powerful scanning technology in DNA adduct discovery and cancer etiology characterization.
Collapse
Affiliation(s)
| | | | | | - Thomas A Rosenquist
- Department of Pharmacological Science, Stony Brook University, Stony Brook, New York 11794, United States
| | - Viktoriya S Sidorenko
- Department of Pharmacological Science, Stony Brook University, Stony Brook, New York 11794, United States
| | | | | | | | | | | | | |
Collapse
|
5
|
Guilbaud A, Ghanegolmohammadi F, Wang Y, Leng J, Kreymerman A, Gamboa Varela J, Garbern J, Elwell H, Cao F, Ricci-Blair E, Liang C, Balamkundu S, Vidoudez C, DeMott M, Bedi K, Margulies K, Bennett D, Palmer A, Barkley-Levenson A, Lee R, Dedon P. Discovery adductomics provides a comprehensive portrait of tissue-, age- and sex-specific DNA modifications in rodents and humans. Nucleic Acids Res 2023; 51:10829-10845. [PMID: 37843128 PMCID: PMC10639045 DOI: 10.1093/nar/gkad822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/27/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.
Collapse
Affiliation(s)
- Axel Guilbaud
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Farzan Ghanegolmohammadi
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yijun Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jiapeng Leng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jacqueline Gamboa Varela
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jessica Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hannah Elwell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fang Cao
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elisabeth M Ricci-Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cui Liang
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Seetharamsing Balamkundu
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kenneth Bedi
- University of Pennsylvania Cardiovascular Institute, Philadelphia, PA, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| |
Collapse
|
6
|
Martella G, Motwani NH, Khan Z, Sousa PFM, Gorokhova E, Motwani HV. Simultaneous RNA and DNA Adductomics Using Single Data-Independent Acquisition Mass Spectrometry Analysis. Chem Res Toxicol 2023; 36:1471-1482. [PMID: 37566384 PMCID: PMC10523582 DOI: 10.1021/acs.chemrestox.3c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Indexed: 08/12/2023]
Abstract
Adductomics studies are used for the detection and characterization of various chemical modifications (adducts) of nucleic acids and proteins. The advancements in liquid chromatography coupled with high-resolution tandem mass spectrometry (HRMS/MS) have resulted in efficient methods for qualitative and quantitative adductomics. We developed an HRMS-based method for the simultaneous analysis of RNA and DNA adducts in a single run and demonstrated its application using Baltic amphipods, useful sentinels of environmental disturbances, as test organisms. The novelty of this method is screening for RNA and DNA adducts by a single injection on an Orbitrap HRMS instrument using full scan and data-independent acquisition. The MS raw files were processed with an open-source program, nLossFinder, to identify and distinguish RNA and DNA adducts based on the characteristic neutral loss of ribonucleosides and 2'-deoxyribonucleosides, respectively. In the amphipods, in addition to the nearly 150 putative DNA adducts characterized earlier, we detected 60 putative RNA adducts. For the structural identification of the detected RNA adducts, the MODOMICS database was used. The identified RNA adducts included simple mono- and dimethylation and other larger functional groups on different ribonucleosides and deaminated product inosine. However, 54 of these RNA adducts are not yet structurally identified, and further work on their characterization may uncover new layers of information related to the transcriptome and help understand their biological significance. Considering the susceptibility of nucleic acids to environmental factors, including pollutants, the developed multi-adductomics methodology with further advancement has the potential to provide biomarkers for diagnostics of pollution effects in biota.
Collapse
Affiliation(s)
- Giulia Martella
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Nisha H. Motwani
- School
of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge SE-14189, Sweden
| | - Zareen Khan
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Pedro F. M. Sousa
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Elena Gorokhova
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| | - Hitesh V. Motwani
- Department
of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
7
|
Cooke MS, Chang YJ, Chen YR, Hu CW, Chao MR. Nucleic acid adductomics - The next generation of adductomics towards assessing environmental health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159192. [PMID: 36195140 DOI: 10.1016/j.scitotenv.2022.159192] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This Discussion article aims to explore the potential for a new generation of assay to emerge from cellular and urinary DNA adductomics which brings together DNA-RNA- and, to some extent, protein adductomics, to better understand the role of the exposome in environmental health. Components of the exposome have been linked to an increased risk of various, major diseases, and to identify the precise nature, and size, of risk, in this complex mixture of exposures, powerful tools are needed. Modification of nucleic acids (NA) is a key consequence of environmental exposures, and a goal of cellular DNA adductomics is to evaluate the totality of DNA modifications in the genome, on the basis that this will be most informative. Consequently, an approach which encompasses modifications of all nucleic acids (NA) would be potentially yet more informative. This article focuses on NA adductomics, which brings together the assessment of both DNA and RNA modifications, including modified (2'-deoxy)ribonucleosides (2'-dN/rN), modified nucleobases (nB), plus: DNA-DNA, RNA-RNA, DNA-RNA, DNA-protein, and RNA-protein crosslinks (DDCL, RRCL, DRCL, DPCL, and RPCL, respectively). We discuss the need for NA adductomics, plus the pros and cons of cellular vs. urinary NA adductomics, and present some evidence for the feasibility of this approach. We propose that NA adductomics provides a more comprehensive approach to the study of nucleic acid modifications, which will facilitate a range of advances, including the identification of novel, unexpected modifications e.g., RNA-RNA, and DNA-RNA crosslinks; key modifications associated with mutagenesis; agent-specific mechanisms; and adductome signatures of key environmental agents, leading to the dissection of the exposome, and its role in human health/disease, across the life course.
Collapse
Affiliation(s)
- Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
8
|
Saleh DM, Luo S, Ahmed OHM, Alexander DB, Alexander WT, Gunasekaran S, El-Gazzar AM, Abdelgied M, Numano T, Takase H, Ohnishi M, Tomono S, Hady RHAE, Fukamachi K, Kanno J, Hirose A, Xu J, Suzuki S, Naiki-Ito A, Takahashi S, Tsuda H. Assessment of the toxicity and carcinogenicity of double-walled carbon nanotubes in the rat lung after intratracheal instillation: a two-year study. Part Fibre Toxicol 2022; 19:30. [PMID: 35449069 PMCID: PMC9026941 DOI: 10.1186/s12989-022-00469-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Considering the expanding industrial applications of carbon nanotubes (CNTs), safety assessment of these materials is far less than needed. Very few long-term in vivo studies have been carried out. This is the first 2-year in vivo study to assess the effects of double walled carbon nanotubes (DWCNTs) in the lung and pleura of rats after pulmonary exposure. METHODS Rats were divided into six groups: untreated, Vehicle, 3 DWCNT groups (0.12 mg/rat, 0.25 mg/rat and 0.5 mg/rat), and MWCNT-7 (0.5 mg/rat). The test materials were administrated by intratracheal-intrapulmonary spraying (TIPS) every other day for 15 days. Rats were observed without further treatment until sacrifice. RESULTS DWCNT were biopersistent in the rat lung and induced marked pulmonary inflammation with a significant increase in macrophage count and levels of the chemotactic cytokines CCL2 and CCL3. In addition, the 0.5 mg DWCNT treated rats had significantly higher pulmonary collagen deposition compared to the vehicle controls. The development of carcinomas in the lungs of rats treated with 0.5 mg DWCNT (4/24) was not quite statistically higher (p = 0.0502) than the vehicle control group (0/25), however, the overall incidence of lung tumor development, bronchiolo-alveolar adenoma and bronchiolo-alveolar carcinoma combined, in the lungs of rats treated with 0.5 mg DWCNT (7/24) was statistically higher (p < 0.05) than the vehicle control group (1/25). Notably, two of the rats treated with DWCNT, one in the 0.25 mg group and one in the 0.5 mg group, developed pleural mesotheliomas. However, both of these lesions developed in the visceral pleura, and unlike the rats administered MWCNT-7, rats administered DWCNT did not have elevated levels of HMGB1 in their pleural lavage fluids. This indicates that the mechanism by which the mesotheliomas that developed in the DWCNT treated rats is not relevant to humans. CONCLUSIONS Our results demonstrate that the DWCNT fibers we tested are biopersistent in the rat lung and induce chronic inflammation. Rats treated with 0.5 mg DWCNT developed pleural fibrosis and lung tumors. These findings demonstrate that the possibility that at least some types of DWCNTs are fibrogenic and tumorigenic cannot be ignored.
Collapse
Affiliation(s)
- Dina Mourad Saleh
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Shengyong Luo
- College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Omnia Hosny Mohamed Ahmed
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - David B Alexander
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - William T Alexander
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Sivagami Gunasekaran
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ahmed M El-Gazzar
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelgied
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
- Department of Pediatrics and Human Development, Michigan State University, Michigan, USA
| | - Takamasa Numano
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medicine, Nagoya City University, Nagoya, Japan
| | - Makoto Ohnishi
- Japan Industrial Safety and Health Association, Japan Bioassay Research Center, Hadano, Kanagawa, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Randa Hussein Abd El Hady
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Katsumi Fukamachi
- Department of Neurotoxicology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun Kanno
- National Institute Hygienic Sciences, Kawasaki, Japan
| | | | - Jiegou Xu
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Lab Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
9
|
Guo J, Koopmeiners JS, Walmsley SJ, Villalta PW, Yao L, Murugan P, Tejpaul R, Weight CJ, Turesky RJ. The Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine Hair Dosimeter, DNA Adductomics Discovery, and Associations with Prostate Cancer Pathology Biomarkers. Chem Res Toxicol 2022; 35:703-730. [PMID: 35446561 PMCID: PMC9148444 DOI: 10.1021/acs.chemrestox.2c00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Well-done cooked red meat consumption is linked to aggressive prostate cancer (PC) risk. Identifying mutation-inducing DNA adducts in the prostate genome can advance our understanding of chemicals in meat that may contribute to PC. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic aromatic amine (HAA) formed in cooked meat, is a potential human prostate carcinogen. PhIP was measured in the hair of PC patients undergoing prostatectomy, bladder cancer patients under treatment for cystoprostatectomy, and patients treated for benign prostatic hyperplasia (BPH). PhIP hair levels were above the quantification limit in 123 of 205 subjects. When dichotomizing prostate pathology biomarkers, the geometric mean PhIP hair levels were higher in patients with intermediate and elevated-risk prostate-specific antigen values than lower-risk values <4 ng/mL (p = 0.03). PhIP hair levels were also higher in patients with intermediate and high-risk Gleason scores ≥7 compared to lower-risk Gleason score 6 and BPH patients (p = 0.02). PC patients undergoing prostatectomy had higher PhIP hair levels than cystoprostatectomy or BPH patients (p = 0.02). PhIP-DNA adducts were detected in 9.4% of the patients assayed; however, DNA adducts of other carcinogenic HAAs, and benzo[a]pyrene formed in cooked meat, were not detected. Prostate specimens were also screened for 10 oxidative stress-associated lipid peroxidation (LPO) DNA adducts. Acrolein 1,N2-propano-2'-deoxyguanosine adducts were detected in 54.5% of the patients; other LPO adducts were infrequently detected. Acrolein adducts were not associated with prostate pathology biomarkers, although DNA adductomic profiles differed between PC patients with low and high-grade Gleason scores. Many DNA adducts are of unknown origin; however, dG adducts of formaldehyde and a series of purported 4-hydroxy-2-alkenals were detected at higher abundance in a subset of patients with elevated Gleason scores. The PhIP hair biomarker and DNA adductomics data support the paradigm of well-done cooked meat and oxidative stress in aggressive PC risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher J Weight
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | | |
Collapse
|
10
|
Boysen G, Nookaew I. Current and Future Methodology for Quantitation and Site-Specific Mapping the Location of DNA Adducts. TOXICS 2022; 10:toxics10020045. [PMID: 35202232 PMCID: PMC8876591 DOI: 10.3390/toxics10020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023]
Abstract
Formation of DNA adducts is a key event for a genotoxic mode of action, and their presence is often used as a surrogate for mutation and increased cancer risk. Interest in DNA adducts are twofold: first, to demonstrate exposure, and second, to link DNA adduct location to subsequent mutations or altered gene regulation. Methods have been established to quantitate DNA adducts with high chemical specificity and to visualize the location of DNA adducts, and elegant bio-analytical methods have been devised utilizing enzymes, various chemistries, and molecular biology methods. Traditionally, these highly specific methods cannot be combined, and the results are incomparable. Initially developed for single-molecule DNA sequencing, nanopore-type technologies are expected to enable simultaneous quantitation and location of DNA adducts across the genome. Herein, we briefly summarize the current methodologies for state-of-the-art quantitation of DNA adduct levels and mapping of DNA adducts and describe novel single-molecule DNA sequencing technologies to achieve both measures. Emerging technologies are expected to soon provide a comprehensive picture of the exposome and identify gene regions susceptible to DNA adduct formation.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence:
| | - Intawat Nookaew
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Behl T, Rachamalla M, Najda A, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Chigurupati S, Vargas-De-La-Cruz C, Hobani YH, Mohan S, Goyal A, Katyal T, Solarska E, Bungau S. Applications of Adductomics in Chemically Induced Adverse Outcomes and Major Emphasis on DNA Adductomics: A Pathbreaking Tool in Biomedical Research. Int J Mol Sci 2021; 22:10141. [PMID: 34576304 PMCID: PMC8467560 DOI: 10.3390/ijms221810141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
Adductomics novel and emerging discipline in the toxicological research emphasizes on adducts formed by reactive chemical agents with biological molecules in living organisms. Development in analytical methods propelled the application and utility of adductomics in interdisciplinary sciences. This review endeavors to add a new dimension where comprehensive insights into diverse applications of adductomics in addressing some of society's pressing challenges are provided. Also focuses on diverse applications of adductomics include: forecasting risk of chronic diseases triggered by reactive agents and predicting carcinogenesis induced by tobacco smoking; assessing chemical agents' toxicity and supplementing genotoxicity studies; designing personalized medication and precision treatment in cancer chemotherapy; appraising environmental quality or extent of pollution using biological systems; crafting tools and techniques for diagnosis of diseases and detecting food contaminants; furnishing exposure profile of the individual to electrophiles; and assisting regulatory agencies in risk assessment of reactive chemical agents. Characterizing adducts that are present in extremely low concentrations is an exigent task and more over absence of dedicated database to identify adducts is further exacerbating the problem of adduct diagnosis. In addition, there is scope of improvement in sample preparation methods and data processing software and algorithms for accurate assessment of adducts.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; (T.B.); (A.S.); (S.S.); (N.S.)
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 33, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 33, Oman; (S.B.); (A.A.-H.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Yahya Hasan Hobani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 114, Saudi Arabia;
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 114, Saudi Arabia;
| | - Amit Goyal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, India;
| | - Taruna Katyal
- RBMCH Division, ICMR Head Quarters, Ramalingaswami Bhawan, Ansari Nagar, New Delhi 110029, India;
| | - Ewa Solarska
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| |
Collapse
|
12
|
Walmsley SJ, Guo J, Murugan P, Weight CJ, Wang J, Villalta PW, Turesky RJ. Comprehensive Analysis of DNA Adducts Using Data-Independent wSIM/MS 2 Acquisition and wSIM-City. Anal Chem 2021; 93:6491-6500. [PMID: 33844920 PMCID: PMC8675643 DOI: 10.1021/acs.analchem.1c00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel software has been created to comprehensively characterize covalent modifications of DNA through mass spectral analysis of enzymatically hydrolyzed DNA using the neutral loss of 2'-deoxyribose, a nearly universal MS2 fragmentation process of protonated 2'-deoxyribonucleosides. These covalent modifications termed DNA adducts form through xenobiotic exposures or by reaction with endogenous electrophiles and can induce mutations during cell division and initiate carcinogenesis. DNA adducts are typically present at trace levels in the human genome, requiring a very sensitive and comprehensive data acquisition and analysis method. Our software, wSIM-City, was created to process mass spectral data acquired by a wide selected ion monitoring (wSIM) with gas-phase fractionation and coupled to wide MS2 fragmentation. This untargeted approach can detect DNA adducts at trace levels as low as 1.5 adducts per 109 nucleotides. This level of sensitivity is sufficient for comprehensive analysis and characterization of DNA modifications in human specimens.
Collapse
Affiliation(s)
- Scott J Walmsley
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Jingshu Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Christopher J Weight
- Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland 44125, Ohio, United States
- Case Comprehensive Cancer Center, Cleveland 44106, Ohio, United States
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55455, Minnesota, United States
| |
Collapse
|
13
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
14
|
Hernandez-Castillo C, Termini J, Shuck S. DNA Adducts as Biomarkers To Predict, Prevent, and Diagnose Disease-Application of Analytical Chemistry to Clinical Investigations. Chem Res Toxicol 2020; 33:286-307. [PMID: 31638384 DOI: 10.1021/acs.chemrestox.9b00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Characterization of the chemistry, structure, formation, and metabolism of DNA adducts has been one of the most significant contributions to the field of chemical toxicology. This work provides the foundation to develop analytical methods to measure DNA adducts, define their relationship to disease, and establish clinical tests. Monitoring exposure to environmental and endogenous toxicants can predict, diagnose, and track disease as well as guide therapeutic treatment. DNA adducts are one of the most promising biomarkers of toxicant exposure owing to their stability, appearance in numerous biological matrices, and characteristic analytical properties. In addition, DNA adducts can induce mutations to drive disease onset and progression and can serve as surrogate markers of chemical exposure. In this perspective, we highlight significant advances made within the past decade regarding DNA adduct quantitation using mass spectrometry. We hope to expose a broader audience to this field and encourage analytical chemistry laboratories to explore how specific adducts may be related to various pathologies. One of the limiting factors in developing clinical tests to measure DNA adducts is cohort size; ideally, the cohort would allow for model development and then testing of the model to the remaining cohort. The goals of this perspective article are to (1) provide a summary of analyte levels measured using state-of-the-art analytical methods, (2) foster collaboration, and (3) highlight areas in need of further investigation.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - John Termini
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| | - Sarah Shuck
- Department of Molecular Medicine , Beckman Research Institute at City of Hope Duarte , California 91010 , United States
| |
Collapse
|
15
|
Shibata T, Uchida K. Protein adductomics: A comprehensive analysis of protein modifications by electrophiles. Free Radic Biol Med 2019; 144:218-222. [PMID: 30853395 DOI: 10.1016/j.freeradbiomed.2019.02.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022]
Abstract
Human individuals are continually exposed to various exogenous and endogenous reactive electrophiles, which readily react with nucleophilic biomacromolecules, such as protein, and form a variety of covalent adducts. The covalent modifications of protein are thought to be involved in various physiological and pathological processes. Recently, the "adductome", a new concept that represents the totality of covalent adducts bound to nucleophilic biomolecules, has been offered as a useful technique for characterizing essentially all reactive electrophilic compounds in biological samples. The primary advantage of this approach is that non-targeted comprehensive analysis can readily be extended to investigate covalent adduct pattern of different situation of exposure and thereby makes it possible to detect/identify not only known but also unknown adducts. In this review, we provide a summary of the concept and methodology of protein adductomics, especially focusing on redox protein adductomics.
Collapse
Affiliation(s)
- Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan; Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
16
|
Walmsley SJ, Guo J, Wang J, Villalta PW, Turesky RJ. Methods and Challenges for Computational Data Analysis for DNA Adductomics. Chem Res Toxicol 2019; 32:2156-2168. [PMID: 31549505 PMCID: PMC7127864 DOI: 10.1021/acs.chemrestox.9b00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Frequent exposure to chemicals in the environment, diet, and endogenous electrophiles leads to chemical modification of DNA and the formation of DNA adducts. Some DNA adducts can induce mutations during cell division and, when occurring in critical regions of the genome, can lead to the onset of disease, including cancer. The targeted analysis of DNA adducts over the past 30 years has revealed that the human genome contains many types of DNA damages. However, a long-standing limitation in conducting DNA adduct measurements has been the inability to screen for the total complement of DNA adducts derived from a wide range of chemicals in a single assay. With the advancement of high-resolution mass spectrometry (MS) instrumentation and new scanning technologies, nontargeted "omics" approaches employing data-dependent acquisition and data-independent acquisition methods have been established to simultaneously screen for multiple DNA adducts, a technique known as DNA adductomics. However, notable challenges in data processing must be overcome for DNA adductomics to become a mature technology. DNA adducts occur at low abundance in humans, and current softwares do not reliably detect them when using common MS data acquisition methods. In this perspective, we discuss contemporary computational tools developed for feature finding of MS data widely utilized in the disciplines of proteomics and metabolomics and highlight their limitations for conducting nontargeted DNA-adduct biomarker discovery. Improvements to existing MS data processing software and new algorithms for adduct detection are needed to develop DNA adductomics into a powerful tool for the nontargeted identification of potential cancer-causing agents.
Collapse
Affiliation(s)
- Scott J. Walmsley
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Tang Y, Zhang JL. Recent developments in DNA adduct analysis using liquid chromatography coupled with mass spectrometry. J Sep Sci 2019; 43:31-55. [PMID: 31573133 DOI: 10.1002/jssc.201900737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The formation of DNA adducts by genotoxic agents is an early event in cancer development, and it may lead to gene mutations, thereby initiating tumor development. The measurement of DNA adducts can provide critical information about the genotoxic potential of a chemical and its mechanism of carcinogenesis. In recent decades, liquid chromatography coupled with mass spectrometry has become the most important technique for analyzing DNA adducts. The improvements in resolution achievable with new chromatographic separation techniques coupled with the high specificity and sensitivity and wide dynamic range of new mass spectrometry systems have been used for both qualitative and quantitative analyses of DNA adducts. This review discusses the challenges in qualitative and quantitative analyses of DNA adducts by liquid chromatography coupled with mass spectrometry and highlights recent developments towards overcoming the limitations of liquid chromatography coupled with mass spectrometry methods. The key steps and new solutions, such as sample preparation, mass spectrometry fragmentation, and method validation, are summarized. In addition, the fundamental principles and latest advances in DNA adductomic approaches are reviewed.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P. R. China
| |
Collapse
|
18
|
Takeshita T, Kanaly RA. In vitro DNA/RNA Adductomics to Confirm DNA Damage Caused by Benzo[ a]pyrene in the Hep G2 Cell Line. Front Chem 2019; 7:491. [PMID: 31338364 PMCID: PMC6629907 DOI: 10.3389/fchem.2019.00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
In the development of new chemical substances, genetic toxicity evaluations are a high priority for safety risk management. Evaluation of the possibility of compound carcinogenicity with accuracy and at reasonable cost in the early stages of development by in vitro techniques is preferred. Currently, DNA damage-related in vitro genotoxicity tests are widely-used screening tools after which next generation toxicity testing may be applied to confirm DNA damage. DNA adductomics may be used to evaluate DNA damage in vitro, however confirmation of DNA adduct identities through comparison to authentic standards may be time-consuming and expensive processes. Considering this, a streamlined method for confirming putative DNA adducts that are detected by DNA adductomics may be useful. With this aim, in vitro DNA adductome methods in conjunction with in vitro RNA adductome methods may be proposed as a DNA adductome verification approach by which to eliminate false positive annotations. Such an approach was evaluated by conducting in vitro assays whereby Hep G2 cell lines that were exposed to or not exposed to benzo[a]pyrene were digested to their respective 2'-deoxynucleosides or ribonucleosides and analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) by comparative DNA and RNA adductomics through neutral loss targeting of the [M + H]+ > [M + H - 116]+ or [M + H]+ > [M + H -132]+ transitions over predetermined ranges. Comparisons of DNA adductome maps revealed putative DNA adducts that were detected in exposed cells but not in unexposed cells. Similarly, comparisons of RNA adductome maps revealed putative RNA adducts in exposed cells but not in unexposed cells. Taken together these experiments revealed that analogous forms of putative damage had occurred in both DNA and RNA which supported that putative DNA adducts detected by DNA adductomics were DNA adducts. High resolution mass spectrometry (HRMS) was utilized to confirm that putative nucleic acid adducts detected in both DNA and RNA were derived from benzo[a]pyrene exposure and these putative adducts were identified as 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene- (B[a]PDE)-type adducts. Overall, this study demonstrates the usefulness of utilizing DNA/RNA adductomics to screen for nucleic acid damage.
Collapse
Affiliation(s)
| | - Robert A. Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Yokohama, Japan
| |
Collapse
|
19
|
Preston GW, Phillips DH. Protein Adductomics: Analytical Developments and Applications in Human Biomonitoring. TOXICS 2019; 7:E29. [PMID: 31130613 PMCID: PMC6631498 DOI: 10.3390/toxics7020029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Proteins contain many sites that are subject to modification by electrophiles. Detection and characterisation of these modifications can give insights into environmental agents and endogenous processes that may be contributing factors to chronic human diseases. An untargeted approach, utilising mass spectrometry to detect modified amino acids or peptides, has been applied to blood proteins haemoglobin and albumin, focusing in particular on the N-terminal valine residue of haemoglobin and the cysteine-34 residue in albumin. Technical developments to firstly detect simultaneously multiple adducts at these sites and then subsequently to identify them are reviewed here. Recent studies in which the methods have been applied to biomonitoring human exposure to environmental toxicants are described. With advances in sensitivity, high-throughput handling of samples and robust quality control, these methods have considerable potential for identifying causes of human chronic disease and of identifying individuals at risk.
Collapse
Affiliation(s)
- George W Preston
- Environmental Research Group, Department of Analytical, Environmental and Forensic Science, School of Population Health and Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - David H Phillips
- Environmental Research Group, Department of Analytical, Environmental and Forensic Science, School of Population Health and Environmental Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
20
|
Emerging Technologies in Mass Spectrometry-Based DNA Adductomics. High Throughput 2019; 8:ht8020013. [PMID: 31091740 PMCID: PMC6630665 DOI: 10.3390/ht8020013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The measurement of DNA adducts, the covalent modifications of DNA upon the exposure to the environmental and dietary genotoxicants and endogenously produced electrophiles, provides molecular evidence for DNA damage. With the recent improvements in the sensitivity and scanning speed of mass spectrometry (MS) instrumentation, particularly high-resolution MS, it is now feasible to screen for the totality of DNA damage in the human genome through DNA adductomics approaches. Several MS platforms have been used in DNA adductomic analysis, each of which has its strengths and limitations. The loss of 2′-deoxyribose from the modified nucleoside upon collision-induced dissociation is the main transition feature utilized in the screening of DNA adducts. Several advanced data-dependent and data-independent scanning techniques originated from proteomics and metabolomics have been tailored for DNA adductomics. The field of DNA adductomics is an emerging technology in human exposure assessment. As the analytical technology matures and bioinformatics tools become available for analysis of the MS data, DNA adductomics can advance our understanding about the role of chemical exposures in DNA damage and disease risk.
Collapse
|
21
|
Triple quadrupole mass spectrometry comparative DNA adductomics of Hep G2 cells following exposure to safrole. Toxicol Lett 2019; 300:92-104. [DOI: 10.1016/j.toxlet.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022]
|
22
|
Cooke MS, Hu CW, Chang YJ, Chao MR. Urinary DNA adductomics - A novel approach for exposomics. ENVIRONMENT INTERNATIONAL 2018; 121:1033-1038. [PMID: 30392940 PMCID: PMC6279464 DOI: 10.1016/j.envint.2018.10.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/20/2018] [Indexed: 05/07/2023]
Abstract
The exposome is a concept that encompasses the totality of internal and external environmental exposures, from conception onwards. Evaluation of the exposome, across the lifecourse represents a significant challenge, e.g., methods/technology may simply not exist to comprehensively assess all exposures, or they may not be applicable to human populations, or may have insufficient sensitivity. Cellular DNA adductomics aims to determine the totality of DNA adducts in the cellular genome. However, application to human populations requires the necessarily invasive sampling of tissue, to obtain sufficient DNA for sensitive analysis, which can represent a logistical and IRB challenge, particularly when investigating vulnerable populations. To circumvent this, we recently applied DNA adductomics to urine, detecting a range of expected and unexpected 2'-deoxyribonucleoside DNA adducts. However, base excision repair, the main DNA repair pathway for non-bulky DNA adducts, and processes such as spontaneous depurination, generate nucleobase adducts. Herein we propose a strategy to simultaneously assess 2'-deoxyribonucleoside and nucleobase adducts, using a widely used mass spectrometic platform (i.e., triple quadrupole tandem mass spectrometry). This will provide a much needed DNA adductomic approach for non-invasively, biomonitoring environmental exposures, through assessing the totality of DNA adducts; contributing to the evaluation of the exposome, across the life-course.
Collapse
Affiliation(s)
- Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| | - Chiung-Wen Hu
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mu-Rong Chao
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
23
|
Esaka Y, Hisato K, Yamamoto T, Murakami H, Uno B. Evaluation of Type-A Endonucleases for the Quantitative Analysis of DNA Damage due to Exposure to Acetaldehyde Using Capillary Electrophoresis. ANAL SCI 2018; 34:901-906. [PMID: 30101884 DOI: 10.2116/analsci.18p087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The substrate selectivities of three endonucleases were studied quantitatively using capillary zone electrophoresis to find one giving N2-ethyl(Et)-2'-deoxyguanosine-5'-monophosphate (5'-dGMP) and cyclic 1,N2-propano(CPr)-5'-dGMP from DNAs damaged by acetaldehyde (AA). Six 2'-deoxyribonucleoside-5'-monophosphates to be quantified in the hydrolysis solutions of DNAs, namely, Et-5'-dGMP, CPr-5'-dGMP, and four authentic ones, were completely separated using a 100 mM borate running buffer solution having an optimized pH of 9.67. Using the present method, nuclease reactions of nuclease S1 (NS1), nuclease P1 (NP1), and nuclease Bal 31 to 2'-deoxyribonucleoside-5'-monophosphates from damaged Calf thymus (CT-) DNAs were monitored. The CT-DNAs were prepared by treatment with AA to generate Et-guanine or CPr-guanine internally. Bal 31 hydrolyzed the damaged CT-DNAs to yield Et-5'-dGMP and CPr-5'-dGMP quantitatively. The two 5'-dGMP adducts were not detected in the hydrolysis solutions using NS1 or NP1. Bal 31 can be a suitable nuclease for analyzing DNA damages caused by AA.
Collapse
Affiliation(s)
- Yukihiro Esaka
- Gifu Pharmaceutical University.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University
| | | | | | - Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Bunji Uno
- Gifu Pharmaceutical University.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University
| |
Collapse
|
24
|
Antonowicz S, Hanna GB, Takats Z, Bodai Z. Pragmatic and rapid analysis of carbonyl, oxidation and chlorination nucleoside-adducts in murine tissue by UPLC-ESI-MS/MS. Talanta 2018; 190:436-442. [PMID: 30172530 DOI: 10.1016/j.talanta.2018.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Nucleoside-adduct analysis by liquid chromatography mass spectrometry is a powerful tool in genotoxicity studies. Efforts to date have quantified an impressive array of DNA damage products, although methodological diversity suggests quantification is still a challenging task. For example, inadequate co-examination of normal nucleosides, cumbersome sample preparation and large DNA requirements were identified to be recurring issues. A six-minute ultra-performance liquid chromatography method is presented which adequately separates seven candidate nucleoside-adducts from the four unmodified nucleosides. The method was sensitive to 1 adduct per 108 normal bases with 20 µg DNA input for most targets. The method was shown to be accurate (81-119% across quintuplets of six tissue types) and precise (relative standard deviation 4-13%). The fast method time facilitated a second quantitation for normal nucleosides at an appropriate dilution, allowing DNA damage concentrations to be contextualised accurately sample-to-sample. From DNA samples, the analytical processing time was < 8 h, and 96 samples can easily be prepared in a day. The method was used to quantify carbonyl, chloro- and oxo- adducts in murine tissue samples.
Collapse
Affiliation(s)
- Stefan Antonowicz
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | - George B Hanna
- Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | - Zoltan Takats
- Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | - Zsolt Bodai
- Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
25
|
IWAMASA E, MIKI Y, INOUE Y, ESAKA Y, MURAKAMI H, TESHIMA N. Study on HILIC Separation Conditions for DNA Adductomics. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Emi IWAMASA
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Yuta MIKI
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Yoshinori INOUE
- Department of Applied Chemistry, Aichi Institute of Technology
| | | | - Hiroya MURAKAMI
- Department of Applied Chemistry, Aichi Institute of Technology
| | - Norio TESHIMA
- Department of Applied Chemistry, Aichi Institute of Technology
| |
Collapse
|
26
|
Chang YJ, Cooke MS, Hu CW, Chao MR. Novel approach to integrated DNA adductomics for the assessment of in vitro and in vivo environmental exposures. Arch Toxicol 2018; 92:2665-2680. [PMID: 29943112 DOI: 10.1007/s00204-018-2252-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Adductomics is expected to be useful in the characterization of the exposome, which is a new paradigm for studying the sum of environmental causes of diseases. DNA adductomics is emerging as a powerful method for detecting DNA adducts, but reliable assays for its widespread, routine use are currently lacking. We propose a novel integrated strategy for the establishment of a DNA adductomic approach, using liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS), operating in constant neutral loss scan mode, screening for both known and unknown DNA adducts in a single injection. The LC-QqQ-MS/MS was optimized using a representative sample of 23 modified 2'-deoxyribonucleosides reflecting a range of biologically relevant DNA lesions. Six internal standards (ISTDs) were evaluated for their ability to normalize, and hence correct, possible variation in peak intensities arising from matrix effects, and the quantities of DNA injected. The results revealed that, with appropriate ISTDs adjustment, any bias can be dramatically reduced from 370 to 8.4%. Identification of the informative DNA adducts was achieved by triggering fragmentation spectra of target ions. The LC-QqQ-MS/MS method was successfully applied to in vitro and in vivo studies to screen for DNA adducts formed following representative environmental exposures: methyl methanesulfonate (MMS) and five N-nitrosamines. Interestingly, five new DNA adducts, induced by MMS, were discovered using our adductomic approach-an added strength. The proposed integrated strategy provides a path forward for DNA adductomics to become a standard method to discover differences in DNA adduct fingerprints between populations exposed to genotoxins, and facilitate the field of exposomics.
Collapse
Affiliation(s)
- Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Chiung-Wen Hu
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA. .,Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan. .,Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA. .,Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
27
|
Yun BH, Guo J, Turesky RJ. Formalin-Fixed Paraffin-Embedded Tissues-An Untapped Biospecimen for Biomonitoring DNA Adducts by Mass Spectrometry. TOXICS 2018; 6:E30. [PMID: 29865161 PMCID: PMC6027047 DOI: 10.3390/toxics6020030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/03/2023]
Abstract
The measurement of DNA adducts provides important information about human exposure to genotoxic chemicals and can be employed to elucidate mechanisms of DNA damage and repair. DNA adducts can serve as biomarkers for interspecies comparisons of the biologically effective dose of procarcinogens and permit extrapolation of genotoxicity data from animal studies for human risk assessment. One major challenge in DNA adduct biomarker research is the paucity of fresh frozen biopsy samples available for study. However, archived formalin-fixed paraffin-embedded (FFPE) tissues with clinical diagnosis of disease are often available. We have established robust methods to recover DNA free of crosslinks from FFPE tissues under mild conditions which permit quantitative measurements of DNA adducts by liquid chromatography-mass spectrometry. The technology is versatile and can be employed to screen for DNA adducts formed with a wide range of environmental and dietary carcinogens, some of which were retrieved from section-cuts of FFPE blocks stored at ambient temperature for up to nine years. The ability to retrospectively analyze FFPE tissues for DNA adducts for which there is clinical diagnosis of disease opens a previously untapped source of biospecimens for molecular epidemiology studies that seek to assess the causal role of environmental chemicals in cancer etiology.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Suitability of biomarkers of biological effects (BOBEs) for assessing the likelihood of reducing the tobacco related disease risk by new and innovative tobacco products: A literature review. Regul Toxicol Pharmacol 2018; 94:203-233. [DOI: 10.1016/j.yrtph.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
|
29
|
Guo J, Villalta PW, Turesky RJ. Data-Independent Mass Spectrometry Approach for Screening and Identification of DNA Adducts. Anal Chem 2017; 89:11728-11736. [PMID: 28977750 PMCID: PMC5727898 DOI: 10.1021/acs.analchem.7b03208] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long-term exposures to environmental toxicants and endogenous electrophiles are causative factors for human diseases including cancer. DNA adducts reflect the internal exposure to genotoxicants and can serve as biomarkers for risk assessment. Liquid chromatography-multistage mass spectrometry (LC-MSn) is the most common method for biomonitoring DNA adducts, generally targeting single exposures and measuring up to several adducts. However, the data often provide limited evidence for a role of a chemical in the etiology of cancer. An "untargeted" method is required that captures global exposures to chemicals, by simultaneously detecting their DNA adducts in the genome; some of which may induce cancer-causing mutations. We established a wide selected ion monitoring tandem mass spectrometry (wide-SIM/MS2) screening method utilizing ultraperformance-LC nanoelectrospray ionization Orbitrap MSn with online trapping to enrich bulky, nonpolar adducts. Wide-SIM scan events are followed by MS2 scans to screen for modified nucleosides by coeluting peaks containing precursor and fragment ions differing by -116.0473 Da, attributed to the neutral loss of deoxyribose. Wide-SIM/MS2 was shown to be superior in sensitivity, specificity, and breadth of adduct coverage to other tested adductomic methods with detection possible at adduct levels as low as 4 per 109 nucleotides. Wide-SIM/MS2 data can be analyzed in a "targeted" fashion by generation of extracted ion chromatograms or in an "untargeted" fashion where a chromatographic peak-picking algorithm can be used to detect putative DNA adducts. Wide-SIM/MS2 successfully detected DNA adducts, derived from chemicals in the diet and traditional medicines and from lipid peroxidation products, in human prostate and renal specimens.
Collapse
Affiliation(s)
- Jingshu Guo
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Peter W. Villalta
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| | - Robert J. Turesky
- Masonic Cancer Center, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
- Department of Medicinal Chemistry, College of Pharmacy, 2231 Sixth Street SE, Minneapolis, Minnesota 55455
| |
Collapse
|
30
|
Villalta PW, Balbo S. The Future of DNA Adductomic Analysis. Int J Mol Sci 2017; 18:ijms18091870. [PMID: 32962318 PMCID: PMC5618519 DOI: 10.3390/ijms18091870] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
Covalent modification of DNA, resulting in the formation of DNA adducts, plays a central role in chemical carcinogenesis. Investigating these modifications is of fundamental importance in assessing the mutagenicity potential of specific exposures and understanding their mechanisms of action. Methods for assessing the covalent modification of DNA, which is one of the initiating steps for mutagenesis, include immunohistochemistry, 32P-postlabeling, and mass spectrometry-based techniques. However, a tool to comprehensively characterize the covalent modification of DNA, screening for all DNA adducts and gaining information on their chemical structures, was lacking until the recent development of "DNA adductomics". Advances in the field of mass spectrometry have allowed for the development of this methodology. In this perspective, we discuss the current state of the field, highlight the latest developments, and consider the path forward for DNA adductomics to become a standard method to investigate covalent modification of DNA. We specifically advocate for the need to take full advantage of this new era of mass spectrometry to acquire the highest quality and most reliable data possible, as we believe this is the only way for DNA adductomics to gain its place next to the other "-omics" methodologies as a powerful bioanalytical tool.
Collapse
Affiliation(s)
- Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: ; Tel.: +1-612-626-8165
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Brooks PJ. The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Free Radic Biol Med 2017; 107:90-100. [PMID: 28011151 DOI: 10.1016/j.freeradbiomed.2016.12.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Patients with the genetic disease xeroderma pigmentosum (XP) who lack the capacity to carry out nucleotides excision repair (NER) have a dramatically elevated risk of skin cancer on sun exposed areas of the body. NER is the DNA repair mechanism responsible for the removal of DNA lesions resulting from ultraviolet light. In addition, a subset of XP patients develop a progressive neurodegenerative disease, referred to as XP neurologic disease, which is thought to be the result of accumulation of endogenous DNA lesions that are repaired by NER but not other repair pathways. The 8,5-cyclopurine deoxynucleotides (cyPu) have emerged as leading candidates for such lesions, in that they result from the reaction of the hydroxyl radical with DNA, are strong blocks to transcription in human cells, and are repaired by NER but not base excision repair. Here I present a focused perspective on progress into understating the repair and biological effects of these lesions. In doing so, I emphasize the role of Tomas Lindahl and his laboratory in stimulating cyPu research. I also include a critical evaluation of the evidence supporting a role for cyPu lesions in XP neurologic disease, with a focus on outstanding questions, and conceptual and technologic challenges.
Collapse
Affiliation(s)
- Philip J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
32
|
Shibata T, Shimizu K, Hirano K, Nakashima F, Kikuchi R, Matsushita T, Uchida K. Adductome-based identification of biomarkers for lipid peroxidation. J Biol Chem 2017; 292:8223-8235. [PMID: 28341743 DOI: 10.1074/jbc.m116.762609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/01/2017] [Indexed: 11/06/2022] Open
Abstract
Lipid peroxidation is an endogenous source of aldehydes that gives rise to covalent modification of proteins in various pathophysiological states. In this study, a strategy for the comprehensive detection and comparison of adducts was applied to find a biomarker for lipid peroxidation-modified proteins in vivo This adductome approach utilized liquid chromatography with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods designed to detect the specific product ions from positively ionized adducts in a selected reaction monitoring mode. Using this procedure, we comprehensively analyzed lysine and histidine adducts generated in the in vitro oxidized low-density lipoproteins (LDL) and observed a prominent increase in several adducts, including a major lysine adduct. Based on the high resolution ESI-MS of the adduct and on the LC-ESI-MS/MS analysis of the synthetic adduct candidates, the major lysine adduct detected in the oxidized LDL was identified as Nϵ-(8-carboxyoctanyl)lysine (COL). Strikingly, a significantly higher amount of COL was detected in the sera from atherosclerosis-prone mice and from patients with hyperlipidemia compared with the controls. These data not only offer structural insights into protein modification by lipid peroxidation products but also provide a platform for the discovery of biomarkers for human diseases.
Collapse
Affiliation(s)
- Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012
| | - Kazuma Shimizu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601
| | - Keita Hirano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601
| | - Fumie Nakashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601
| | | | - Tadashi Matsushita
- Clinical Laboratory and Blood Transfusion, Nagoya University Hospital, Nagoya 466-8560
| | - Koji Uchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
33
|
Carlsson H, Törnqvist M. An Adductomic Approach to Identify Electrophiles In Vivo. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:44-54. [DOI: 10.1111/bcpt.12715] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Henrik Carlsson
- Department of Environmental Science and Analytical Chemistry; Stockholm University; Stockholm Sweden
| | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry; Stockholm University; Stockholm Sweden
| |
Collapse
|
34
|
Guo J, Turesky RJ. Human Biomonitoring of DNA Adducts by Ion Trap Multistage Mass Spectrometry. ACTA ACUST UNITED AC 2016; 66:7.24.1-7.24.25. [PMID: 27584705 DOI: 10.1002/cpnc.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Humans are continuously exposed to hazardous chemicals in the environment. These chemicals or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. The identification of DNA adducts is required for understanding exposure and the etiological role of a genotoxic chemical in cancer risk. The analytical chemist is confronted with a great challenge because the levels of DNA adducts generally occur at <1 adduct per 10(7) nucleotides, and the amount of tissue available for measurement is limited. Ion trap mass spectrometry has emerged as an important technique to screen for DNA adducts because of the high level sensitivity and selectivity, particularly when employing multi-stage scanning (MS(n) ). The product ion spectra provide rich structural information and corroborate the adduct identities even at trace levels in human tissues. Ion trap technology represents a significant advance in measuring DNA adducts in humans. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
35
|
Hemeryck LY, Moore SA, Vanhaecke L. Mass Spectrometric Mapping of the DNA Adductome as a Means to Study Genotoxin Exposure, Metabolism, and Effect. Anal Chem 2016; 88:7436-46. [DOI: 10.1021/acs.analchem.6b00863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis, Department
of Veterinary Public Health and Food Safety, Faculty of Veterinary
Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - Sharon A. Moore
- School of Pharmacy and Biomolecular Sciences, Faculty
of Science, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department
of Veterinary Public Health and Food Safety, Faculty of Veterinary
Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| |
Collapse
|
36
|
Carlsson H, Törnqvist M. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one. Food Chem Toxicol 2016; 92:94-103. [PMID: 27046699 DOI: 10.1016/j.fct.2016.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
Abstract
Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure.
Collapse
Affiliation(s)
- Henrik Carlsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Margareta Törnqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
37
|
Stornetta A, Villalta PW, Hecht SS, Sturla SJ, Balbo S. Screening for DNA Alkylation Mono and Cross-Linked Adducts with a Comprehensive LC-MS(3) Adductomic Approach. Anal Chem 2015; 87:11706-13. [PMID: 26509677 DOI: 10.1021/acs.analchem.5b02759] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A high-resolution/accurate-mass DNA adductomic approach was developed to investigate anticipated and unknown DNA adducts induced by DNA alkylating agents in biological samples. Two new features were added to a previously developed approach to significantly broaden its scope, versatility, and selectivity. First, the neutral loss of a base (guanine, adenine, thymine, or cytosine) was added to the original methodology's neutral loss of the 2'-deoxyribose moiety to allow for the detection of all DNA base adducts. Second, targeted detection of anticipated DNA adducts based on the reactivity of the DNA alkylating agent was demonstrated by inclusion of an ion mass list for data dependent triggering of MS(2) fragmentation events and subsequent MS(3) fragmentation. Additionally, untargeted screening of the samples, based on triggering of an MS(2) fragmentation event for the most intense ions of the full scan, was included for detecting unknown DNA adducts. The approach was tested by screening for DNA mono and cross-linked adducts in purified DNA and in DNA extracted from cells treated with PR104A, an experimental DNA alkylating nitrogen mustard prodrug currently under investigation for the treatment of leukemia. The results revealed the ability of this new DNA adductomic approach to detect anticipated and unknown PR104A-induced mono and cross-linked DNA adducts in biological samples. This methodology is expected to be a powerful tool for screening for DNA adducts induced by endogenous or exogenous exposures.
Collapse
Affiliation(s)
- Alessia Stornetta
- Department of Health Sciences and Technology, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota , 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota , 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota , 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
38
|
Kanaly RA, Micheletto R, Matsuda T, Utsuno Y, Ozeki Y, Hamamura N. Application of DNA adductomics to soil bacterium Sphingobium sp. strain KK22. Microbiologyopen 2015; 4:841-56. [PMID: 26305056 PMCID: PMC4618615 DOI: 10.1002/mbo3.283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
Toward the development of ecotoxicology methods to investigate microbial markers of impacts of hydrocarbon processing activities, DNA adductomic analyses were conducted on a sphingomonad soil bacterium. From growing cells that were exposed or unexposed to acrolein, a commonly used biocide in hydraulic fracturing processes, DNA was extracted, digested to 2'-deoxynucleosides and analyzed by liquid chromatography-positive ionization electrospray-tandem mass spectrometry in selected reaction monitoring mode transmitting the [M + H](+) > [M + H - 116](+) transition over 100 transitions. Overall data shown as DNA adductome maps revealed numerous putative DNA adducts under both conditions with some occurring specifically for each condition. Adductomic analyses of triplicate samples indicated that elevated levels of some targeted putative adducts occurred in exposed cells. Two exposure-specific adducts were identified in exposed cells as 3-(2'-deoxyribosyl)-5,6,7,8-tetrahydro-6-hydroxy-(and 8-hydroxy-)pyrimido[1,2-a]- purine-(3H)-one (6- and 8-hydroxy-PdG) following synthesis of authentic standards of these compounds and subsequent analyses. A time course experiment showed that 6- and 8-hydroxy-PdG were detected in bacterial DNA within 30 min of acrolein exposure but were not detected in unexposed cells. This work demonstrated the first application of DNA adductomics to examine DNA damage in a bacterium and sets a foundation for future work.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Ruggero Micheletto
- Department of Nanosystem Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, 520-0811, Japan
| | - Youko Utsuno
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanagawa, Yokohama, 236-0027, Japan
| | - Natsuko Hamamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 790-8577, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
39
|
Wei X, Yin H. Covalent modification of DNA by α, β-unsaturated aldehydes derived from lipid peroxidation: Recent progress and challenges. Free Radic Res 2015; 49:905-17. [PMID: 25968945 DOI: 10.3109/10715762.2015.1040009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oxidative stress-induced lipid peroxidation (LPO) has been associated with human physiology and pathophysiology. LPO generates an array of oxidation products and among them reactive lipid aldehydes have received intensive research attentions due to their roles in modulating functions of biomolecules through covalent modification. Thus, covalent modification of DNA by these reactive lipid electrophiles has been postulated to be partially responsible for the biological roles of LPO. In this review, we summarized recent progress and challenges in studying the roles of covalent modification of DNA including nuclear and mitochondrial DNA by reactive lipid metabolites from LPO. We focused on the novel mechanistic insights into generation of lipid aldehydes from cellular membranes especially mitochondria through LPO. Recent advances in the technological front using mass spectrometry have also been highlighted in the settings of studying DNA damage caused by LPO and its biological relevance.
Collapse
Affiliation(s)
- X Wei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai , China
| | | |
Collapse
|
40
|
Carlsson H, von Stedingk H, Nilsson U, Törnqvist M. LC-MS/MS screening strategy for unknown adducts to N-terminal valine in hemoglobin applied to smokers and nonsmokers. Chem Res Toxicol 2014; 27:2062-70. [PMID: 25350717 DOI: 10.1021/tx5002749] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrophilically reactive compounds have the ability to form adducts with nucleophilic sites in DNA and proteins, constituting a risk for toxic effects. Mass spectrometric detection of adducts to N-terminal valine in hemoglobin (Hb) after detachment by modified Edman degradation procedures is one approach for in vivo monitoring of exposure to electrophilic compounds/metabolites. So far, applications have been limited to one or a few selected reactive species, such as acrylamide and its metabolite glycidamide. This article presents a novel screening strategy for unknown Hb adducts to be used as a basis for an adductomic approach. The method is based on a modified Edman procedure, FIRE, specifically developed for LC-MS/MS analysis of N-terminal valine adducts in Hb detached as fluorescein thiohydantoin (FTH) derivatives. The aim is to detect and identify a priori unknown Hb adducts in human blood samples. Screening of valine adducts was performed by stepwise scanning of precursor ions in small mass increments, monitoring four fragments common for the FTH derivative of valine with different N-substitutions in the multiple-reaction mode, covering a mass range of 135 Da (m/z 503-638). Samples from six smokers and six nonsmokers were analyzed. Control experiments were performed to compare these results with known adducts and to check for artifactual formation of adducts. In all samples of smokers and nonsmokers, seven adducts were identified, of which six have previously been studied. Nineteen unknown adducts were observed, and 14 of those exhibited fragmentation patterns similar to earlier studied FTH derivatives of adducts to valine. Identification of the unknown adducts will be the focus of future work. The presented methodology is a promising screening tool using Hb adducts to indicate exposure to potentially toxic electrophilic compounds and metabolites.
Collapse
Affiliation(s)
- Henrik Carlsson
- Department of Materials and Environmental Chemistry, ‡Department of Analytical Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
Gavina JMA, Yao C, Feng YL. Recent developments in DNA adduct analysis by mass spectrometry: a tool for exposure biomonitoring and identification of hazard for environmental pollutants. Talanta 2014; 130:475-94. [PMID: 25159438 DOI: 10.1016/j.talanta.2014.06.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 02/08/2023]
Abstract
DNA adducts represent an important category of biomarkers for detection and exposure surveillance of potential carcinogenic and genotoxic chemicals in the environment. Sensitive and specific analytical methods are required to detect and differentiate low levels of adducts from native DNA from in vivo exposure. In addition to biomonitoring of environmental pollutants, analytical methods have been developed for structural identification of adducts which provides fundamental information for determining the toxic pathway of hazardous chemicals. In order to achieve the required sensitivity, mass spectrometry has been increasingly utilized to quantify adducts at low levels as well as to obtain structural information. Furthermore, separation techniques such as chromatography and capillary electrophoresis can be coupled to mass spectrometry to increase the selectivity. This review will provide an overview of advances in detection of adducted and modified DNA by mass spectrometry with a focus on the analysis of nucleosides since 2007. Instrument advances, sample and instrument considerations, and recent applications will be summarized in the context of hazard assessment. Finally, advances in biomonitoring applying mass spectrometry will be highlighted. Most importantly, the usefulness of DNA adducts measurement and detection will be comprehensively discussed as a tool for assessment of in vitro and in vivo exposure to environmental pollutants.
Collapse
Affiliation(s)
- Jennilee M A Gavina
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Chunhe Yao
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9.
| |
Collapse
|
42
|
Yasui M, Kanemaru Y, Kamoshita N, Suzuki T, Arakawa T, Honma M. Tracing the fates of site-specifically introduced DNA adducts in the human genome. DNA Repair (Amst) 2014; 15:11-20. [DOI: 10.1016/j.dnarep.2014.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 12/25/2022]
|
43
|
Abstract
![]()
Systems toxicology is a broad-based
approach to describe many of
the toxicological features that occur within a living system under
stress or subjected to exogenous or endogenous exposures. The ultimate
goal is to capture an overview of all exposures and the ensuing biological
responses of the body. The term exposome has been employed to refer
to the totality of all exposures, and systems toxicology investigates
how the exposome influences health effects and consequences of exposures
over a lifetime. The tools to advance systems toxicology include high-throughput
transcriptomics, proteomics, metabolomics, and adductomics, which
is still in its infancy. A well-established methodology for the comprehensive
measurement of DNA damage resulting from every day exposures is not
fully developed. During the past several decades, the 32P-postlabeling technique has been employed to screen the damage to
DNA induced by multiple classes of genotoxicants; however, more robust,
specific, and quantitative methods have been sought to identify and
quantify DNA adducts. Although triple quadrupole and ion trap mass
spectrometry, particularly when using multistage scanning (LC–MSn), have shown promise in the field of DNA adductomics, it
is anticipated that high-resolution and accurate-mass LC–MSn instrumentation will play a major role in assessing global
DNA damage. Targeted adductomics should also benefit greatly from improved
triple quadrupole technology. Once the analytical MS methods are fully
mature, DNA adductomics along with other -omics tools will contribute
greatly to the field of systems toxicology.
Collapse
Affiliation(s)
- Silvia Balbo
- Department of Medicinal Chemistry and ‡The Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
44
|
Balbo S, Hecht S, Upadhyaya P, Villalta P. Application of a high-resolution mass-spectrometry-based DNA adductomics approach for identification of DNA adducts in complex mixtures. Anal Chem 2014; 86:1744-52. [PMID: 24410521 PMCID: PMC3982966 DOI: 10.1021/ac403565m] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/10/2014] [Indexed: 02/07/2023]
Abstract
Liquid chromatography coupled with mass spectrometry (LC-MS) is the method of choice for analysis of covalent modification of DNA. DNA adductomics is an extension of this approach allowing for the screening for both known and unknown DNA adducts. In the research reported here, a new high-resolution/accurate mass MS(n) methodology has been developed representing an important advance for the investigation of in vivo biological samples and for the assessment of DNA damage from various human exposures. The methodology was tested and optimized using a mixture of 18 DNA adducts representing a range of biologically relevant modifications on all four bases and using DNA from liver tissue of mice exposed to the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In the latter experiment, previously characterized adducts, both expected and unexpected, were observed.
Collapse
Affiliation(s)
- Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455
| | - Stephen
S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455
| | - Peter
W. Villalta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455
| |
Collapse
|
45
|
MURAKAMI H, KAWAMURA R, SAKAKIBARA T, ESAKA Y, ISHIHAMA Y, UNO B. Facile and Effective Pretreatment Using Stop and Go Extraction Tips for LC-MS/MS Analysis of Trace Amounts of DNA Adducts. ANAL SCI 2014; 30:519-22. [DOI: 10.2116/analsci.30.519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
DNA damage in rheumatoid arthritis: an age-dependent increase in the lipid peroxidation-derived DNA adduct, heptanone-etheno-2'-deoxycytidine. Autoimmune Dis 2013; 2013:183487. [PMID: 24222845 PMCID: PMC3814043 DOI: 10.1155/2013/183487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/22/2013] [Accepted: 09/01/2013] [Indexed: 12/29/2022] Open
Abstract
Objective. To evaluate what types of DNA damages are detected in rheumatoid arthritis (RA). Methods. The DNA adducts such as 8-oxo-hydroxy-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG), 1,N6-etheno-2′-deoxyadenosine (εdA), and heptanone-etheno-2′-deoxycytidine (HεdC) in genomic DNAs, derived from whole blood cells from 46 RA patients and 31 healthy controls, were analyzed by high-performance liquid chromatography tandem mass spectrometry, and their levels in RA patients and controls were compared. In addition, correlation between DNA adducts and clinical parameters of RA was analyzed. Results. Compared with controls, the levels of HεdC in RA were significantly higher (P < 0.0001) and age dependent (r = 0.43, P < 0.01), while there was no significant difference in 8-oxo-dG and εdA accumulation between RA patients and controls. HεdC levels correlated well with the number of swollen joints (r = 0.57, P < 0.0001) and weakly with the number of tender joints (r = 0.26, P = 0.08) of RA patients, while they did not show a significant association with serological markers such as C-reactive protein and matrix metalloproteinase 3. Conclusion. These findings indicate that HεdC may have some influence on the development of RA and/or its complications.
Collapse
|
47
|
Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y, Ueda J, Wei W, Inoue M, Tanaka H. Epidemiology of esophageal cancer in Japan and China. J Epidemiol 2013; 23:233-42. [PMID: 23629646 PMCID: PMC3709543 DOI: 10.2188/jea.je20120162] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In preparation for a collaborative multidisciplinary study of the pathogenesis of esophageal cancer, the authors reviewed the published literature to identify similarities and differences between Japan and China in esophageal cancer epidemiology. Esophageal squamous cell carcinoma (ESCC) is the predominant histologic type, while the incidence of esophageal adenocarcinoma remains extremely low in both countries. Numerous epidemiologic studies in both countries show that alcohol consumption and cigarette smoking are contributing risk factors for ESCC. There are differences, however, in many aspects of esophageal cancer between Japan and China, including cancer burden, patterns of incidence and mortality, sex ratio of mortality, risk factor profiles, and genetic variants. Overall incidence and mortality rates are higher in China than in Japan, and variation in mortality and incidence patterns is greater in China than in Japan. During the study period (1987–2000), the decline in age-adjusted mortality rates was more apparent in China than in Japan. Risk factor profiles differed between high- and low-incidence areas within China, but not in Japan. The association of smoking and drinking with ESCC risk appears to be weaker in China than in Japan. Genome-wide association studies in China showed that variants in several chromosome regions conferred increased risk, but only genetic variants in alcohol-metabolizing genes were significantly associated with ESCC risk in Japan. A well-designed multidisciplinary epidemiologic study is needed to examine the role of diet and eating habits in ESCC risk.
Collapse
Affiliation(s)
- Yingsong Lin
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
49
|
Matsuda T, Tao H, Goto M, Yamada H, Suzuki M, Wu Y, Xiao N, He Q, Guo W, Cai Z, Kurabe N, Ishino K, Matsushima Y, Shinmura K, Konno H, Maekawa M, Wang Y, Sugimura H. Lipid peroxidation-induced DNA adducts in human gastric mucosa. Carcinogenesis 2012; 34:121-7. [PMID: 23066087 DOI: 10.1093/carcin/bgs327] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA adducts are a major cause of DNA mutation and DNA mutation-related diseases, but the simultaneous identification of multiple DNA adducts has been a challenge for a decade. An adductome approach using consecutive liquid chromatography and double mass spectrometry after micrococcal nuclease treatment has paved the way to demonstrations of numerous DNA adducts in a single experiment and is expected to contribute to the comprehensive understanding of overall environmental and endogenous exposures to possible mutagens in individuals. In this report, we applied an adductome approach to gastric mucosa samples taken at the time of a gastrectomy for gastric cancer in Lujiang, China, and in Hamamatsu, Japan. Seven lipid peroxidation-related DNA adducts [1,N6-etheno-2'-deoxyadenosine, butanone-etheno-2'-deoxycytidine (BεdC), butanone-etheno-2'-deoxy-5-methylcytidine, butanone-etheno-2'-deoxyadenosine (BεdA), heptanone-etheno-2'-deoxycytidine, heptanone-etheno-2'-deoxyadenosine (HεdA) and heptanone-etheno- 2'-deoxyguanosine] were identified in a total of 22 gastric mucosa samples. The levels of these adducts ranged from 0 to 30,000 per 10(9) bases. Although the presence of Helicobacter pylori DNA in the mucosa was not related to these adducts level, the levels of BεdC, BεdA and HεdA were higher in the Japanese gastric mucosa samples. The profiles of these 7 adduct levels among the 21 cases were capable of discriminating between the possible origins (China or Japan) of the gastric mucosa samples. Our report is the first demonstration of lipid peroxidation-related DNA adducts in the human stomach, and these observations warrant further investigation in the context of the significance of DNA adducts in human gastric carcinogenesis.
Collapse
Affiliation(s)
- Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga 520-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Christopher Paul Wild
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69008 Lyon, France.
| |
Collapse
|