1
|
Cannas G, Poutrel S, Heiblig M, Labussière H, Larcher MV, Thomas X, Hot A. Sickle cell disease and acute leukemia: one case report and an extensive review. Ann Hematol 2023; 102:1657-1667. [PMID: 37269388 PMCID: PMC10239223 DOI: 10.1007/s00277-023-05294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Population-based studies and case reports suggest that there may be an increased risk of acute leukemia associated with sickle cell disease (SCD). Following the description of a new case report, an extensive review of the literature identified 51 previously described cases. Most cases study showed myelodysplastic features confirmed, when available, by genetic markers such as chromosome 5 and/or chromosome 7 abnormalities and TP53 gene mutations. The increased risk of leukemogenesis is certainly multifactorial and related to the pathophysiologic mechanisms of the clinical manifestations of SCD. Chronic hemolysis and secondary hemochromatosis may cause increased chronic inflammation, resulting in persistent marrow stress, which could potentially compromise the genomic stability of the hematopoietic stem cells generating genomic damage and somatic mutations over the course of SCD and its treatment, resulting in a clone that led to acute myeloid leukemia.
Collapse
Affiliation(s)
- Giovanna Cannas
- Internal Medicine, Hospices Civils de Lyon, Edouard Herriot Hospital, 5, place d'Arsonval, Lyon cedex 03, 69437, Lyon, France.
- Constitutive reference center: Major sickle cell syndromes, thalassemias and other rare pathologies of red blood cell and erythropoiesis, Edouard Herriot Hospital, Lyon, France.
| | - Solène Poutrel
- Internal Medicine, Hospices Civils de Lyon, Edouard Herriot Hospital, 5, place d'Arsonval, Lyon cedex 03, 69437, Lyon, France
- Constitutive reference center: Major sickle cell syndromes, thalassemias and other rare pathologies of red blood cell and erythropoiesis, Edouard Herriot Hospital, Lyon, France
| | - Maël Heiblig
- Hematology, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Hélène Labussière
- Hematology, Hospices Civils de Lyon, Lyon-Sud Hospital, Pierre-Bénite, France
| | | | - Xavier Thomas
- Constitutive reference center: Major sickle cell syndromes, thalassemias and other rare pathologies of red blood cell and erythropoiesis, Edouard Herriot Hospital, Lyon, France
| | - Arnaud Hot
- Internal Medicine, Hospices Civils de Lyon, Edouard Herriot Hospital, 5, place d'Arsonval, Lyon cedex 03, 69437, Lyon, France
- Constitutive reference center: Major sickle cell syndromes, thalassemias and other rare pathologies of red blood cell and erythropoiesis, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
2
|
Torous DK, Avlasevich S, Bemis JC, Howard T, Ware RE, Fung C, Chen Y, Sahsrabudhe D, MacGregor JT, Dertinger SD. Lack of hydroxyurea-associated mutagenesis in pediatric sickle cell disease patients. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:167-175. [PMID: 36841969 DOI: 10.1002/em.22536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 05/03/2023]
Abstract
Hydroxyurea is approved for treating children and adults with sickle cell anemia (SCA). Despite its proven efficacy, concerns remain about its mutagenic and carcinogenic potential that hamper its widespread use. Cell culture- and animal-based investigations indicate that hydroxyurea's genotoxic effects are due to indirect clastogenicity in select cell types when high dose and time thresholds are exceeded (reviewed by Ware & Dertinger, 2021). The current study extends these preclinical observations to pediatric patients receiving hydroxyurea for treatment of SCA. First, proof-of-principle experiments with testicular cancer patients exposed to a cisplatin-based regimen validated the ability of flow cytometric blood-based micronucleated reticulocyte (MN-RET) and PIG-A mutant reticulocyte (MUT RET) assays to detect clastogenicity and gene mutations, respectively. Second, these biomarkers were measured in a cross-sectional study with 26 SCA patients receiving hydroxyurea and 13 SCA patients without exposure. Finally, a prospective study was conducted with 10 SCA patients using pretreatment blood samples and after 6 or 12 months of therapy. Cancer patients exposed to cisplatin exhibited increased MN-RET within days of exposure, while the MUT RET endpoint required more time to reach maximal levels. In SCA patients, hydroxyurea induced MN-RET in both the cross-sectional and prospective studies. However, no evidence of PIG-A gene mutation was found in hydroxyurea-treated children, despite the fact that the two assays use the same rapidly-dividing, highly-exposed cell type. Collectively, these results reinforce the complementary nature of MN-RET and MUT RET biomarkers, and indicate that hydroxyurea can be clastogenic but was not mutagenic in young patients with SCA.
Collapse
Affiliation(s)
| | | | | | - Thad Howard
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Russell E Ware
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuhchyau Chen
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Deepak Sahsrabudhe
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
3
|
Chen R, Liu M, Jiang Q, Meng X, Wei J. The cyclic guanosine monophosphate synthase-stimulator of interferon genes pathway as a potential target for tumor immunotherapy. Front Immunol 2023; 14:1121603. [PMID: 37153627 PMCID: PMC10160662 DOI: 10.3389/fimmu.2023.1121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) detects infections or tissue damage by binding to microbial or self-DNA in the cytoplasm. Upon binding DNA, cGAS produces cGAMP that binds to and activates the adaptor protein stimulator of interferon genes (STING), which then activates the kinases IKK and TBK1 to induce the secretion of interferons and other cytokines. Recently, a series of studies demonstrated that the cGAS-STING pathway, a vital component of host innate immunity, might play an important role in anticancer immunity, though its mechanism remains to be elucidated. In this review, we highlight the latest understanding of the cGAS-STING pathway in tumor development and the advances in combination therapy of STING agonists and immunotherapy.
Collapse
Affiliation(s)
- Rui Chen
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxia Liu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Quanhong Jiang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiangbo Meng
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- *Correspondence: Junmin Wei, ; Xiangbo Meng,
| | - Junmin Wei
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- *Correspondence: Junmin Wei, ; Xiangbo Meng,
| |
Collapse
|
4
|
Arnaoutoglou C, Keivanidou A, Dragoutsos G, Tentas I, Meditskou S, Zarogoulidis P, Matthaios D, Sardeli C, Ioannidis A, Perdikouri EI, Giannopoulos A. Factors Affecting the Nuclei in Newborn and Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074226. [PMID: 35409906 PMCID: PMC8998771 DOI: 10.3390/ijerph19074226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023]
Abstract
It is known that children are more sensitive to the effects of medical treatments and environment than adults. Today there is limited information regarding the differences in genotoxic effects in children. The micronucleus assay is a method that is used to monitor genotoxicity, and it was validated several years before. Today there is international interest for exfoliated buccal cells. Most of the micronuclei studies in children have been performed with the analyses of lymphocytes. However, there is vast interest in using exfoliated cells from the oral cavity. The reason is that other type of cells are acquired non-invasively, this is an important issue in paediatric cohorts. Unfortunately a limitation of measuring micronuclei frequency is that it has been observed to be low in newborns and on the other hand there are a large number of patients and cell sample counts. It has been observed that radiation exposure and environmental pollutants increase the micronuclei frequency in newborn and children. Regarding the medical treatments, there is little data and several studies are needed to optimise the doses. There is the need to observe if there is a relationship between micronuclei in lymphocytes and exfoliated cells and to identify the baseline of the micronuclei levels. Moreover, we evaluate the changes in response to the toxic agents. Prospective cohorts studies will clarify the predictive value of micronuclei for cancer and chronic diseases for both children and adults. Novel molecular technologies will assist in the elucidation of different biological pathways and molecular mechanisms connected with the micronulcei levels in newborn and children.
Collapse
Affiliation(s)
- Christos Arnaoutoglou
- Department of Obstetrics & Gynecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia Keivanidou
- Pediatric Department, Aristotle University of Thessaloniki, AHEPA General Hospital, 54124 Thessaloniki, Greece; (A.K.); (A.G.)
| | - Georgios Dragoutsos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 69132 Komotini, Greece;
| | - Ioannis Tentas
- Department of Obstetrics & Gynecology, General Hospital of Giannitsa, 58100 Giannitsa, Greece;
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Paul Zarogoulidis
- Pulmonary Department, General Clinic Euromedica, 54124 Thessaloniki, Greece
- Correspondence:
| | | | - Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aris Ioannidis
- Department of Surgery, “Genesis” Private Clinic, 54124 Thessaloniki, Greece;
| | | | - Andreas Giannopoulos
- Pediatric Department, Aristotle University of Thessaloniki, AHEPA General Hospital, 54124 Thessaloniki, Greece; (A.K.); (A.G.)
| |
Collapse
|
5
|
Long ZJ, Wang JD, Xu JQ, Lei XX, Liu Q. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy. Mol Ther 2022; 30:1006-1017. [PMID: 35121107 PMCID: PMC8899703 DOI: 10.1016/j.ymthe.2022.01.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
The correct duplication and transfer of genetic material to daughter cells is the major event of cell division. Dysfunction of DNA replication or chromosome segregation presents challenges in cancer initiation and development as well as opportunities for cancer treatment. Cyclic GMP-AMP synthase (cGAS) of the innate immune system detects cytoplasmic DNA and mediates downstream immune responses through the molecule stimulator of interferon genes (STING). However, how cytosolic DNA sensor cGAS participates in guaranteeing accurate cell division and preventing tumorigenesis is still unclear. Recent evidence indicates malfunction of cGAS/STING pathway in cancer progression. Cell cycle-targeted therapy synergizes with immunotherapy via cGAS/STING activation, leading to promising therapeutic benefit. Here, we review the interactions between cell cycle regulation and cGAS/STING signaling, thus enabling us to understand the role of cGAS/STING in cancer initiation, development, and treatment.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
| | - Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Jue-Qiong Xu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China,Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Institute of Hematology, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China; Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China.
| |
Collapse
|
6
|
Al-Khateeb RS, Althagafy HS, ElAssouli MZ, Nori DA, AlFattani M, Al-Najjar SA, Al Amri T, Hashem AM, Harakeh S, Helmi N. Iron Chelation Reduces DNA Damage in Sickle Cell Anemia. Clin Appl Thromb Hemost 2021; 27:10760296211047230. [PMID: 34633875 PMCID: PMC8521763 DOI: 10.1177/10760296211047230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sickle cell anemia (SCA) is a blood condition that causes severe pain. One of the therapeutic agents used for the treatment of SCA is hydroxyurea, which reduces the episodes of pain but causes DNA damage to white blood cells. The aim of this study was to evaluate the efficacy of the combination of hydroxyurea and iron chelation therapy in relation to the extent of DNA-associated damage. Blood samples were collected from 120 subjects from five groups. Various hematological parameters of the obtained serum were analyzed. The amount of damage caused to their DNA was detected using the comet assay and fluorescent microscopy techniques. The percentage of DNA damage in the group that was subjected to the combination therapy (target group) was 1.32% ± 1.51%, which was significantly lower (P < .05) than that observed in the group treated with hydroxyurea alone (6.36% ± 2.36%). While the target group showed comparable levels of hemoglobin F and lactate dehydrogenase compared to the group that was treated with hydroxyurea alone, highly significant levels of transferrin receptors and ferritin were observed in the target group. The results of this study revealed that the administration of iron chelation drugs with hydroxyurea may help improve patients' health and prevent the DNA damage caused to white blood cells due to hydroxyurea. Further studies are needed to better understand the underlying mechanisms that are involved in this process.
Collapse
Affiliation(s)
- Rawan S Al-Khateeb
- 37848Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia, KSA
| | | | - Mohammad Zaki ElAssouli
- 37848Vaccines and Immunotherapy Unit, King Fahd Medical Research Center (KFMRC); Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, KSA
| | - Dunya A Nori
- 37848Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia, KSA
| | | | | | - Turki Al Amri
- 37848Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- 37848Vaccines and Immunotherapy Unit, King Fahd Medical Research Center (KFMRC); Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, KSA
| | - Steve Harakeh
- 37848Special Infectious Agents Unit, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, KSA
| | - Nawal Helmi
- 441424Department of Biochemistry, University of Jeddah, Jeddah, KSA
| |
Collapse
|
7
|
Protection of nuclear DNA by lifespan-extending compounds in the yeast Saccharomyces cerevisiae. Mutat Res 2021; 822:111738. [PMID: 33578051 DOI: 10.1016/j.mrfmmm.2021.111738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 01/21/2021] [Indexed: 02/01/2023]
Abstract
DNA damage has been hypothesized to be a driving force of the aging process. At the same time, there exists multiple compounds that can extend lifespan in model organisms, such as yeast, worms, flies, and mice. One possible mechanism of action for these compounds is a protective effect against DNA damage. We investigated whether five of these lifespan-extending compounds, dinitrophenol, metformin, rapamycin, resveratrol, and spermidine, could protect nuclear DNA in the yeast Saccharomyces cerevisiae at the same doses under which they confer lifespan extension. We found that rapamycin and spermidine were able to decrease the spontaneous mutation rate at the CAN1 locus, whereas dinitrophenol, metformin, and resveratrol were able to protect yeast against CAN1 mutations induced by ethyl methanesulfonate (EMS). We also tested whether these compounds could enhance survival against EMS, ultraviolet (UV) light, or hydrogen peroxide (H2O2) insult. All five compounds conferred a protective effect against EMS, while metformin and spermidine protected yeast against UV light. Somewhat surprisingly, none of the compounds were able to afford a significant protection against H2O2, with spermidine dramatically sensitizing cells. We also examined the ability of these compounds to increase lifespan when growth-arrested by hydroxyurea; only spermidine was found to have a positive effect. Overall, our results suggest that lifespan-extending compounds may act in part by protecting nuclear DNA.
Collapse
|
8
|
Ware RE, Dertinger SD. Absence of hydroxyurea-induced mutational effects supports higher utilisation for the treatment of sickle cell anaemia. Br J Haematol 2021; 194:252-266. [PMID: 33570176 DOI: 10.1111/bjh.17323] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
Hydroxyurea (hydroxycarbamide) is approved for treating both children and adults with sickle cell anaemia (SCA). Fetal haemoglobin (HbF) induction is the primary treatment response, along with improved anaemia, reduced haemolysis, myelosuppression and decreased endothelial inflammation. Hydroxyurea has proven clinical efficacy for SCA - treatment significantly reduces disease manifestations and prolongs survival. Despite these recognised benefits, long-standing concerns regarding the risks of mutagenic and potentially carcinogenic drug exposure have hampered efforts for broad hydroxyurea use in SCA, although these are based largely on outdated experimental models and treatment experiences with myeloproliferative neoplasms. Consequently, many patients with SCA are not receiving this highly effective disease-modifying therapy. In this review, we describe the concept of genotoxicity and its laboratory measurements, summarise hydroxyurea-associated data from both preclinical and clinical studies, and discuss carcinogenic potential. The genotoxicity results clearly demonstrate that hydroxyurea does not directly bind DNA and is not mutagenic. Rather, its genotoxic effects are limited to indirect clastogenicity occurring in select cell types, and only when high dose and time thresholds are exceeded. This absence of mutagenic activity is consistent with the observed lack of any compelling carcinogenic potential. Since hydroxyurea therapy for SCA carries minimal carcinogenic risks, the current drug labelling should be modified accordingly, and prescribing practices should be broadened to allow better access and increased utilisation of this highly effective drug.
Collapse
Affiliation(s)
- Russell E Ware
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
9
|
Albertini RJ, Kaden DA. Mutagenicity monitoring in humans: Global versus specific origin of mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108341. [PMID: 33339577 DOI: 10.1016/j.mrrev.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.
Collapse
Affiliation(s)
- Richard J Albertini
- University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, United States
| | - Debra A Kaden
- Ramboll US Consulting, Inc., 101 Federal Street, Suite 1900, Boston, MA 02110, United States.
| |
Collapse
|
10
|
Oliveira EAMD, Boy KDA, Santos APP, Machado CDS, Velloso-Rodrigues C, Gerheim PSAS, Mendonça LM. Evaluation of hydroxyurea genotoxicity in patients with sickle cell disease. EINSTEIN-SAO PAULO 2019; 17:eAO4742. [PMID: 31508660 PMCID: PMC6750882 DOI: 10.31744/einstein_journal/2019ao4742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/23/2019] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the induction of DNA damage in peripheral blood mononuclear cells of patients with sickle cell disease, SS and SC genotypes, treated with hydroxyurea. METHODS The study subjects were divided into two groups: one group of 22 patients with sickle cell disease, SS and SC genotypes, treated with hydroxyurea, and a Control Group composed of 24 patients with sickle cell disease who were not treated with hydroxyurea. Peripheral blood samples were submitted to peripheral blood mononuclear cell isolation to assess genotoxicity by the cytokinesis-block micronucleus cytome assay, in which DNA damage biomarkers - micronuclei, nucleoplasmic bridges and nuclear buds - were counted. RESULTS Patients with sickle cell disease treated with hydroxyurea had a mean age of 25.4 years, whereas patients with sickle cell disease not treated with hydroxyurea had a mean age of 17.6 years. The mean dose of hydroxyurea used by the patients was 12.8mg/kg/day, for a mean period of 44 months. The mean micronucleus frequency per 1,000 cells of 8.591±1.568 was observed in the Hydroxyurea Group and 10.040±1.003 in the Control Group. The mean frequency of nucleoplasmic bridges per 1,000 cells and nuclear buds per 1,000 cells for the hydroxyurea and Control Groups were 0.4545±0.1707 versus 0.5833±0.2078, and 0.8182±0.2430 versus 0.9583±0.1853, respectively. There was no statistically significant difference between groups. CONCLUSION In the study population, patients with sickle cell disease treated with the standard dose of hydroxyurea treatment did not show evidence of DNA damage induction.
Collapse
Affiliation(s)
| | | | - Ana Paula Pinho Santos
- Hemocentro Regional de Governador Valadares, Fundação Hemominas, Governador Valadares, MG, Brazil
| | | | | | | | | |
Collapse
|
11
|
Adeyemo TA, Diaku-Akinwunmi IN, Ojewunmi OO, Bolarinwa AB, Adekile AD. Barriers to the use of hydroxyurea in the management of sickle cell disease in Nigeria. Hemoglobin 2019; 43:188-192. [PMID: 31462098 DOI: 10.1080/03630269.2019.1649278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydroxyurea (HU) is a well-known Hb F-inducing agent with proven clinical and laboratory efficacy for patients with sickle cell disease. However, concerns about its long-term safety and toxicity have limited its prescription by physicians and acceptability by patients. Thus, this study aims to evaluate clinician's barriers to the use of HU in the management of patients with sickle cell disease in Nigeria. An online survey targeted physicians in pediatrics, hematology, medicine, family medicine and general medical practice managing sickle cell disease in Nigeria. The survey was in four sections: demographic, knowledge and experience with HU, and barriers to the use of HU. Ninety-one (73.0%) of 123 contacts completed the survey. Seventy-three percent and 74.0% of the respondents noted that HU reduced transfusion rates and improved overall quality of life (QOL) of patients, respectively. While the majority of the practitioners (55.6%) see between 10-50 patients per month, most (66.7%) write <5 prescriptions for HU per month. Lack of a national guideline for use of HU, especially in children (52.0%), concern for infertility (52.0%), and safety profile of HU in pregnancy and lactation (48.2%), top the factors considered by the respondents as major barriers to the use of HU. Hydroxyurea is grossly under prescribed in Nigeria, despite that the vast majority of physicians who attend patients with sickle cell disease know about its clinical efficacy. Evidence-based clinical practice guidelines could be explored as a way to standardize practices and improve confidence of practitioners to improve physicians' prescription of HU in the management of sickle cell disease.
Collapse
Affiliation(s)
- Titilope A Adeyemo
- Department of Haematology and Blood Transfusion, College of Medicine, University of Lagos , Lagos , Nigeria.,Department of Haematology and Blood Transfusion, Lagos University Teaching Hospital , Id-Aarba , Lagos , Nigeria
| | | | | | - Abiola B Bolarinwa
- Department of Haematology and Blood Transfusion, Lagos University Teaching Hospital , Id-Aarba , Lagos , Nigeria
| | - Adekunle D Adekile
- Department of Paediatrics, Faculty of Medicine, Kuwait University , Kuwait City , Kuwait
| |
Collapse
|
12
|
Regan S, Yang X, Finnberg NK, El-Deiry WS, Pu JJ. Occurrence of acute myeloid leukemia in hydroxyurea-treated sickle cell disease patient. Cancer Biol Ther 2019; 20:1389-1397. [PMID: 31423878 DOI: 10.1080/15384047.2019.1647055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hydroxyurea (HU) has been widely used in sickle cell disease. Its potential long-term risk for carcinogenesis or leukemogenic risk remains undefined. Here, we report a 26 y old African-American female with Sickle Cell Disease (SCD) who developed refractory/relapsed acute myeloid leukemia (AML) 6 months after 26 months of HU use. That patient's cytogenetics and molecular genetics analyses demonstrated a complex mutation profile with 5q deletion, trisomy 8, and P53 deletion (deletion of 17p13.1). P53 gene sequence studies revealed a multitude of somatic mutations that most suggest a treatment-related etiology. The above-mentioned data indicates that the patient may have developed acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) as a direct result of HU exposure.
Collapse
Affiliation(s)
- Samuel Regan
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA
| | - Xuebin Yang
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania , Philadelphia , PA , USA
| | | | - Wafik S El-Deiry
- Department of Pathology, Warren Alpert Medical School, Brown University , Providence , Rhode Island , USA
| | - Jeffrey J Pu
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA.,Upstate Cancer Center, Departments of Medicine, Pathology, and Pharmacology, SUNY Upstate Medical University , Syracuse , New York , USA.,Syracuse VA Medical Center, SUNY Upstate Medical University , Syracuse , New York , USA
| |
Collapse
|
13
|
Ali H, Iftikhar F, Shafi S, Siddiqui H, Khan IA, Choudhary MI, Musharraf SG. Thiourea derivatives induce fetal hemoglobin production in-vitro: A new class of potential therapeutic agents for β-thalassemia. Eur J Pharmacol 2019; 855:285-293. [PMID: 31100414 DOI: 10.1016/j.ejphar.2019.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
Abstract
Fetal hemoglobin (HbF) induction is a cost-effective therapeutic approach for the treatment of β-hemoglobinopathies like β-thalassemia and sickle cell anemia. The present study discusses the potential of thiourea derivatives as new class of compounds that induce the fetal hemoglobin production. HbF inducing effect of thiourea derivatives was studied using experimental cell system, the human erythroleukemic K562 cell line. Erythroid induction of K562 cells was studied by the benzidine/H2O2 reaction, total hemoglobin production was estimated by plasma hemoglobin assay kit, and γ-globin gene expression by RT-qPCR, whereas fetal hemoglobin production was estimated by flow cytometry and immunofluorescence microscopy. The results indicated that newly synthesized thiourea derivative are potent inducers of erythroid differentiation of K562 cells with an increased γ-globin gene expression and fetal hemoglobin production. Moreover, these compounds showed no cytotoxic effect and inhibition on K562 cells at HbF inducing concentrations. It is important to note that hydroxyurea is a cytotoxic chemotherapeutic agent and have deleterious side effects, reflecting the need to identify new safe and effective HbF induces. These results signify thiourea derivatives as promising HbF inducers, with the potential to be studied against hematological disorders, including β-thalassemia and sickle cell anemia.
Collapse
Affiliation(s)
- Hamad Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fizza Iftikhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sarah Shafi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ishtiaq Ahmad Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
14
|
Arlt MF, Rajendran S, Holmes SN, Wang K, Bergin IL, Ahmed S, Wilson TE, Glover TW. Effects of hydroxyurea on CNV induction in the mouse germline. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:698-714. [PMID: 30218578 PMCID: PMC7275641 DOI: 10.1002/em.22233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Copy number variants (CNVs) are important in genome variation and genetic disease, with new mutations arising frequently in the germline and somatic cells. Replication stress caused by aphidicolin and hydroxyurea (HU) is a potent inducer of de novo CNVs in cultured mammalian cells. HU is used extensively for long-term management of sickle cell disease. Here, we examined the effects of HU treatment on germline CNVs in vivo in male mice to explore whether replication stress can act as a CNV mutagen in germline mitotic divisions as in cultured cells and whether this would support a concern for increased CNV mutations in offspring of men treated with HU. Several trials of HU administration were performed by oral gavage and subcutaneous pump, with CNVs characterized in C57BL/6 x C3H/HeJ hybrid mouse offspring by microarray and mate-pair sequencing. HU had a short half-life of ~14 min and a narrow dose window over which studies could be performed while maintaining fertility. Tissue histopathology and reticulocyte micronucleus assays verified that doses had a substantial tissue and genetic toxicity. CNVs were readily detected in offspring that originated in both paternal and maternal mouse strains, as de novo and inherited events. However, HU did not increase CNV formation above baseline levels. These results reveal a high rate of CNV mutagenesis in the mouse germline but do not support the hypothesis that HU would increase CNV formation during mammalian spermatogenesis, perhaps due to highly toxic effects on sperm development or experimental variables related to HU pharmacology in mice. Environ. Mol. Mutagen. 59:698-714, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin F. Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sountharia Rajendran
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sandra N. Holmes
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kathleen Wang
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ingrid L. Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Samreen Ahmed
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas E. Wilson
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas W. Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
15
|
Rodriguez A, Duez P, Dedeken L, Cotton F, Ferster A. Hydroxyurea (hydroxycarbamide) genotoxicity in pediatric patients with sickle cell disease. Pediatr Blood Cancer 2018. [PMID: 29512872 DOI: 10.1002/pbc.27022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Hydroxyurea (HU) reduces the severity of sickle cell disease (SCD) in children; nevertheless, its long-term safety is an important concern. This paper evaluates HU genotoxicity at dose ≤ 30 mg/kg/day after over 2 years of treatment. PROCEDURE The study included 76 children: 32 SCD patients treated with HU, 27 SCD patients not treated with HU, and 17 unaffected children. HU patients were classified as good or poor responders according to their clinical response. Comet assay allows the comparison of DNA damage between both groups of patients and unaffected children. Maximal concentration (Cmax ) of HU in plasma was determined after drug administration. RESULTS Mean values of DNA in the comet tail were 5.13 ± 6.84 for unaffected children, 5.80 ± 7.78 for patients with SCD treated with HU, and 5.61 ± 6.91 for patients with SCD not treated with HU. Significant differences were observed between unaffected children and children with SCD. No difference was evident between comets from SCD patients treated and not treated with HU. In the case of HU, mean DNA in the comet tail was significantly lower in good responders than in poor responders: 5.54 ± 7.77 and 6.69 ± 8.43, respectively. Mean Cmax value on plasma was 39.08 ± 15.65 mg/l; N = 31. CONCLUSIONS SCD increases, slightly but significantly, DNA damage in lymphocytes from patients with SCD. Patients with SCD treated with HU do not present more nucleoid damage than patients with SCD not treated with HU. Good responders to the HU treatment have significantly less nucleoid damage than poor responders. HU treatment at ≤30 mg/kg/day does not expose patients to a genotoxic plasma concentration.
Collapse
Affiliation(s)
- Anar Rodriguez
- Laboratory of Biological and Medical Chemistry, Faculté de Phamacie, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Service of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Brussels, Belgium
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculté de Medicine et Pharmacie, Université de Mons (UMONS), Brussels, Belgium
| | - Laurence Dedeken
- Department of Hematology/Oncology, Hôpital Universitaire des Enfants "Reine Fabiola", Brussels, Belgium
| | - Frédéric Cotton
- Laboratory of Biological and Medical Chemistry, Faculté de Phamacie, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Service of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Brussels, Belgium
| | - Alina Ferster
- Department of Hematology/Oncology, Hôpital Universitaire des Enfants "Reine Fabiola", Brussels, Belgium
| |
Collapse
|
16
|
Risoluti R, Materazzi S. MicroNIR/Chemometrics Assessement of Occupational Exposure to Hydroxyurea. Front Chem 2018; 6:228. [PMID: 29974049 PMCID: PMC6020770 DOI: 10.3389/fchem.2018.00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
Portable Near Infrared spectroscopy (NIRs) coupled to chemometrics was investigated for the first time as a novel entirely on-site approach for occupational exposure monitoring in pharmaceutical field. Due to a significant increase in the number of patients receiving chemotherapy, the development of reliable, fast, and on-site analytical methods to assess the occupational exposure of workers in the manufacture of pharmaceutical products, has become more and more required. In this work, a fast, accurate, and sensitive detection of hydroxyurea, a cytotoxic antineoplastic agent commonly used in chemotherapy, was developed. Occupational exposure to antineoplastic agents was evaluated by collecting hydroxyurea on a membrane filter during routine drug manufacturing process. Spectra were acquired in the NIR region in reflectance mode by the means of a miniaturized NIR spectrometer coupled with chemometrics. This MicroNIR instrument is a very ultra-compact portable device with a particular geometry and optical resolution designed in such a manner that the reduction in size does not compromise the performances of the spectrometer. The developed method could detect up to 50 ng of hydroxyurea directly measured on the sampling filter membrane, irrespective of complexity and variability of the matrix; thus extending the applicability of miniaturized NIR instruments in pharmaceutical and biomedical analysis.
Collapse
Affiliation(s)
- Roberta Risoluti
- Department of Chemistry, Sapienza - University of Rome, Rome, Italy
| | | |
Collapse
|
17
|
Ahmad MF, Ansari MO, Jameel S, Wani AL, Parveen N, Siddique HR, Shadab GGHA. Protective role of nimbolide against chemotherapeutic drug hydroxyurea induced genetic and oxidative damage in an animal model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:91-99. [PMID: 29679812 DOI: 10.1016/j.etap.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Nimbolide is known to be an antioxidant found in neem plant. Hydroxyurea is a medication frequently used in sickle-cell disease, different cancers and HIV infection. The present study aimed to evaluate the adverse effect of HU and possible amelioration by nimbolide in Wistar rats. To test our hypothesis, we performed genotoxicity tests, biochemical assays, and histopathological studies. We observed that HU caused higher levels of genotoxicity in the treated animals. The observed genetic and oxidative damage might be due to the presence of reactive species as HU increased the level of the malondialdehyde-a biomarker of oxidative damage. Interestingly, co-treatment of animals with HU and nimbolide showed a lower level of damage. We conclude that nimbolide significantly protects the cells from the adverse effect of HU and could be considered as a potential adjuvant for the patients under HU therapy.
Collapse
Affiliation(s)
- Md Fahim Ahmad
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Owais Ansari
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sana Jameel
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Ab Latif Wani
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Nuzhat Parveen
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - G G H A Shadab
- Cytogenetics and Molecular Toxicological Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
18
|
Khattab M, Walker DM, Albertini RJ, Nicklas JA, Lundblad LK, Vacek PM, Walker VE. Frequencies of micronucleated reticulocytes, a dosimeter of DNA double-strand breaks, in infants receiving computed tomography or cardiac catheterization. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 820:8-18. [DOI: 10.1016/j.mrgentox.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/18/2022]
|
19
|
Cannas G, Poutrel S, Thomas X. Hydroxycarbamine: from an Old Drug Used in Malignant Hemopathies to a Current Standard in Sickle Cell Disease. Mediterr J Hematol Infect Dis 2017; 9:e2017015. [PMID: 28293403 PMCID: PMC5333733 DOI: 10.4084/mjhid.2017.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 01/31/2023] Open
Abstract
While hydroxycarbamide (hydroxyurea, HU) has less and fewer indications in malignant hemopathies, it represents the only widely used drug which modifies sickle cell disease pathogenesis. Clinical experience with HU for patients with sickle cell disease has been accumulated over the past 25 years in Western countries. The review of the literature provides increasing support for safety and efficacy in both children and adults for reducing acute vaso-occlusive events including pain episodes and acute chest syndrome. No increased incidence of leukemia and teratogenicity was demonstrated. HU has become the standard-of-care for sickle cell anemia but remains underused. Barriers to its use should be identified and overcome.
Collapse
Affiliation(s)
- Giovanna Cannas
- Hospices Civils de Lyon, Department of Internal Medicine, Edouard Herriot Hospital, Lyon, France
- Claude Bernard University Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA7424, Equipe ‘Vascular biology and red blood cell’, Villeurbanne, France
| | - Solène Poutrel
- Hospices Civils de Lyon, Department of Internal Medicine, Edouard Herriot Hospital, Lyon, France
| | - Xavier Thomas
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud Hospital, Pierre Bénite, France
| |
Collapse
|
20
|
Pule GD, Mowla S, Novitzky N, Wonkam A. Hydroxyurea down-regulates BCL11A, KLF-1 and MYB through miRNA-mediated actions to induce γ-globin expression: implications for new therapeutic approaches of sickle cell disease. Clin Transl Med 2016; 5:15. [PMID: 27056246 PMCID: PMC4824700 DOI: 10.1186/s40169-016-0092-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022] Open
Abstract
Background The major therapeutic benefit of hydroxyurea, the only FDA-approved pharmacologic treatment for sickle cell disease (SCD), is directly related to fetal hemoglobin (HbF) production that leads to significant reduction of morbidity and mortality. However, potential adverse effects such as infertility, susceptibility to infections, or teratogenic effect have been subject of concerns. Therefore, understanding HU molecular mechanisms of action, could lead to alternative therapeutic agents to increase HbF with less toxicity. This paper investigated whether HU-induced HbF could operate through post-transcriptional miRNAs regulation of BCL11A, KLF-1 and MYB, potent negative regulators of HbF. Both ex vivo differentiated primary erythroid cells from seven unrelated individuals, and K562 cells were treated with hydroxyurea (100 μM) and changes in BCL11A, KLF-1, GATA-1, MYB, β- and γ-globin gene expression were investigated. To explore potential mechanisms of post-transcriptional regulation, changes in expression of seven targeted miRNAs, previously associated with basal γ-globin expression were examined using miScript primer assays. In addition, K562 cells were transfected with miScript miRNA inhibitors/anti-miRNAs followed by Western Blot analysis to assess the effect on HbF protein levels. Direct interaction between miRNAs and the MYB 3′-untranslated region (UTR) was also investigated by a dual-luciferase reporter assays. Results Down-regulation of BCL11A and MYB was associated with a sevenfold increase in γ-globin expression in both primary and K562 cells (p < 0.003). Similarly, KLF-1 was down-regulated in both cell models, corresponding to the repressed expression of BCL11A and β-globin gene (p < 0.04). HU induced differential expression of all miRNAs in both cell models, particularly miR-15a, miR-16, miR-26b and miR-151-3p. An HU-induced miRNAs-mediated mechanism of HbF regulation was illustrated with the inhibition of miR-26b and -151-3p resulting in reduced HbF protein levels. There was direct interaction between miR-26b with the MYB 3′-untranslated region (UTR). Conclusions These experiments have shown the association between critical regulators of γ-globin expression (MYB, BCL11A and KLF-1) and specific miRNAs; in response to HU, and demonstrated a mechanism of HbF production through HU-induced miRNAs inhibition of MYB. The role of miRNAs-mediated post-transcriptional regulation of HbF provides potential targets for new treatments of SCD that may minimize alterations to the cellular transcriptome. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0092-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gift Dineo Pule
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, Republic of South Africa
| | - Shaheen Mowla
- Division of Hematology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Nicolas Novitzky
- Division of Hematology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, Republic of South Africa.
| |
Collapse
|
21
|
Pule GD, Mowla S, Novitzky N, Wiysonge CS, Wonkam A. A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease. Expert Rev Hematol 2015; 8:669-79. [PMID: 26327494 DOI: 10.1586/17474086.2015.1078235] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM To report on molecular mechanisms of fetal hemoglobin (HbF) induction by hydroxyurea (HU) for the treatment of sickle cell disease. STUDY DESIGN Systematic review. RESULTS Studies have provided consistent associations between genomic variations in HbF-promoting loci and variable HbF level in response to HU. Numerous signal transduction pathways have been implicated, through the identification of key genomic variants in BCL11A, HBS1L-MYB, SAR1 or XmnI polymorphism that predispose the response to the treatment, and signal transduction pathways that modulate γ-globin expression (cAMP/cGMP; Giα/c-Jun N-terminal kinase/Jun; methylation and miRNA). Three main molecular pathways have been reported: i) Epigenetic modifications, transcriptional events and signaling pathways involved in HU-mediated response, ii) Signaling pathways involving HU-mediated response and iii) Post-transcriptional pathways (regulation by miRNAs). CONCLUSIONS The complete picture of HU-mediated mechanisms of HbF production in Sickle Cell Disease remains elusive. Research on post-transcriptional mechanisms could lead to therapeutic targets that may minimize alterations to the cellular transcriptome.
Collapse
Affiliation(s)
- Gift D Pule
- a 1 Department of Medicine, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, Republic of South Africa
| | | | | | | | | |
Collapse
|
22
|
Kotova N, Hebert N, Härnwall EL, Vare D, Mazurier C, Douay L, Jenssen D, Grawé J. A novel micronucleus in vitro assay utilizing human hematopoietic stem cells. Toxicol In Vitro 2015. [PMID: 26208286 DOI: 10.1016/j.tiv.2015.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The induction of micronucleated reticulocytes in the bone marrow is a sensitive indicator of chromosomal damage. Therefore, the micronucleus assay in rodents is widely used in genotoxicity and carcinogenicity testing. A test system based on cultured human primary cells could potentially provide better prediction compared to animal tests, increasing patient safety while also implementing the 3Rs principle, i.e. replace, reduce and refine. Hereby, we describe the development of an in vitro micronucleus assay based on animal-free ex vivo culture of human red blood cells from hematopoietic stem cells. To validate the method, five clastogens with direct action, three clastogens requiring metabolic activation, four aneugenic and three non-genotoxic compounds have been tested. Also, different metabolic systems have been applied. Flow cytometry was used for detection and enumeration of micronuclei. Altogether, the results were in agreement with the published data and indicated that a sensitive and cost effective in vitro assay to assess genotoxicity with a potential to high-throughput screening has been developed.
Collapse
Affiliation(s)
- N Kotova
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden.
| | - N Hebert
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France; INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France; Etablissement Francais du Sang Ile de France, Ivry-sur-Seine, France
| | - E-L Härnwall
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - D Vare
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - C Mazurier
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France; INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France; Etablissement Francais du Sang Ile de France, Ivry-sur-Seine, France
| | - L Douay
- UPMC Univ Paris 06, UMR_S938 CDR Saint-Antoine, Prolifération et Différentiation des Cellules Souches, Paris, France; INSERM, UMR_S938, Prolifération et Différentiation des Cellules Souches, Paris, France; Etablissement Francais du Sang Ile de France, Ivry-sur-Seine, France; AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - D Jenssen
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, SE-106 91 Stockholm, Sweden
| | - J Grawé
- Dept. of Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
23
|
The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice. Blood 2015; 126:386-96. [PMID: 26031919 DOI: 10.1182/blood-2015-02-626259] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/22/2015] [Indexed: 12/30/2022] Open
Abstract
Inhibition of lysine-specific demethylase 1 (LSD1) has been shown to induce fetal hemoglobin (HbF) levels in cultured human erythroid cells in vitro. Here we report the in vivo effects of LSD1 inactivation by a selective and more potent inhibitor, RN-1, in a sickle cell disease (SCD) mouse model. Compared with untreated animals, RN-1 administration leads to induced HbF synthesis and to increased frequencies of HbF-positive cells and mature erythrocytes, as well as fewer reticulocytes and sickle cells, in the peripheral blood of treated SCD mice. In keeping with these observations, histologic analyses of the liver and spleen of treated SCD mice verified that they do not exhibit the necrotic lesions that are usually associated with SCD. These data indicate that RN-1 can effectively induce HbF levels in red blood cells and reduce disease pathology in SCD mice, and may therefore offer new therapeutic possibilities for treating SCD.
Collapse
|
24
|
Pedrosa AM, Barbosa MC, Santos TND, Leal LKAM, Lopes ADA, Elias DBD, Sasahara GL, Cavalcanti BC, Gonçalves RP. Cytotoxicity and DNA damage in the neutrophils of patients with sickle cell anaemia treated with hydroxyurea. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000200020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyurea (HU) is the most important advance in the treatment of sickle cell anaemia (SCA) for preventing complications and improving quality of life for patients. However, some aspects of treatment with HU remain unclear, including their effect on and potential toxicity to other blood cells such as neutrophils. This study used the measurement of Lactate Dehydrogenase (LDH) and Methyl ThiazolTetrazolium (MTT) and the comet assay to investigate the cytotoxicity and damage index (DI) of the DNA in the neutrophils of patients with SCA using HU.In the LDH and MTT assays, a cytoprotective effect was observed in the group of patients treated, as well as an absence of toxicity. When compared to patients without the treatment, the SS group (n=20, 13 women and 07 men, aged 18-69 years), and the group of healthy individuals (AA) used as a control group (n=52, 28 women and 24 men, aged 19-60 years), The SSHU group (n=21, 11 women and 10 men, aged 19-63 years) showed a significant reduction (p<0.001) in LDH activity and an increase in the percentage of viable cells by the MTT (p<0.001). However, the SSHU group presented significantly higher DI values (49.57±6.0 U/A) when compared to the AA group (7.43 ± 0,94U/A) and the SS group (22.73 ±5.58 U/A) (p<0.0001), especially when treated for longer periods (>20 months), demonstrating that despite the cytoprotective effects in terms of cell viability, the use of HU can induce DNA damage in neutrophils.
Collapse
|
25
|
Kassim AA, DeBaun MR. The case for and against initiating either hydroxyurea therapy, blood transfusion therapy or hematopoietic stem cell transplant in asymptomatic children with sickle cell disease. Expert Opin Pharmacother 2014; 15:325-36. [DOI: 10.1517/14656566.2014.868435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Green NS, Barral S. Emerging science of hydroxyurea therapy for pediatric sickle cell disease. Pediatr Res 2014; 75:196-204. [PMID: 24252885 PMCID: PMC3917141 DOI: 10.1038/pr.2013.227] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 10/25/2013] [Indexed: 12/16/2022]
Abstract
Hydroxyurea (HU) is the sole approved pharmacological therapy for sickle cell disease (SCD). Higher levels of fetal hemoglobin (HbF) diminish deoxygenated sickle globin polymerization in vitro and clinically reduce the incidence of disease morbidities. Clinical and laboratory effects of HU largely result from induction of HbF expression, though to a highly variable extent. Baseline and HU-induced HbF expression are both inherited complex traits. In children with SCD, baseline HbF remains the best predictor of drug-induced levels, but this accounts for only a portion of the induction. A limited number of validated genetic loci are strongly associated with higher baseline HbF levels in SCD. For induced HbF levels, genetic approaches using candidate single-nucleotide polymorphisms (SNPs) have identified some of these same loci as being also associated with induction. However, SNP associations with induced HbF are only partially independent of baseline levels. Additional approaches to understanding the impact of HU on HbF and its other therapeutic effects on SCD include pharmacokinetic, gene expression-based, and epigenetic analyses in patients and through studies in existing murine models for SCD. Understanding the genetic and other factors underlying the variability in therapeutic effects of HU for pediatric SCD is critical for prospectively predicting good responders and for designing other effective therapies.
Collapse
Affiliation(s)
- Nancy S. Green
- Division of Pediatric Hematology, Department of Pediatrics, Columbia University, New York, NY, United States
| | - Sandra Barral
- G.H.Sergievsky Center, Department of Neurology, Columbia University, New York, NY, United States
| |
Collapse
|
27
|
Álvarez-González I, Vázquez-Sánchez J, Chamorro-Cevallos G, Madrigal-Bujaidar E. Effect of Spirulina maxima and its protein extract on micronuclei induction by hydroxyurea in pregnant mice and their fetuses. J Med Food 2013; 16:992-6. [PMID: 24175654 DOI: 10.1089/jmf.2012.0284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of the present report was to determine the inhibitory effect of Spirulina maxima (Sm) and its protein extract (PE), mainly consisting of C-phycocyanin, on the increase in micronuclei and bone marrow cytotoxicity induced by hydroxyurea (HU) in pregnant mice and their fetuses. The two tested antimutagenic agents were administered daily from day 10 to day 18 of pregnancy, and HU (300 mg/kg) was administered once on day 16 of the assay. The experimental design also included mice that were administered only Sm or PE (1000 and 400 mg/kg, respectively), two control groups that were administered with vehicles (water and 0.5% Tween 80), and one additional group that was treated solely with HU. Blood samples from the pregnant mice and their fetuses were examined at day 19 of pregnancy. Significant increases in the number of micronucleated polychromatic erythrocytes and in the total number of micronucleated erythrocytes were observed in all HU-treated animals. In contrast, similarly low numbers of micronuclei were observed in the two control groups and in the groups treated with Sm and PE alone. The administration of Sm (100, 500, and 1000 mg/kg) and PE (100, 200, and 400 mg/kg) to HU-treated animals conferred moderate genotoxic protection (∼30%) and some protection against the cytotoxicity induced by HU in mice. The obtained results provide new information regarding the capacity of the tested agents to confer protection to adult mice and transplacentally, as well as on a specific subclass of micronuclei.
Collapse
Affiliation(s)
- Isela Álvarez-González
- 1 Laboratorie of Genetics, National School of Biological Sciences, National Polytechnic Institute , Mexico City, Mexico
| | | | | | | |
Collapse
|
28
|
Afrin LB. Utility of hydroxyurea in mast cell activation syndrome. Exp Hematol Oncol 2013; 2:28. [PMID: 24192267 PMCID: PMC3851743 DOI: 10.1186/2162-3619-2-28] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/06/2013] [Indexed: 02/07/2023] Open
Abstract
Mast cell activation syndrome (MCAS) is a relatively recently recognized cause of chronic multisystem polymorbidity of a generally inflammatory theme. Patients with MCAS often report migratory soft tissue and/or bone pain which frequently responds poorly to typical (narcotic and non-narcotic) analgesics as well as atypical analgesics such as antidepressants and anticonvulsants. Hydroxyurea (HU) is an oral ribonucleotide reductase inhibitor commonly used in the treatment of chronic myeloproliferative neoplasms and sickle cell anemia. HU has been used to treat systemic mastocytosis, sometimes effecting improvement in MC activation symptoms but not tumor burden, suggesting potential utility of the drug in MCAS, too. Reported here are five cases of successful use of relatively low-dose HU in MCAS to reduce symptoms including previously refractory soft tissue and/or bone pain. HU may be useful in treating mediator symptoms in MCAS, but further study is needed to define optimal dosing strategies and patient subpopulations most likely to benefit.
Collapse
Affiliation(s)
- Lawrence B Afrin
- Division of Hematology/Oncology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
29
|
Johnson D, Hastwell PW, Walmsley RM. The involvement of WT1 in the regulation of GADD45a in response to genotoxic stress. Mutagenesis 2013; 28:393-9. [PMID: 23476008 DOI: 10.1093/mutage/get015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Expression of the human GADD45a gene is increased in TK6 cells exposed to mutagens, clastogens and aneugens. It is known to be regulated through both p53-dependent and p53-independent pathways and WT1 has been implicated in both cases. This article reports an investigation into the effect that mutations in the WT1 and p53 response elements of the gene have on GADD45a expression. This was conducted in both p53 wild-type (TK6) and mutant (WI-L2-NS) human B lymphoblastoid cell lines. Gene expression was monitored using a GADD45a-green fluorescent protein reporter assay. Mutant cell lines were exposed to the mechanistically diverse genotoxins methyl methanesulphonate, cisplatin and mitomycin C (direct acting), hydroxyurea, aphidicolin and 5'fluorouracil (inhibitors of nucleotide/DNA synthesis) and benomyl (aneugen). In all cases, the induction of the reporter was reduced in the mutants compared with wild-type. These results provide experimental evidence for the implied role of WT1 in both p53-dependent and p53-independent pathways of GADD45a regulation and further insight into the mechanism of GADD45a induction by genotoxins.
Collapse
Affiliation(s)
- Donna Johnson
- Harper Adams University College, Newport, Shropshire TF10 8NB, UK
| | | | | |
Collapse
|
30
|
da Silva Rocha LB, Dias Elias DB, Barbosa MC, Bandeira ICJ, Gonçalves RP. DNA damage in leukocytes of sickle cell anemia patients is associated with hydroxyurea therapy and with HBB*S haplotype. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:48-52. [DOI: 10.1016/j.mrgentox.2012.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 11/24/2022]
|
31
|
Strouse JJ, Heeney MM. Hydroxyurea for the treatment of sickle cell disease: efficacy, barriers, toxicity, and management in children. Pediatr Blood Cancer 2012; 59:365-71. [PMID: 22517797 PMCID: PMC3374046 DOI: 10.1002/pbc.24178] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 01/31/2023]
Abstract
Hydroxyurea is the only approved medication in the United States for the treatment of sickle cell anemia (HbSS) and is widely used in children despite an indication limited to adults. We review the evidence of efficacy and safety in children with reference to pivotal adult studies. This evidence and expert opinion form the basis for recommended guidelines for the use of hydroxyurea in children including indications, dosing, therapeutic and safety monitoring, and interventions to improve adherence. However, there are substantial gaps in our knowledge to be addressed by on-going and planned studies in children.
Collapse
Affiliation(s)
- John J. Strouse
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States, 21205,Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States, 21205
| | - Matthew M. Heeney
- Division of Hematology/Oncology, Department of Medicine, Children’s Hospital Boston, Boston, MA, United States, 02115,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States, 02115
| |
Collapse
|
32
|
McGann PT, Flanagan JM, Howard TA, Dertinger SD, He J, Kulharya AS, Thompson BW, Ware RE. Genotoxicity associated with hydroxyurea exposure in infants with sickle cell anemia: results from the BABY-HUG Phase III Clinical Trial. Pediatr Blood Cancer 2012; 59:254-7. [PMID: 22012708 PMCID: PMC3277805 DOI: 10.1002/pbc.23365] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/06/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND The laboratory and clinical benefits of hydroxyurea therapy for children with sickle cell anemia (SCA) are well recognized, but treatment in young patients is limited in part by concerns about long-term genotoxicity, and specifically possible carcinogenicity. PROCEDURE The Pediatric Hydroxyurea Phase III Clinical Trial (BABY HUG) was a multicenter double-blinded placebo-controlled randomized clinical trial (NCT00006400) testing whether hydroxyurea could prevent chronic organ damage in very young patients with SCA. An important secondary objective was the measurement of acquired genotoxicity using three laboratory assays: chromosomal karyotype, illegitimate VDJ recombination events, and micronucleated reticulocyte formation. RESULTS Our data indicate that hydroxyurea treatment was not associated with any significant increases in genotoxicity compared to placebo treatment. CONCLUSIONS These data provide additional support to the safety profile of hydroxyurea for young patients with SCA, and suggest that genotoxicity in this patient population is low.
Collapse
|
33
|
|
34
|
Arlt MF, Wilson TE, Glover TW. Replication stress and mechanisms of CNV formation. Curr Opin Genet Dev 2012; 22:204-10. [PMID: 22365495 DOI: 10.1016/j.gde.2012.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/11/2022]
Abstract
Copy number variants (CNVs) are widely distributed throughout the human genome, where they contribute to genetic variation and phenotypic diversity. De novo CNVs are also a major cause of numerous genetic and developmental disorders. However, unlike many other types of mutations, little is known about the genetic and environmental risk factors for new and deleterious CNVs. DNA replication errors have been implicated in the generation of a major class of CNVs, the nonrecurrent CNVs. We have found that agents that perturb normal replication and create conditions of replication stress, including hydroxyurea and aphidicolin, are potent inducers of nonrecurrent CNVs in cultured human cells. These findings have broad implications for identifying CNV risk factors and for hydroxyurea-related therapies in humans.
Collapse
Affiliation(s)
- Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, United States
| | | | | |
Collapse
|
35
|
Abstract
Copy number variants (CNVs) are widely distributed throughout the human genome, where they contribute to genetic variation and phenotypic diversity. Spontaneous CNVs are also a major cause of genetic and developmental disorders and arise frequently in cancer cells. As with all mutation classes, genetic and environmental factors almost certainly increase the risk for new and deleterious CNVs. However, despite the importance of CNVs, there is limited understanding of these precipitating risk factors and the mechanisms responsible for a large percentage of CNVs. Here we report that low doses of hydroxyurea, an inhibitor of ribonucleotide reductase and an important drug in the treatment of sickle cell disease and other diseases induces a high frequency of de novo CNVs in cultured human cells that resemble pathogenic and aphidicolin-induced CNVs in size and breakpoint structure. These CNVs are distributed throughout the genome, with some hotspots of de novo CNV formation. Sequencing revealed that CNV breakpoint junctions are characterized by short microhomologies, blunt ends, and short insertions. These data provide direct experimental support for models of replication-error origins of CNVs and suggest that any agent or condition that leads to replication stress has the potential to induce deleterious CNVs. In addition, they point to a need for further study of the genomic consequences of the therapeutic use of hydroxyurea.
Collapse
|
36
|
Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia. Blood 2011; 118:4985-91. [PMID: 21876119 DOI: 10.1182/blood-2011-07-364190] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxyurea therapy has proven laboratory and clinical efficacies for children with sickle cell anemia (SCA). When administered at maximum tolerated dose (MTD), hydroxyurea increases fetal hemoglobin (HbF) to levels ranging from 10% to 40%. However, interpatient variability of percentage of HbF (%HbF) response is high, MTD itself is variable, and accurate predictors of hydroxyurea responses do not currently exist. HUSTLE (NCT00305175) was designed to provide first-dose pharmacokinetics (PK) data for children with SCA initiating hydroxyurea therapy, to investigate pharmacodynamics (PD) parameters, including HbF response and MTD after standardized dose escalation, and to evaluate pharmacogenetics influences on PK and PD parameters. For 87 children with first-dose PK studies, substantial interpatient variability was observed, plus a novel oral absorption phenotype (rapid or slow) that influenced serum hydroxyurea levels and total hydroxyurea exposure. PD responses in 174 subjects were robust and similar to previous cohorts; %HbF at MTD was best predicted by 5 variables, including baseline %HbF, whereas MTD was best predicted by 5 variables, including serum creatinine. Pharmacogenetics analysis showed single nucleotide polymorphisms influencing baseline %HbF, including 5 within BCL11A, but none influencing MTD %HbF or dose. Accurate prediction of hydroxyurea treatment responses for SCA remains a worthy but elusive goal.
Collapse
|
37
|
Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, Rana S, Thornburg CD, Rogers ZR, Kalpatthi RV, Barredo JC, Brown RC, Sarnaik SA, Howard TH, Wynn LW, Kutlar A, Armstrong FD, Files BA, Goldsmith JC, Waclawiw MA, Huang X, Thompson BW. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 2011; 377:1663-72. [PMID: 21571150 PMCID: PMC3133619 DOI: 10.1016/s0140-6736(11)60355-3] [Citation(s) in RCA: 558] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sickle-cell anaemia is associated with substantial morbidity from acute complications and organ dysfunction beginning in the first year of life. Hydroxycarbamide substantially reduces episodes of pain and acute chest syndrome, admissions to hospital, and transfusions in adults with sickle-cell anaemia. We assessed the effect of hydroxycarbamide therapy on organ dysfunction and clinical complications, and examined laboratory findings and toxic effects. METHODS This randomised trial was undertaken in 13 centres in the USA between October, 2003, and September, 2009. Eligible participants had haemoglobin SS (HbSS) or haemoglobin Sβ(0)thalassaemia, were aged 9-18 months at randomisation, and were not selected for clinical severity. Participants received liquid hydroxycarbamide, 20 mg/kg per day, or placebo for 2 years. Randomisation assignments were generated by the medical coordinating centre by a pre-decided schedule. Identical appearing and tasting formulations were used for hydroxycarbamide and placebo. Patients, caregivers, and coordinating centre staff were masked to treatment allocation. Primary study endpoints were splenic function (qualitative uptake on (99)Tc spleen scan) and renal function (glomerular filtration rate by (99m)Tc-DTPA clearance). Additional assessments included blood counts, fetal haemoglobin concentration, chemistry profiles, spleen function biomarkers, urine osmolality, neurodevelopment, transcranial Doppler ultrasonography, growth, and mutagenicity. Study visits occurred every 2-4 weeks. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT00006400. FINDINGS 96 patients received hydroxycarbamide and 97 placebo, of whom 83 patients in the hydroxycarbamide group and 84 in the placebo group completed the study. Significant differences were not seen between groups for the primary endpoints (19 of 70 patients with decreased spleen function at exit in the hydroxycarbamide group vs 28 of 74 patients in the placebo group, p=0·21; and a difference in the mean increase in DTPA glomerular filtration rate in the hydroxycarbamide group versus the placebo group of 2 mL/min per 1·73 m(2), p=0·84). Hydroxycarbamide significantly decreased pain (177 events in 62 patients vs 375 events in 75 patients in the placebo group, p=0·002) and dactylitis (24 events in 14 patients vs 123 events in 42 patients in the placebo group, p<0·0001), with some evidence for decreased acute chest syndrome, hospitalisation rates, and transfusion. Hydroxyurea increased haemoglobin and fetal haemoglobin, and decreased white blood-cell count. Toxicity was limited to mild-to-moderate neutropenia. INTERPRETATION On the basis of the safety and efficacy data from this trial, hydroxycarbamide can now be considered for all very young children with sickle-cell anaemia. FUNDING The US National Heart, Lung, and Blood Institute; and the National Institute of Child Health and Human Development.
Collapse
Affiliation(s)
- Winfred C Wang
- St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
McGann PT, Howard TA, Flanagan JM, Lahti JM, Ware RE. Chromosome damage and repair in children with sickle cell anaemia and long-term hydroxycarbamide exposure. Br J Haematol 2011; 154:134-40. [PMID: 21542824 DOI: 10.1111/j.1365-2141.2011.08698.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hydroxycarbamide (hydroxyurea) provides laboratory and clinical benefits for adults and children with sickle cell anaemia (SCA). Given its mechanism of action and prior reports of genotoxicity, concern exists regarding long-term toxicities and possible carcinogenicity. We performed cross-sectional analyses of chromosome stability using peripheral blood mononuclear cells (PBMC) from 51 children with SCA and 3-12 years of hydroxycarbamide exposure (mean age 13·2 ± 4·1 years), compared to 28 children before treatment (9·4 ± 4·7 years). Chromosome damage was less for children receiving hydroxycarbamide than untreated patients (0·8 ± 1·2 vs. 1·9 ± 1·5 breaks per 100 cells, P = 0·004). There were no differences in repairing chromosome breaks after in vitro radiation; PBMC from children taking hydroxycarbamide had equivalent 2 Gy-induced chromosome breaks compared to untreated patients (30·8 ± 16·1 vs. 31·7 ± 8·9 per 100 cells, P = not significant). Radiation plus hydroxycarbamide resulted in similar numbers of unrepaired breaks in cells from children on hydroxycarbamide compared to untreated patients (95·8 ± 44·2 vs. 76·1 ± 23·1 per 100 cells, P = 0·08), but no differences were noted with longer exposure (97·9 ± 42·8 breaks per 100 cells for 3-6 years of hydroxycarbamide exposure vs. 91·2 ± 48·4 for 9-12 years of exposure). These observations provide important safety data regarding long-term risks of hydroxycarbamide exposure for children with SCA, and suggest low in vivo mutagenicity and carcinogenicity.
Collapse
Affiliation(s)
- Patrick T McGann
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | |
Collapse
|
39
|
McGann PT, Ware RE. Hydroxyurea for sickle cell anemia: what have we learned and what questions still remain? Curr Opin Hematol 2011; 18:158-65. [PMID: 21372708 PMCID: PMC3181131 DOI: 10.1097/moh.0b013e32834521dd] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Sickle cell anemia (SCA) is a well characterized severe hematological disorder with substantial morbidity and early mortality. Hydroxyurea is a potent inducer of fetal hemoglobin, and evidence over the past 25 years has documented its laboratory and clinical efficacy for both adults and children with SCA. RECENT FINDINGS The phase III study of hydroxyurea in infants (BABY HUG) has just been completed and preliminary results indicate equivocal benefits for organ protection during the 2-year treatment period, but significant benefits for pain, acute chest syndrome, hospitalizations, and transfusions. Three new reports document the benefits of hydroxyurea on reducing mortality in SCA: two adult trials (LaSHS and MSH) and one pediatric study (Brazilian cohort). Recent results from the HUSTLE protocol suggest minimal genotoxicity or carcinogenicity with long-term hydroxyurea exposure. SUMMARY The potential utility of hydroxyurea for all patients with SCA is clear and indisputable. With decades of accumulated evidence and documented efficacy with an acceptable long-term safety profile, it is time to consider hydroxyurea treatment the standard of care for all young patients with SCA. Exporting our knowledge and experience with hydroxyurea to developing nations with large medical burdens from SCA can help relieve global suffering from this condition.
Collapse
Affiliation(s)
- Patrick T McGann
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| | | |
Collapse
|
40
|
Dos Santos JL, Longhin Bosquesi P, Varanda EA, Moreira Lima L, Chung MC. Assessment of the in vivo genotoxicity of new lead compounds to treat sickle cell disease. Molecules 2011; 16:2982-9. [PMID: 21471937 PMCID: PMC6260610 DOI: 10.3390/molecules16042982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/31/2011] [Accepted: 04/02/2011] [Indexed: 11/30/2022] Open
Abstract
The compounds 1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl nitrate (C1), (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl nitrate (C2), 3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)benzyl nitrate (C3), 4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)-N-hydroxy-benzenesulfonamide (C4), 4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)benzyl nitrate (C5), and 2-[4-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)phenyl]ethyl nitrate (C6) were evaluated with a micronucleus test using mouse peripheral blood to identify new candidate drugs for the treatment of sickle cell disease (SCD) that are safer than hydroxyurea. The compounds induced an average frequency of micronucleated reticulocytes (MNRET) of less than six per 1,000 cells at 12.5, 25, 50, and 100 mg/kg, whereas hydroxyurea induced an average MNRET frequency of 7.8, 9.8, 15, and 33.7 per 1000 cells respectively, at the same concentrations. Compounds C1-C6 are new non-genotoxic in vivo candidate drugs for the treatment of SCD symptoms.
Collapse
Affiliation(s)
- Jean Leandro Dos Santos
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (Lapdesf), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista (UNESP), Rodovia Araraquara Jaú Km. 01, 14801-902 Araraquara, SP, Brazil.
| | | | | | | | | |
Collapse
|
41
|
Lal A, Ames BN. Association of chromosome damage detected as micronuclei with hematological diseases and micronutrient status. Mutagenesis 2011; 26:57-62. [PMID: 21164183 DOI: 10.1093/mutage/geq081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidemiological studies reveal strong association between micronutrient deficiencies and development of cancer. Since chromosome breaks and abnormal chromosome segregation, identified as micronuclei (MN), are central to malignant transformation, the influence of micronutrient status upon MN frequency has been the subject of intense research. Motivating this effort is the idea that marginal micronutrient deficiencies lead to allocation of scarce cellular resources towards immediate survival at the expense of maintaining genomic integrity, placing the individual at greater risk for degenerative diseases and cancer in old age. The challenge in identifying an association between individual micronutrients and MN frequency stems from the complexity of human diet, simultaneous presence of multiple micronutrient deficiencies, variable genetic susceptibility and methodological difficulties. A unique model for studying MN in humans is provided by a group of haematological diseases, the chronic haemolytic anaemias associated with high reticulocyte count and absence of splenic function. These disorders may prove valuable for assessing the influence of micronutrient status once the effect of abnormal erythropoiesis on MN formation is adequately understood. Eventually, large population-based studies that can account for the baseline variability in MN frequency, lifestyle and genetic factors may be needed to uncover the DNA-damaging effect of poor diet. Understanding the link between micronutrient status and MN frequency will contribute towards determining optimal micronutrient intake to preserve long-term health.
Collapse
Affiliation(s)
- Ashutosh Lal
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| | | |
Collapse
|
42
|
Speit G, Zeller J, Neuss S. The in vivo or ex vivo origin of micronuclei measured in human biomonitoring studies. Mutagenesis 2011; 26:107-10. [PMID: 21164190 DOI: 10.1093/mutage/geq061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The micronucleus test (MNT) is a well-established assay in genotoxicity testing and human biomonitoring. The cytokinesis-block micronucleus test (CBMNT) is the preferred method for measuring MN in cultured human lymphocytes from human subjects exposed to genotoxins. However, it is unclear to what extent mutagen exposure either leads to the formation of MN already in vivo or to the formation of MN ex vivo during cell culture as a consequence of persisting DNA damage. MN that were already induced in vivo can be determined by scoring MN in mononuclear lymphocytes 24 h after the start of the lymphocyte culture (i.e. in lymphocytes that did not divide yet). Results obtained for cancer patients after chemotherapy suggest that mutagen exposure in vivo mainly leads to the formation of MN during ex vivo proliferation of lymphocytes as a consequence of mis-repair of persistent damage. If these results also apply to other kinds of mutagen exposure, increased MN frequencies in the CBMNT can only be expected for exposures leading to a sufficient amount of damage that persists during ex vivo lymphocyte culture. For a better understanding of the origin of increased MN frequencies and the correct interpretation of results obtained with the CBMNT, further research is recommended: MN in mononuclear lymphocytes should be additionally scored 24 h after the start of the cultures, comparative investigation with the CBMNT and the MNT with reticulocytes should be performed and the kinetics of MN formation in lymphocyte cultures and the repair capacity of lymphocytes for different kinds of DNA damage should be characterised.
Collapse
Affiliation(s)
- Günter Speit
- Institut für Humangenetik, Universität Ulm, D-89069 Ulm, Germany.
| | | | | |
Collapse
|
43
|
Holland N, Fucic A, Merlo DF, Sram R, Kirsch-Volders M. Micronuclei in neonates and children: effects of environmental, genetic, demographic and disease variables. Mutagenesis 2011; 26:51-6. [PMID: 21164182 DOI: 10.1093/mutage/geq064] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Children may be more susceptible to the effects of the environmental exposure and medical treatments than adults; however, limited information is available about the differences in genotoxic effects in children by age, sex and health status. Micronucleus (MN) assay is a well established method of monitoring genotoxicity, and this approach is thoroughly validated for adult lymphocytes by the Human Micronucleus Biomonitoring project (HUMN.org). Similar international undertaking is in progress for exfoliated buccal cells. Most of the MN studies in children are focused on analyses of lymphocytes but in the recent years, more investigators are interested in using exfoliated cells from the oral cavity and other cell types that can be collected non-invasively, which is particularly important in paediatric cohorts. The baseline MN frequency is relatively low in newborns and its assessment requires large cohorts and cell sample counts. Available results are mostly consistent in conclusion that environmental pollutants and radiation exposures lead to the increase in the MN frequency in children. Effects of medical treatments are less clear, and more studies are needed to optimise the doses and minimise genotoxicity without compromising therapy outcomes. Despite the recent progress in MN assay in children, more studies are warranted to establish the relationship between MN in lymphocytes and exfoliated cells, to clarify sex, age and genotype differences in baseline MN levels and the changes in response to genotoxicants. One of the most important types of MN studies in children are prospective cohorts that will help to clarify the predictive value of MN and other cytome end points for cancer and other chronic diseases of childhood and adulthood. Emerging 'omic' and other novel molecular technologies may shed light on the molecular mechanisms and biological pathways associated with the MN levels in children.
Collapse
Affiliation(s)
- Nina Holland
- School of Public Health, 733 University Hall, University of California, Berkeley, CA 94720-7360, USA.
| | | | | | | | | |
Collapse
|
44
|
Dertinger SD, Torous DK, Hayashi M, MacGregor JT. Flow cytometric scoring of micronucleated erythrocytes: an efficient platform for assessing in vivo cytogenetic damage. Mutagenesis 2010; 26:139-45. [DOI: 10.1093/mutage/geq055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
45
|
Sun H, Tsai Y, Nowak I, Dertinger SD, Wu JHD, Chen Y. Response kinetics of radiation-induced micronucleated reticulocytes in human bone marrow culture. Mutat Res 2010; 718:38-43. [PMID: 21056116 DOI: 10.1016/j.mrgentox.2010.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 12/01/2022]
Abstract
The frequency of micronucleated reticulocytes (MN-RETs) in the bone marrow or peripheral blood is a sensitive indicator of cytogenetic damage. While the kinetics of MN-RET induction in rodent models following irradiation has been investigated and reported, information about MN-RET induction of human bone marrow after radiation exposure is sparse. In this report, we describe a human long-term bone marrow culture (LTBMC), established in three-dimensional (3D) bioreactors, which sustains long-term erythropoiesis. Using this system, we measured the kinetics of human bone marrow red blood cell (RBC) and reticulocyte (RET) production, as well as the kinetics of human MN-RET induction following radiation exposure up to 6Gy. Human bone marrow established in the 3D bioreactor demonstrated an average percentage of RBCs among total viable cells peaking at 21% on day 21. The average percentage of RETs among total viable cells reached a maximum of 11% on day 14, and remained above 5% by day 28, suggesting that terminal erythroid differentiation was still active. Time- and dose-dependent induction of MN-RET by gamma radiation was observed in the human 3D LTBMC, with peak values occurring at approximately 3 days following 1Gy irradiation. A trend towards delayed peak to 3-5 days post-radiation was observed with radiation doses ≥2Gy. Our data reveal valuable information on the kinetics of radiation-induced MN-RET of human bone marrow cultured in the 3D bioreactor, a synthetic bioculture system, and suggest that this model may serve as a promising tool for studying MN-RET formation in human bone marrow, thereby providing opportunities to study bone marrow genotoxicity testing, mitigating agent effects, and other conditions that are not ordinarily feasible to experimental manipulation in vivo.
Collapse
Affiliation(s)
- Hongliang Sun
- Department of Radiation Oncology, University of Rochester Medical Center, 601 Elmwood Ave, Box 647, Rochester, NY 14642-8647, United States.
| | | | | | | | | | | |
Collapse
|
46
|
Heddle JA, Fenech M, Hayashi M, MacGregor JT. Reflections on the development of micronucleus assays. Mutagenesis 2010; 26:3-10. [PMID: 20980366 DOI: 10.1093/mutage/geq085] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
These are personal reflections on the development of methods to use micronuclei as a measure of genetic damage and their use in research and in toxicology by four people who have been intimately involved with this work, a personal rather than a comprehensive history. About 6000 papers have been published using such methods in many tissues in vivo or in cultured cells of many organisms from plants to humans, but the majority of the work has been on mammalian erythrocytes and human lymphocytes, the areas in which we have worked primarily. Although this is by no means a complete history, those working in the field may be interested in some of the personal events that lie behind the development and acceptance of methods that are now standard.
Collapse
Affiliation(s)
- John A Heddle
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|