1
|
Schirmer EC, Latonen L, Tollis S. Nuclear size rectification: A potential new therapeutic approach to reduce metastasis in cancer. Front Cell Dev Biol 2022; 10:1022723. [PMID: 36299481 PMCID: PMC9589484 DOI: 10.3389/fcell.2022.1022723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 03/07/2024] Open
Abstract
Research on metastasis has recently regained considerable interest with the hope that single cell technologies might reveal the most critical changes that support tumor spread. However, it is possible that part of the answer has been visible through the microscope for close to 200 years. Changes in nuclear size characteristically occur in many cancer types when the cells metastasize. This was initially discarded as contributing to the metastatic spread because, depending on tumor types, both increases and decreases in nuclear size could correlate with increased metastasis. However, recent work on nuclear mechanics and the connectivity between chromatin, the nucleoskeleton, and the cytoskeleton indicate that changes in this connectivity can have profound impacts on cell mobility and invasiveness. Critically, a recent study found that reversing tumor type-dependent nuclear size changes correlated with reduced cell migration and invasion. Accordingly, it seems appropriate to now revisit possible contributory roles of nuclear size changes to metastasis.
Collapse
Affiliation(s)
- Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Hachiya N, Sochocka M, Brzecka A, Shimizu T, Gąsiorowski K, Szczechowiak K, Leszek J. Nuclear Envelope and Nuclear Pore Complexes in Neurodegenerative Diseases-New Perspectives for Therapeutic Interventions. Mol Neurobiol 2021; 58:983-995. [PMID: 33067781 PMCID: PMC7878205 DOI: 10.1007/s12035-020-02168-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Transport of proteins, transcription factors, and other signaling molecules between the nucleus and cytoplasm is necessary for signal transduction. The study of these transport phenomena is particularly challenging in neurons because of their highly polarized structure. The bidirectional exchange of molecular cargoes across the nuclear envelope (NE) occurs through nuclear pore complexes (NPCs), which are aqueous channels embedded in the nuclear envelope. The NE and NPCs regulate nuclear transport but are also emerging as relevant regulators of chromatin organization and gene expression. The alterations in nuclear transport are regularly identified in affected neurons associated with human neurodegenerative diseases. This review presents insights into the roles played by nuclear transport defects in neurodegenerative disease, focusing primarily on NE proteins and NPCs. The subcellular mislocalization of proteins might be a very desirable means of therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| | - Marta Sochocka
- Laboratory of Virology, Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Takuto Shimizu
- Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | | | | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland.
| |
Collapse
|
3
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
4
|
Underwood JM, Becker KA, Stein GS, Nickerson JA. The Ultrastructural Signature of Human Embryonic Stem Cells. J Cell Biochem 2016; 118:764-774. [PMID: 27632380 DOI: 10.1002/jcb.25736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
The epigenetics and molecular biology of human embryonic stem cells (hES cells) have received much more attention than their architecture. We present a more complete look at hES cells by electron microscopy, with a special emphasis on the architecture of the nucleus. We propose that there is an ultrastructural signature of pluripotent human cells. hES cell nuclei lack heterochromatin, including the peripheral heterochromatin, that is common in most somatic cell types. The absence of peripheral heterochromatin may be related to the absence of lamins A and C, proteins important for linking chromatin to the nuclear lamina and envelope. Lamins A and C expression and the development of peripheral heterochromatin were early steps in the development of embryoid bodies. While hES cell nuclei had abundant nuclear pores, they also had an abundance of nuclear pores in the cytoplasm in the form of annulate lamellae. These were not a residue of annulate lamellae from germ cells or the early embryos from which hES cells were derived. Subnuclear structures including nucleoli, interchromatin granule clusters, and Cajal bodies were observed in the nuclear interior. The architectural organization of human ES cell nuclei has important implications for cell structure-gene expression relationships and for the maintenance of pluripotency. J. Cell. Biochem. 118: 764-774, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jean M Underwood
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655
| | - Klaus A Becker
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655
| | - Gary S Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655.,Department of Biochemistry and Vermont Cancer Center for Basic and Translational Research, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405
| | - Jeffrey A Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655
| |
Collapse
|
5
|
Lamin A/C depletion enhances DNA damage-induced stalled replication fork arrest. Mol Cell Biol 2013; 33:1210-22. [PMID: 23319047 DOI: 10.1128/mcb.01676-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair.
Collapse
|
6
|
Mazzio EA, Soliman KFA. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 2012; 7:119-30. [PMID: 22395460 DOI: 10.4161/epi.7.2.18764] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Through epigenetic modifications, specific long-term phenotypic consequences can arise from environmental influence on slowly evolving genomic DNA. Heritable epigenetic information regulates nucleosomal arrangement around DNA and determines patterns of gene silencing or active transcription. One of the greatest challenges in the study of epigenetics as it relates to disease is the enormous diversity of proteins, histone modifications and DNA methylation patterns associated with each unique maladaptive phenotype. This is further complicated by a limitless combination of environmental cues that could alter the epigenome of specific cell types, tissues, organs and systems. In addition, complexities arise from the interpretation of studies describing analogous but not identical processes in flies, plants, worms, yeast, ciliated protozoans, tumor cells and mammals. This review integrates fundamental basic concepts of epigenetics with specific focus on how the epigenetic machinery interacts and operates in continuity to silence or activate gene expression. Topics covered include the connection between DNA methylation, methyl-CpG-binding proteins, transcriptional repression complexes, histone residues, histone modifications that mediate gene repression or relaxation, histone core variant stability, H1 histone linker flexibility, FACT complex, nucleosomal remodeling complexes, HP1 and nuclear lamins.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, FL USA
| | | |
Collapse
|
7
|
Maresca G, Natoli M, Nardella M, Arisi I, Trisciuoglio D, Desideri M, Brandi R, D’Aguanno S, Nicotra MR, D’Onofrio M, Urbani A, Natali PG, Bufalo DD, Felsani A, D’Agnano I. LMNA knock-down affects differentiation and progression of human neuroblastoma cells. PLoS One 2012; 7:e45513. [PMID: 23049808 PMCID: PMC3458895 DOI: 10.1371/journal.pone.0045513] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
Background Neuroblastoma (NB) is one of the most aggressive tumors that occur in childhood. Although genes, such as MYCN, have been shown to be involved in the aggressiveness of the disease, the identification of new biological markers is still desirable. The induction of differentiation is one of the strategies used in the treatment of neuroblastoma. A-type lamins are components of the nuclear lamina and are involved in differentiation. We studied the role of Lamin A/C in the differentiation and progression of neuroblastoma. Methodology/Principal Findings Knock-down of Lamin A/C (LMNA-KD) in neuroblastoma cells blocked retinoic acid-induced differentiation, preventing neurites outgrowth and the expression of neural markers. The genome-wide gene-expression profile and the proteomic analysis of LMNA-KD cells confirmed the inhibition of differentiation and demonstrated an increase of aggressiveness-related genes and molecules resulting in augmented migration/invasion, and increasing the drug resistance of the cells. The more aggressive phenotype acquired by LMNA-KD cells was also maintained in vivo after injection into nude mice. A preliminary immunohistochemistry analysis of Lamin A/C expression in nine primary stages human NB indicated that this protein is poorly expressed in most of these cases. Conclusions/Significance We demonstrated for the first time in neuroblastoma cells that Lamin A/C plays a central role in the differentiation, and that the loss of this protein gave rise to a more aggressive tumor phenotype.
Collapse
Affiliation(s)
- Giovanna Maresca
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Manuela Natoli
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Marta Nardella
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute, EBRI-Neurogenomics IIT Unit, Rome, Italy
| | - Daniela Trisciuoglio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Marianna Desideri
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Brandi
- European Brain Research Institute, EBRI-Neurogenomics IIT Unit, Rome, Italy
| | - Simona D’Aguanno
- Department of Internal Medicine, University of Tor Vergata, Laboratory of Proteomics, Santa Lucia Foundation-IRCCS, Rome, Italy
| | | | - Mara D’Onofrio
- European Brain Research Institute, EBRI-Neurogenomics IIT Unit, Rome, Italy
| | - Andrea Urbani
- Department of Internal Medicine, University of Tor Vergata, Laboratory of Proteomics, Santa Lucia Foundation-IRCCS, Rome, Italy
| | | | - Donatella Del Bufalo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Armando Felsani
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
- * E-mail: (ID); (AF)
| | - Igea D’Agnano
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
- * E-mail: (ID); (AF)
| |
Collapse
|
8
|
Babbio F, Castiglioni I, Cassina C, Gariboldi MB, Pistore C, Magnani E, Badaracco G, Monti E, Bonapace IM. Knock-down of methyl CpG-binding protein 2 (MeCP2) causes alterations in cell proliferation and nuclear lamins expression in mammalian cells. BMC Cell Biol 2012; 13:19. [PMID: 22783988 PMCID: PMC3477090 DOI: 10.1186/1471-2121-13-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/03/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND MeCP2 (CpG-binding protein 2) is a nuclear multifunctional protein involved in several cellular processes, like large-scale chromatin reorganization and architecture, and transcriptional regulation. In recent years, a non-neuronal role for MeCP2 has emerged in cell growth and proliferation. Mutations in the MeCP2 gene have been reported to determine growth disadvantages in cultured lymphocyte cells, and its functional ablation suppresses cell growth in glial cells and proliferation in mesenchymal stem cells and prostate cancer cells. MeCP2 interacts with lamin B receptor (LBR) and with Heterochromatin Protein 1 (HP1) at the nuclear envelope (NE), suggesting that it could be part of complexes involved in attracting heterochromatin at the nuclear periphery and in mediating gene silencing. The nuclear lamins, major components of the lamina, have a role in maintaining NE integrity, in orchestrating mitosis, in DNA replication and transcription, in regulation of mitosis and apoptosis and in providing anchoring sites for chromatin domains.In this work, we inferred that MeCP2 might have a role in nuclear envelope stability, thereby affecting the proliferation pattern of highly proliferating systems. RESULTS By performing knock-down (KD) of MeCP2 in normal murine (NIH-3 T3) and in human prostate transformed cells (PC-3 and LNCaP), we observed a strong proliferation decrease and a defect in the cell cycle progression, with accumulation of cells in S/G2M, without triggering a strong apoptotic and senescent phenotype. In these cells, KD of MeCP2 evidenced a considerable decrease of the levels of lamin A, lamin C, lamin B1 and LBR proteins. Moreover, by confocal analysis we confirmed the reduction of lamin A levels, but we also observed an alteration in the shape of the nuclear lamina and an irregular nuclear rim. CONCLUSIONS Our results that indicate reduced levels of NE components, are consistent with a hypothesis that the deficiency of MeCP2 might cause the lack of a key "bridge" function that links the peripheral heterochromatin to the NE, thereby causing an incorrect assembly of the NE itself, together with a decreased cell proliferation and viability.
Collapse
Affiliation(s)
- Federica Babbio
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Ilaria Castiglioni
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Chiara Cassina
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Marzia Bruna Gariboldi
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Christian Pistore
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Elena Magnani
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Gianfranco Badaracco
- Department of Biotechnologies and Life Sciences, Insubria University, via H. J. Dunant 3, Varese 21100, Italy
| | - Elena Monti
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| | - Ian Marc Bonapace
- Department of Theoretical and Applied Sciences, Insubria University, via A. da Giussano 10, Busto Arsizio, 21052, Italy
| |
Collapse
|
9
|
de Las Heras JI, Batrakou DG, Schirmer EC. Cancer biology and the nuclear envelope: a convoluted relationship. Semin Cancer Biol 2012; 23:125-37. [PMID: 22311402 DOI: 10.1016/j.semcancer.2012.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 12/23/2022]
Abstract
Although its properties have long been used for both typing and prognosis of various tumors, the nuclear envelope (NE) itself and its potential roles in tumorigenesis are only beginning to be understood. Historically viewed as merely a protective barrier, the nuclear envelope is now linked to a wide range of functions. Nuclear membrane proteins connect the nucleus to the cytoskeleton on one side and to chromatin on the other. Several newly identified nuclear envelope functions associated with these connections intersect with cancer pathways. For example, the nuclear envelope could affect genome stability by tethering chromatin. Some nuclear envelope proteins affect cell cycle regulation by directly binding to the master regulator pRb, others by interacting with TGF-ß and Smad signaling cascades, and others by affecting the mitotic spindle. Finally, the NE directly affects cytoskeletal organization and can also influence cell migration in metastasis. In this review we discuss the link between the nuclear envelope and cellular defects that are common in cancer cells, and we show that NE proteins are often aberrantly expressed in tumors. The NE represents a potential reservoir of diagnostic and prognostic markers in cancer.
Collapse
Affiliation(s)
- Jose I de Las Heras
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
10
|
Musich PR, Zou Y. DNA-damage accumulation and replicative arrest in Hutchinson-Gilford progeria syndrome. Biochem Soc Trans 2011; 39:1764-9. [PMID: 22103522 PMCID: PMC4271832 DOI: 10.1042/bst20110687] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A common feature of progeria syndromes is a premature aging phenotype and an enhanced accumulation of DNA damage arising from a compromised repair system. HGPS (Hutchinson-Gilford progeria syndrome) is a severe form of progeria in which patients accumulate progerin, a mutant lamin A protein derived from a splicing variant of the lamin A/C gene (LMNA). Progerin causes chromatin perturbations which result in the formation of DSBs (double-strand breaks) and abnormal DDR (DNA-damage response). In the present article, we review recent findings which resolve some mechanistic details of how progerin may disrupt DDR pathways in HGPS cells. We propose that progerin accumulation results in disruption of functions of some replication and repair factors, causing the mislocalization of XPA (xeroderma pigmentosum group A) protein to the replication forks, replication fork stalling and, subsequently, DNA DSBs. The binding of XPA to the stalled forks excludes normal binding by repair proteins, leading to DSB accumulation, which activates ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) checkpoints, and arresting cell-cycle progression.
Collapse
Affiliation(s)
- Phillip R. Musich
- Department of Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0581, U.S.A
| | - Yue Zou
- Department of Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0581, U.S.A
| |
Collapse
|
11
|
Gnocchi VF, Scharner J, Huang Z, Brady K, Lee JS, White RB, Morgan JE, Sun YB, Ellis JA, Zammit PS. Uncoordinated transcription and compromised muscle function in the lmna-null mouse model of Emery- Emery-Dreyfuss muscular dystrophy. PLoS One 2011; 6:e16651. [PMID: 21364987 PMCID: PMC3043058 DOI: 10.1371/journal.pone.0016651] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/23/2010] [Indexed: 12/15/2022] Open
Abstract
LMNA encodes both lamin A and C: major components of the nuclear lamina. Mutations in LMNA underlie a range of tissue-specific degenerative diseases, including those that affect skeletal muscle, such as autosomal-Emery-Dreifuss muscular dystrophy (A-EDMD) and limb girdle muscular dystrophy 1B. Here, we examine the morphology and transcriptional activity of myonuclei, the structure of the myotendinous junction and the muscle contraction dynamics in the lmna-null mouse model of A-EDMD. We found that there were fewer myonuclei in lmna-null mice, of which ∼50% had morphological abnormalities. Assaying transcriptional activity by examining acetylated histone H3 and PABPN1 levels indicated that there was a lack of coordinated transcription between myonuclei lacking lamin A/C. Myonuclei with abnormal morphology and transcriptional activity were distributed along the length of the myofibre, but accumulated at the myotendinous junction. Indeed, in addition to the presence of abnormal myonuclei, the structure of the myotendinous junction was perturbed, with disorganised sarcomeres and reduced interdigitation with the tendon, together with lipid and collagen deposition. Functionally, muscle contraction became severely affected within weeks of birth, with specific force generation dropping as low as ∼65% and ∼27% of control values in the extensor digitorum longus and soleus muscles respectively. These observations illustrate the importance of lamin A/C for correct myonuclear function, which likely acts synergistically with myotendinous junction disorganisation in the development of A-EDMD, and the consequential reduction in force generation and muscle wasting.
Collapse
MESH Headings
- Animals
- Cell Nucleus/metabolism
- Cell Nucleus/pathology
- Cell Nucleus/physiology
- Chromatin Assembly and Disassembly/genetics
- Chromatin Assembly and Disassembly/physiology
- Disease Models, Animal
- Growth and Development/genetics
- Intercellular Junctions/metabolism
- Intercellular Junctions/pathology
- Intercellular Junctions/ultrastructure
- Lamin Type A/genetics
- Lamin Type A/metabolism
- Lamin Type A/physiology
- Mice
- Mice, Knockout
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle Weakness/genetics
- Muscle Weakness/pathology
- Muscles/metabolism
- Muscles/pathology
- Muscles/physiopathology
- Muscular Dystrophy, Emery-Dreifuss/genetics
- Muscular Dystrophy, Emery-Dreifuss/metabolism
- Muscular Dystrophy, Emery-Dreifuss/pathology
- Muscular Dystrophy, Emery-Dreifuss/physiopathology
- RNA Processing, Post-Transcriptional/genetics
- RNA Processing, Post-Transcriptional/physiology
- Transcription, Genetic/physiology
- Weight Loss/genetics
Collapse
Affiliation(s)
- Viola F. Gnocchi
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Juergen Scharner
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Zhe Huang
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Ken Brady
- Centre for Ultrastructural Imaging, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Jaclyn S. Lee
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Robert B. White
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Jennifer E. Morgan
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College, London, United Kingdom
| | - Yin-Biao Sun
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Juliet A. Ellis
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
| | - Peter S. Zammit
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Kubben N, Voncken JW, Misteli T. Mapping of protein- and chromatin-interactions at the nuclear lamina. Nucleus 2010; 1:460-71. [PMID: 21327087 PMCID: PMC3027047 DOI: 10.4161/nucl.1.6.13513] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 01/07/2023] Open
Abstract
The nuclear envelope and the lamina define the nuclear periphery and are implicated in many nuclear processes including chromatin organization, transcription and DNA replication. Mutations in lamin A proteins, major components of the lamina, interfere with these functions and cause a set of phenotypically diverse diseases referred to as laminopathies. The phenotypic diversity of laminopathies is thought to be the result of alterations in specific protein- and chromatin interactions due to lamin A mutations. Systematic identification of lamin A-protein and -chromatin interactions will be critical to uncover the molecular etiology of laminopathies. Here we summarize and critically discuss recent technology to analyze lamina-protein and-chromatin interactions.
Collapse
Affiliation(s)
- Nard Kubben
- Center for Heart Failure Research; Maastricht, The Netherlands
- National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | - Jan Willem Voncken
- Department of Molecular Genetics; Maastricht University Medical Center; Maastricht, The Netherlands
| | - Tom Misteli
- National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
13
|
Olins AL, Rhodes G, Welch DBM, Zwerger M, Olins DE. Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus 2010; 1:53-70. [PMID: 21327105 PMCID: PMC3035127 DOI: 10.4161/nucl.1.1.10515] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 12/11/2022] Open
Abstract
Lamin B receptor (LBR) is an integral membrane protein of the interphase nuclear envelope (NE). The N-terminal end resides in the nucleoplasm, binding to lamin B and heterochromatin, with the interactions disrupted during mitosis. The C-terminal end resides within the inner nuclear membrane, retreating with the ER away from condensing chromosomes during mitotic NE breakdown. Some of these properties are interpretable in terms of our current structural knowledge of LBR, but many of the structural features remain unknown. LBR apparently has an evolutionary history which brought together at least two ancient conserved structural domains (i.e., Tudor and sterol reductase). This convergence may have occurred with the emergence of the chordates and echinoderms. It is not clear what survival values have maintained LBR structure during evolution. But it seems likely that roles in post-mitotic nuclear reformation, interphase NE growth and compartmentalization of nuclear architecture might have provided some evolutionary advantage to preservation of the LBR gene.
Collapse
Affiliation(s)
- Ada L Olins
- Department of Biology, Bowdoin College, Brunswick, ME, USA
| | | | | | | | | |
Collapse
|