1
|
Winz C, Zong WX, Suh N. Endocrine-disrupting compounds and metabolomic reprogramming in breast cancer. J Biochem Mol Toxicol 2023; 37:e23506. [PMID: 37598318 PMCID: PMC10840637 DOI: 10.1002/jbt.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Endocrine-disrupting chemicals pose a growing threat to human health through their increasing presence in the environment and their potential interactions with the mammalian endocrine systems. Due to their structural similarity to hormones like estrogen, these chemicals can interfere with endocrine signaling, leading to many deleterious effects. Exposure to estrogenic endocrine-disrupting compounds (EDC) is a suggested risk factor for the development of breast cancer, one of the most frequently diagnosed cancers in women. However, the mechanisms through which EDCs contribute to breast cancer development remain elusive. To rapidly proliferate, cancer cells undertake distinct metabolic programs to utilize existing nutrients in the tumor microenvironment and synthesize macromolecules de novo. EDCs are known to dysregulate cell signaling pathways related to cellular metabolism, which may be an important mechanism through which they exert their cancer-promoting effects. These altered pathways can be studied via metabolomic analysis, a new advancement in -omics technologies that can interrogate molecular pathways that favor cancer development and progression. This review will summarize recent discoveries regarding EDCs and the metabolic reprogramming that they may induce to facilitate the development of breast cancer.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
2
|
Santos-Cruz LF, Ponciano-Gómez A, Torres-Gregorio JT, Ramírez-Cruz BG, Vázquez-Gómez G, Hernández-Portilla LB, Flores-Ortiz CM, Dueñas-García IE, Heres-Pulido ME, Castañeda-Partida L, Durán-Díaz Á, Campos-Aguilar M, Sigrist-Flores SC, Piedra-Ibarra E. Zearalenone Does Not Show Genotoxic Effects in the Drosophila melanogaster Wing Spot Test, but It Induces Oxidative Imbalance, Development, and Fecundity Alterations. Toxins (Basel) 2023; 15:358. [PMID: 37368659 DOI: 10.3390/toxins15060358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEN) is a non-steroidal mycoestrogen produced by the Fusarium genus. ZEN and its metabolites compete with 17-beta estradiol for cytosolic estrogen receptors, causing reproductive alterations in vertebrates. ZEN has also been associated with toxic and genotoxic effects, as well as an increased risk for endometrial adenocarcinomas or hyperplasia, breast cancer, and oxidative damage, although the underlying mechanisms remain unclear. Previous studies have monitored cellular processes through levels of transcripts associated with Phase I Xenobiotic Metabolism (Cyp6g1 and Cyp6a2), oxidative stress (hsp60 and hsp70), apoptosis (hid, grim, and reaper), and DNA damage genes (Dmp53). In this study, we evaluated the survival and genotoxicity of ZEN, as well as its effects on emergence rate and fecundity in Drosophila melanogaster. Additionally, we determined levels of reactive oxygen species (ROS) using the D. melanogaster flare and Oregon R(R)-flare strains, which differ in levels of Cyp450 gene expression. Our results showed that ZEN toxicity did not increase mortality by more than 30%. We tested three ZEN concentrations (100, 200, and 400 μM) and found that none of the concentrations were genotoxic but were cytotoxic. Taking into account that it has previously been demonstrated that ZEN administration increased hsp60 expression levels and apoptosis gene transcripts in both strains, the data agree with an increase in ROS and development and fecundity alterations. Since Drosophila lacks homologous genes for mammalian estrogen receptors alpha and beta, the effects of this mycotoxin can be explained by a mechanism different from estrogenic activity.
Collapse
Affiliation(s)
- Luis Felipe Santos-Cruz
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Alberto Ponciano-Gómez
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Juan Tomás Torres-Gregorio
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Bertha Guadalupe Ramírez-Cruz
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Gerardo Vázquez-Gómez
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Luis Barbo Hernández-Portilla
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Cesar Mateo Flores-Ortiz
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Irma Elena Dueñas-García
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - María Eugenia Heres-Pulido
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Laura Castañeda-Partida
- Toxicología Genética, Biología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Ángel Durán-Díaz
- Mathematics, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Myriam Campos-Aguilar
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Santiago Cristobal Sigrist-Flores
- Laboratorio de Inmunología (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Elías Piedra-Ibarra
- Fisiología Vegetal (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| |
Collapse
|
3
|
Tolosa J, Serrano Candelas E, Vallés Pardo JL, Goya A, Moncho S, Gozalbes R, Palomino Schätzlein M. MicotoXilico: An Interactive Database to Predict Mutagenicity, Genotoxicity, and Carcinogenicity of Mycotoxins. Toxins (Basel) 2023; 15:355. [PMID: 37368656 PMCID: PMC10301946 DOI: 10.3390/toxins15060355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by certain filamentous fungi. They are common contaminants found in a wide variety of food matrices, thus representing a threat to public health, as they can be carcinogenic, mutagenic, or teratogenic, among other toxic effects. Several hundreds of mycotoxins have been reported, but only a few of them are regulated, due to the lack of data regarding their toxicity and mechanisms of action. Thus, a more comprehensive evaluation of the toxicity of mycotoxins found in foodstuffs is required. In silico toxicology approaches, such as Quantitative Structure-Activity Relationship (QSAR) models, can be used to rapidly assess chemical hazards by predicting different toxicological endpoints. In this work, for the first time, a comprehensive database containing 4360 mycotoxins classified in 170 categories was constructed. Then, specific robust QSAR models for the prediction of mutagenicity, genotoxicity, and carcinogenicity were generated, showing good accuracy, precision, sensitivity, and specificity. It must be highlighted that the developed QSAR models are compliant with the OECD regulatory criteria, and they can be used for regulatory purposes. Finally, all data were integrated into a web server that allows the exploration of the mycotoxin database and toxicity prediction. In conclusion, the developed tool is a valuable resource for scientists, industry, and regulatory agencies to screen the mutagenicity, genotoxicity, and carcinogenicity of non-regulated mycotoxins.
Collapse
Affiliation(s)
- Josefa Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés, Burjasot, 46100 Valencia, Spain
| | - Eva Serrano Candelas
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - José Luis Vallés Pardo
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - Addel Goya
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - Salvador Moncho
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - Rafael Gozalbes
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
- Moldrug AI Systems S.L., Olimpia Arozena Torres, 45, 46018 Valencia, Spain
| | - Martina Palomino Schätzlein
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| |
Collapse
|
4
|
Phytoestrogens and Health Effects. Nutrients 2023; 15:nu15020317. [PMID: 36678189 PMCID: PMC9864699 DOI: 10.3390/nu15020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Phytoestrogens are literally estrogenic substances of plant origin. Although these substances are useful for plants in many aspects, their estrogenic properties are essentially relevant to their predators. As such, phytoestrogens can be considered to be substances potentially dedicated to plant-predator interaction. Therefore, it is not surprising to note that the word phytoestrogen comes from the early discovery of estrogenic effects in grazing animals and humans. Here, several compounds whose activities have been discovered at nutritional concentrations in animals and humans are examined. The substances analyzed belong to several chemical families, i.e., the flavanones, the coumestans, the resorcylic acid lactones, the isoflavones, and the enterolignans. Following their definition and the evocation of their role in plants, their metabolic transformations and bioavailabilities are discussed. A point is then made regarding their health effects, which can either be beneficial or adverse depending on the subject studied, the sex, the age, and the physiological status. Toxicological information is given based on official data. The effects are first presented in humans. Animal models are evoked when no data are available in humans. The effects are presented with a constant reference to doses and plausible exposure.
Collapse
|
5
|
Lu Q, Luo JY, Ruan HN, Wang CJ, Yang MH. Structure-toxicity relationships, toxicity mechanisms and health risk assessment of food-borne modified deoxynivalenol and zearalenone: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151192. [PMID: 34710421 DOI: 10.1016/j.scitotenv.2021.151192] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxin, as one of the most common pollutants in foodstuffs, poses great threat to food security and human health. Specifically, deoxynivalenol (DON) and zearalenone (ZEN)-two mycotoxin contaminants with considerable toxicity widely existing in food products-have aroused broad public concerns. Adding to this picture, modified forms of DON and ZEN, have emerged as another potential environmental and health threat, owing to their higher re-transformation rate into parent mycotoxins inducing accumulation of mycotoxin in humans and animals. Given this, a better understanding of the toxicity of modified mycotoxins is urgently needed. Moreover, the lack of toxicity data means a proper risk assessment of modified mycotoxins remains challenging. To better evaluate the toxicity of modified DON and ZEN, we have reviewed the relationship between their structures and toxicities. The toxicity mechanisms behind modified DON and ZEN have also been discussed; briefly, these involve acute, subacute, chronic, and combined toxicities. In addition, this review also addresses the global occurrence of modified DON and ZEN, and summarizes novel methods-including in silico analysis and implementation of relative potency factors-for risk assessment of modified DON and ZEN. Finally, the health risk assessment of modified DON and ZEN has also been discussed comprehensively.
Collapse
Affiliation(s)
- Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao-Yang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hao-Nan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chang-Jian Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
6
|
Balázs A, Faisal Z, Csepregi R, Kőszegi T, Kriszt B, Szabó I, Poór M. In Vitro Evaluation of the Individual and Combined Cytotoxic and Estrogenic Effects of Zearalenone, Its Reduced Metabolites, Alternariol, and Genistein. Int J Mol Sci 2021; 22:6281. [PMID: 34208060 PMCID: PMC8230625 DOI: 10.3390/ijms22126281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/04/2022] Open
Abstract
Mycotoxins are toxic metabolites of filamentous fungi. Previous studies demonstrated the co-occurrence of Fusarium and Alternaria toxins, including zearalenone (ZEN), ZEN metabolites, and alternariol (AOH). These xenoestrogenic mycotoxins appear in soy-based meals and dietary supplements, resulting in the co-exposure to ZEN and AOH with the phytoestrogen genistein (GEN). In this study, the cytotoxic and estrogenic effects of ZEN, reduced ZEN metabolites, AOH, and GEN are examined to evaluate their individual and combined impacts. Our results demonstrate that reduced ZEN metabolites, AOH, and GEN can aggravate ZEN-induced toxicity; in addition, the compounds tested exerted mostly synergism or additive combined effects regarding cytotoxicity and/or estrogenicity. Therefore, these observations underline the importance and the considerable risk of mycotoxin co-exposure and the combined effects of mycoestrogens with phytoestrogens.
Collapse
Affiliation(s)
- Adrienn Balázs
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (A.B.); (I.S.)
| | - Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary;
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
| | - Tamás Kőszegi
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, H-7624 Pécs, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary;
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary; (A.B.); (I.S.)
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary;
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary;
| |
Collapse
|
7
|
Abdel-Tawwab M, Khalil RH, Diab AM, Khallaf MA, Abdel-Razek N, Abdel-Latif HMR, Khalifa E. Dietary garlic and chitosan enhanced the antioxidant capacity, immunity, and modulated the transcription of HSP70 and Cytokine genes in Zearalenone-intoxicated European seabass. FISH & SHELLFISH IMMUNOLOGY 2021; 113:35-41. [PMID: 33785470 DOI: 10.1016/j.fsi.2021.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The present study was performed to evaluate the toxic effects of feed-born zearalenone (ZEN) on antioxidative status, immunity, transcriptomic responses of European seabass, and the modulating roles of dietary garlic and/or chitosan powders. Fish (30.7 ± 0.6 g) were randomly arranged in five experimental groups (in triplicates), whereas the first group was fed on the control diet only without any supplements (control), and the second group was fed on the basal diet contaminated with ZEN (0.725 mg/kg diet). Three other groups were fed on ZEN-contaminated diets and simultaneously supplemented with garlic powder (GP) (30 g/kg diet) (ZEN + GP), chitosan powder (CH) (10 g/kg diet) (ZEN + CH), and a mixture of GP and CH (ZEN + GP + CH). Fish were fed on the experimental diets thrice a day for 4 weeks. Two-way ANOVA revealed a gradual decline in serum superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in the ZEN group reaching their lowest levels at the 4th week. Contrariwise, malondialdehyde levels were markedly higher in the ZEN group reaching their highest values at the end of the experiment. A significant decline of total immunoglobulins (P < 0.05) was observed in the serum of the ZEN group, especially after the 4th week. Moreover, significant down-regulation of interleukin-4 (IL-4) and interleukin 1 beta (IL-1β) genes (P < 0.05) alongside significant up-regulation of tumor necrosis factor-alpha (TNF-α) and heat shock protein 70 (HSP70) genes (P < 0.05) in the liver and anterior kidney of ZEN-intoxicated group. Interestingly, dietary supplementation with GP and CH significantly attenuated ZEN-induced oxidative stress, immunosuppression, and modulated transcriptomic responses of ZEN-exposed fish. Moreover, combined dietary supplementation of both feed additives resulted in better effects than each one alone.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia 44662, Egypt.
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Amany M Diab
- Aquatic Microbiology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed A Khallaf
- Department of Aquatic Animals Medicine and Management, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Nashwa Abdel-Razek
- Department of Fish Health and Management, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia 44662, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| |
Collapse
|
8
|
Jedidi I, Mateo EM, Marín P, Jiménez M, Said S, González-Jaén MT. Contamination of Wheat, Barley, and Maize Seeds with Toxigenic Fusarium Species and Their Mycotoxins in Tunisia. J AOAC Int 2021; 104:959-967. [DOI: 10.1093/jaoacint/qsab020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 01/21/2023]
Abstract
Abstract
Background
Fusarium is a worldwide distributed fungal genus. It includes different species pathogenic to cereals among others crops. Some of these species can also produce toxic compounds toward animals and humans.
Objective
In this work, occurrence of fumonisins B1+B2, zearalenone, type A trichothecenes (T-2 and HT-2 toxins), and type B trichothecenes (deoxynivalenol[DON] and nivalenol[NIV]) was studied in 65 samples of stored and freshly harvested wheat, barley, and maize collected in Tunisia.
Methods
Mycotoxins analyses were performed by using gas chromatography for type B trichothecenes and HPLC for other mycotoxins. Obtained results were compared with the presence of mycotoxigenic species considered responsible for their synthesis by using species-specific polymerase chain reaction (PCR).
Results
Fumonisins occurred in 20.83% of wheat, 40% of barley, and 57.14% of maize samples, at levels exceeding European limits and suggesting a risk in Tunisian cereals, especially maize. Zearalenone, DON, NIV, and T-2+HT-2 toxins were detected at lower values in only wheat and barley samples. PCR protocols showed the predominance of F. verticillioides especially in maize, and occurrence of F. equiseti and F. graminearum in wheat and barley, and F. proliferatum in only two maize samples. A very consistent correlation was found between the detection of F. verticillioides and the contamination by fumonisins, as well as between the presence of F. graminearum and the contamination by zearalenone, DON, and NIV in the analyzed cereals.
Conclusions
Consequently, the detection of Fusarium species with the current PCR assays strategy in wheat, barley, and maize grains may be considered predictive of their potential mycotoxin risk in these matrices.
Highlights
This work is the first to report information on the occurrence of fumonisins, trichothecene, and ZEN, together with their potentially producing Fusarium species in wheat, barley, and maize in Tunisia. The high level of fumonisins in cereals, especially maize, stresses the importance of the control and the regularization of these mycotoxins for food safety.
Collapse
Affiliation(s)
- Ines Jedidi
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Av. Mohamed El Karoui, Sousse, Tunisia
| | - Eva M Mateo
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, Spain
| | - Patricia Marín
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, Spain
| | - Misericordia Jiménez
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, Burjassot, Valencia, Spain
| | - Salem Said
- Laboratory of Biochemistry, Faculty of Medicine of Sousse, University of Sousse, Av. Mohamed El Karoui, Sousse, Tunisia
| | - María T González-Jaén
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, Spain
| |
Collapse
|
9
|
Mahato DK, Devi S, Pandhi S, Sharma B, Maurya KK, Mishra S, Dhawan K, Selvakumar R, Kamle M, Mishra AK, Kumar P. Occurrence, Impact on Agriculture, Human Health, and Management Strategies of Zearalenone in Food and Feed: A Review. Toxins (Basel) 2021; 13:92. [PMID: 33530606 PMCID: PMC7912641 DOI: 10.3390/toxins13020092] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Mycotoxins represent an assorted range of secondary fungal metabolites that extensively occur in numerous food and feed ingredients at any stage during pre- and post-harvest conditions. Zearalenone (ZEN), a mycotoxin categorized as a xenoestrogen poses structural similarity with natural estrogens that enables its binding to the estrogen receptors leading to hormonal misbalance and numerous reproductive diseases. ZEN is mainly found in crops belonging to temperate regions, primarily in maize and other cereal crops that form an important part of various food and feed. Because of the significant adverse effects of ZEN on both human and animal, there is an alarming need for effective detection, mitigation, and management strategies to assure food and feed safety and security. The present review tends to provide an updated overview of the different sources, occurrence and biosynthetic mechanisms of ZEN in various food and feed. It also provides insight to its harmful effects on human health and agriculture along with its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India;
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kamlesh Kumar Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; (S.P.); (B.S.); (K.K.M.); (S.M.)
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara 144411, India;
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India;
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India;
| |
Collapse
|
10
|
Abstract
Fungi produce mycotoxins in the presence of appropriate temperature, humidity, sufficient nutrients and if the density of the mushroom mass is favorable. Although all mycotoxins are of fungal origin, all toxic compounds produced by fungi are not called mycotoxins. The interest in mycotoxins first started in the 1960s, and today the interest in mycotoxin-induced diseases has increased. To date, 400 mycotoxins have been identified and the most important species producing mycotoxins belongs to Aspergillus, Penicillium, Alternaria and Fusarium genera. Mycotoxins are classified as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins etc. In this review genotoxic and also other health effects of some major mycotoxin groups like Aflatoxins, Ochratoxins, Patulin, Fumonisins, Zearalenone, Trichothecenes and Ergot alkaloids were deeply analyzed.
Collapse
|
11
|
González Pereyra M, Di Giacomo A, Lara A, Martínez M, Cavaglieri L. Aflatoxin-degrading Bacillus sp. strains degrade zearalenone and produce proteases, amylases and cellulases of agro-industrial interest. Toxicon 2020; 180:43-48. [DOI: 10.1016/j.toxicon.2020.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
|
12
|
Faisal Z, Garai E, Csepregi R, Bakos K, Fliszár-Nyúl E, Szente L, Balázs A, Cserháti M, Kőszegi T, Urbányi B, Csenki Z, Poór M. Protective effects of beta-cyclodextrins vs. zearalenone-induced toxicity in HeLa cells and Tg(vtg1:mCherry) zebrafish embryos. CHEMOSPHERE 2020; 240:124948. [PMID: 31726616 DOI: 10.1016/j.chemosphere.2019.124948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Zearalenone is a xenoestrogenic mycotoxin produced by Fusarium species. High exposure with zearalenone induces reproductive disorders worldwide. Cyclodextrins are ring-shaped host molecules built up from glucose units. The apolar cavity of cyclodextrins can entrap so-called guest molecules. The formation of highly stable host-guest type complexes with cyclodextrins can decrease the biological effect of the guest molecule. Therefore, cyclodextrins may be suitable to decrease the toxicity of some xenobiotics even after the exposure. In this study, the protective effect of beta-cyclodextrins against zearalenone-induced toxicity was investigated in HeLa cells and zebrafish embryos. Fluorescence spectroscopic studies demonstrated the formation of stable complexes of zearalenone with sulfobutyl-, methyl-, and succinyl-methyl-substituted beta-cyclodextrins at pH 7.4 (K = 1.4-4.7 × 104 L/mol). These chemically modified cyclodextrins considerably decreased or even abolished the zearalenone-induced loss of cell viability in HeLa cells and mortality in zebrafish embryos. Furthermore, the sublethal effects of zearalenone were also significantly alleviated by the co-treatment with beta-cyclodextrins. To test the estrogenic effect of the mycotoxin, a transgenic bioindicator zebrafish model (Tg(vtg1:mCherry)) was also applied. Our results suggest that the zearalenone-induced vitellogenin production is partly suppressed by the hepatotoxicity of zearalenone in zebrafish. This study demonstrates that the formation of stable zearalenone-cyclodextrin complexes can strongly decrease or even abolish the zearalenone-induced toxicity, both in vitro and in vivo. Therefore, cyclodextrins appear as promising new mycotoxin binders.
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Edina Garai
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Rita Csepregi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Katalin Bakos
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, H-1097, Budapest, Hungary.
| | - Adrienn Balázs
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Mátyás Cserháti
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Tamás Kőszegi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Zsolt Csenki
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| |
Collapse
|
13
|
Rogowska A, Pomastowski P, Rafińska K, Railean-Plugaru V, Złoch M, Walczak J, Buszewski B. A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells. Toxicon 2019; 169:81-90. [PMID: 31493420 DOI: 10.1016/j.toxicon.2019.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
A study of the mechanism responsible for the zearalenone (ZEA) neutralization by lactic acid bacteria Lactococcus lactis 56 and L929 cell line was carried out by determination of the kinetics of the binding process. In the case of prokaryotic cells the biosorption process was non-linear and three steps were identified. The maximum efficiency of zearalenone binding to L. lactis was almost 30% and no metabolites were observed. In turn, for eukaryotic cells only two steps of the binding process were differentiated, and the efficiency of zearalenone binding was 53.99%. Furthermore, L929 cell line metabolizes zearalenone to α-ZOL and β-ZOL. Additionally, Fourier transform infrared spectroscopy (FTIR) was used for description of the structural changes at the protein and lipid level, while Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS) was applied to detect changes at the molecular level.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Michał Złoch
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Justyna Walczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland.
| |
Collapse
|
14
|
Eze UA, Huntriss J, Routledge MN, Gong YY, Connolly L. The effect of individual and mixtures of mycotoxins and persistent organochloride pesticides on oestrogen receptor transcriptional activation using in vitro reporter gene assays. Food Chem Toxicol 2019; 130:68-78. [PMID: 31082460 DOI: 10.1016/j.fct.2019.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
The mycotoxins zearalenone (ZEN) and alpha-zearalenone (α-ZOL), which are common contaminants of agri-food products, are known for their oestrogenic potential. In addition to mycotoxins, food may also contain pesticides with oestrogenic properties such as 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (p,p'-DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (p,p'-DDE), raising the question on the potential effects of individual and combinations of these xeno-oestrogens on the action of natural oestrogens. The present study employed a mammalian reporter gene assay to assess the effects individual and binary combinations of these environmental and food-borne contaminants on oestrogen nuclear receptor (ER) transactivation. As expected, α-ZOL and ZEN exhibited the strongest oestrogenic potency (EC50: 0.27 ± 0.121 nM and 1.32 ± 0.0956 nM, respectively) whereas p,p'-DDT and p,p'-DDE had weak ER agonistic activity with the maximal response of 28.70 ± 2.97% and 18.65 ± 1.77%, respectively. Concurrent treatment of the mycotoxins and/or pesticides, individually or in binary combination, with 17β-oestradiol (E2) showed either additive, synergistic or antagonistic interactive effects on E2-mediated ER response, depending on the combination ratios, the concentration range of xeno-oestrogens, and the concentration of E2. This study highlights the importance of assessing the mixture effects of chemical contaminants in risk assessment, especially in the area of reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Ukpai A Eze
- School of Food Science and Nutrition, Food Science Building, University of Leeds, LS2 9JT, UK; Department of Medical Laboratory Sciences, Faculty of Health Sciences, Ebonyi State University, P. M. B. 053, Abakaliki, Nigeria
| | - John Huntriss
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, LS2 9JT, UK
| | - Michael N Routledge
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, LS2 9JT, UK
| | - Yun Yun Gong
- School of Food Science and Nutrition, Food Science Building, University of Leeds, LS2 9JT, UK; Department of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Ministry of Health, Beijing, 100021, PR China.
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Northern Ireland, BT9 5AF, UK
| |
Collapse
|
15
|
Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Szymczyk K, Jędrzejczak R. Modified Fusarium Mycotoxins in Cereals and Their Products-Metabolism, Occurrence, and Toxicity: An Updated Review. Molecules 2018; 23:E963. [PMID: 29677133 PMCID: PMC6017960 DOI: 10.3390/molecules23040963] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023] Open
Abstract
Mycotoxins are secondary fungal metabolites, toxic to humans, animals and plants. Under the influence of various factors, mycotoxins may undergo modifications of their chemical structure. One of the methods of mycotoxin modification is a transformation occurring in plant cells or under the influence of fungal enzymes. This paper reviews the current knowledge on the natural occurrence of the most important trichothecenes and zearalenone in cereals/cereal products, their metabolism, and the potential toxicity of the metabolites. Only very limited data are available for the majority of the identified mycotoxins. Most studies concern biologically modified trichothecenes, mainly deoxynivalenol-3-glucoside, which is less toxic than its parent compound (deoxynivalenol). It is resistant to the digestion processes within the gastrointestinal tract and is not absorbed by the intestinal epithelium; however, it may be hydrolysed to free deoxynivalenol or deepoxy-deoxynivalenol by the intestinal microflora. Only one zearalenone derivative, zearalenone-14-glucoside, has been extensively studied. It appears to be more reactive than deoxynivalenol-3-glucoside. It may be readily hydrolysed to free zearalenone, and the carbonyl group in its molecule may be easily reduced to α/β-zearalenol and/or other unspecified metabolites. Other derivatives of deoxynivalenol and zearalenone are poorly characterised. Moreover, other derivatives such as glycosides of T-2 and HT-2 toxins have only recently been investigated; thus, the data related to their toxicological profile and occurrence are sporadic. The topics described in this study are crucial to ensure food and feed safety, which will be assisted by the provision of widespread access to such studies and obtained results.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland.
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Krystyna Szymczyk
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Renata Jędrzejczak
- Department of Food Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| |
Collapse
|
16
|
Borzekowski A, Drewitz T, Keller J, Pfeifer D, Kunte HJ, Koch M, Rohn S, Maul R. Biosynthesis and Characterization of Zearalenone-14-Sulfate, Zearalenone-14-Glucoside and Zearalenone-16-Glucoside Using Common Fungal Strains. Toxins (Basel) 2018; 10:toxins10030104. [PMID: 29494480 PMCID: PMC5869392 DOI: 10.3390/toxins10030104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Zearalenone (ZEN) and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49%) is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67%) and ZEN-16-glucoside (yield: 39%) are formed by Rhizopus oryzae and Rhizopusoligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by ¹H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates.
Collapse
Affiliation(s)
- Antje Borzekowski
- Department Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Tatjana Drewitz
- Department Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Julia Keller
- Department Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Dietmar Pfeifer
- Department Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Hans-Jörg Kunte
- Department Materials and the Environment, Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Matthias Koch
- Department Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Ronald Maul
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
17
|
Nittoli AC, Costantini S, Sorice A, Capone F, Ciarcia R, Marzocco S, Budillon A, Severino L. Effects of α-zearalenol on the metabolome of two breast cancer cell lines by 1H-NMR approach. Metabolomics 2018; 14:33. [PMID: 30830360 DOI: 10.1007/s11306-018-1330-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/27/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Zearalenone (ZEN) is one of the most widely distributed toxins that contaminates many crops and foods. Its major metabolites are α-Zearalenol (α-zol) and β-Zearalenol. Previous studies showed that ZEN and α-zol have estrogenic properties and are able to induce growth promoting effect in breast tissues. OBJECTIVIES Considering that tumorigenesis is dependent on the reprogramming of cellular metabolism and that the evaluation of the cellular metabolome is useful to understand the metabolic changes that can occur during the cancer development and progression or after treatments, aim of our work is to study, for the first time, the effects of α-zol on the metabolomic profile of an estrogen positive breast cancer cell line, MCF-7, and of an estrogen negative breast cancer cell lines MDA-MB231. METHODS Firstly, we tested the effects of α-zol on the cell viability after 24, 48 and 72 h of treatments with 10-10, 10-8 and 10-6 M concentrations on breast cancer MCF-7 and MDA-MB231 cell lines in comparison to human non-cancerous breast MCF10A cell line. Then, we evaluated cell cycle progression, levels of reactive oxygen species (ROS) and the metabolomic profiling by 1H-NMR approach on MCF-7 and MDA-MB231 before and after 72 h treatments. Principal component analysis was used to compare the obtained spectra. RESULTS α-zol is resulted able to induce: (i) an increase of the cell viability on MCF-7 cells mainly after 72 h treatment, (ii) a slight decrease of the cell viability on MDA-MB231 cells, and (iii) an increase of cells in S phase of the cell cycle and of ROS only in MCF-7 cells. Moreover, the evaluation of metabolomics profile evidenced that after treatment with α-zol the levels of some metabolites increased in MCF-7 cells whereas decreased slightly in MDA-MB231 cells. CONCLUSIONS Our results showed that α-zol was able to increase the protein biosynthesis as well as the lipid metabolism in MCF-7 cells, and, hence, to induce an estrogen positive breast cancer progression.
Collapse
Affiliation(s)
- Anna Chiara Nittoli
- Unità di Farmacologia e Tossicologia - Dipatimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Susan Costantini
- Unità di Farmacologia Sperimentale - Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.
| | - Angela Sorice
- Unità di Farmacologia Sperimentale - Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Francesca Capone
- Unità di Farmacologia Sperimentale - Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Roberto Ciarcia
- Unità di Farmacologia e Tossicologia - Dipatimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Stefania Marzocco
- Dipartimento di Farmacia, Campus di Fisciano, Università degli Studi di Salerno, Salerno, Italy
| | - Alfredo Budillon
- Unità di Farmacologia Sperimentale - Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.
| | - Lorella Severino
- Unità di Farmacologia e Tossicologia - Dipatimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli "Federico II", Naples, Italy
| |
Collapse
|
18
|
Chilaka CA, De Boevre M, Atanda OO, De Saeger S. The Status of Fusarium Mycotoxins in Sub-Saharan Africa: A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. Toxins (Basel) 2017; 9:E19. [PMID: 28067768 PMCID: PMC5308251 DOI: 10.3390/toxins9010019] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/01/2023] Open
Abstract
Fusarium fungi are common plant pathogens causing several plant diseases. The presence of these molds in plants exposes crops to toxic secondary metabolites called Fusarium mycotoxins. The most studied Fusarium mycotoxins include fumonisins, zearalenone, and trichothecenes. Studies have highlighted the economic impact of mycotoxins produced by Fusarium. These arrays of toxins have been implicated as the causal agents of wide varieties of toxic health effects in humans and animals ranging from acute to chronic. Global surveillance of Fusarium mycotoxins has recorded significant progress in its control; however, little attention has been paid to Fusarium mycotoxins in sub-Saharan Africa, thus translating to limited occurrence data. In addition, legislative regulation is virtually non-existent. The emergence of modified Fusarium mycotoxins, which may contribute to additional toxic effects, worsens an already precarious situation. This review highlights the status of Fusarium mycotoxins in sub-Saharan Africa, the possible food processing mitigation strategies, as well as future perspectives.
Collapse
Affiliation(s)
- Cynthia Adaku Chilaka
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
- Department of Food Science and Technology, College of Applied Food Science and Tourism, Michael Okpara University of Agriculture, Umuahia-Ikot Ekpene Road, Umudike, Umuahia PMB 7267, Abia State, Nigeria.
| | - Marthe De Boevre
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Olusegun Oladimeji Atanda
- Department of Biological Sciences, McPherson University, KM 96 Lagos-Ibadan Expressway, 110117 Seriki Sotayo, Ogun State, Nigeria.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
19
|
Tatay E, Font G, Ruiz MJ. Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells. Food Chem Toxicol 2016; 96:43-9. [PMID: 27465603 DOI: 10.1016/j.fct.2016.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
Zearalenone (ZEA) and its metabolites (α-zearalenol; α-ZOL, β-zearalenol; β-ZOL) are secondary metabolites of Fusarium fungi that produce cell injury. The present study explores mycotoxin-induced cell damage and cellular protection mechanisms in CHO-K1 cells. Cytotoxicity has been determined by reactive oxygen species (ROS) production and DNA damage. ROS production was determined using the fluorescein assay and DNA strand breakage by comet assay. Intracellular protection systems were glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). The results demonstrated that all mycotoxins increased the ROS levels up to 5.3-fold the control levels in CHO-K1 cells. Zearalenone metabolites, but not ZEA, increased DNA damage 43% (α-ZOL) and 28% (β-ZOL) compared to control cells. The GSH levels decreased from 18% to 36%. The GPx and SOD activities respectively increased from 26% to 62% and from 23% to 69% in CHO-K1 cells, whereas CAT activity decreased from 14% to 52%. In addition, intracellular ROS production was induced by ZEA and its metabolites. The endogenous antioxidant system components GSH, GPx and SOD were activated against ZEA and its metabolites. These antioxidant system components thus could contribute to decrease cell injury by ZEA and its metabolites.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Guillermina Font
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Dep. Preventive Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
20
|
Appropriateness to set a group health‐based guidance value for zearalenone and its modified forms. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4425] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
21
|
Zhao L, Jin H, Lan J, Zhang R, Ren H, Zhang X, Yu G. Detoxification of zearalenone by three strains of lactobacillus plantarum from fermented food in vitro. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Modified Fusarium mycotoxins unmasked: From occurrence in cereals to animal and human excretion. Food Chem Toxicol 2015; 80:17-31. [DOI: 10.1016/j.fct.2015.02.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/19/2022]
|
23
|
Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 2014; 324:55-67. [PMID: 25058043 DOI: 10.1016/j.tox.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/03/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEA), a Fusarium mycotoxin that contaminates cereal crops worldwide, has been shown to affect the male reproductive system and trigger reactive oxygen species (ROS) generation. However, the mechanisms of its toxicity have not been fully understood. Because mitochondrion is a key organelle involved in producing ROS and generating metabolic intermediates for biosynthesis, an iTRAQ-based mitoproteomics approach was employed to identify the molecular mechanism of zearalenone toxicity using mitochondria of mouse Leydig tumor cells (MLTC-1). A total of 2014 nonredundant proteins were identified, among which 1401 proteins (69.56%) were overlapped. There were 52 differentially expressed proteins in response to ZEA, and they were primarily involved in energy metabolism, molecular transport and endocrine-related functions. Consistent with mitochondrial proteomic analysis, the ATP and intracellular Ca(2+) levels increased after ZEA treatment. The results suggest that lipid metabolism changed significantly after low-dose ZEA exposure, resulting in two alterations. One is the increase in energy production through promoted fatty acid uptake and β-oxidation, along with excessive oxidative stress; the other is an inhibition of steroidogenesis and esterification, possibly resulting in reduced hormone secretion. A hypothetical model of ZEA-induced mitochondrial damage is proposed to provide a framework for the mechanism of ZEA toxicity.
Collapse
|
24
|
In vitro investigation of toxicological interactions between the fusariotoxins deoxynivalenol and zearalenone. Toxicon 2014; 84:1-6. [DOI: 10.1016/j.toxicon.2014.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 09/18/2013] [Accepted: 03/18/2014] [Indexed: 01/24/2023]
|
25
|
Tatay E, Meca G, Font G, Ruiz MJ. Interactive effects of zearalenone and its metabolites on cytotoxicity and metabolization in ovarian CHO-K1 cells. Toxicol In Vitro 2013; 28:95-103. [PMID: 23850742 DOI: 10.1016/j.tiv.2013.06.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 05/18/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin with high binding affinity to estrogen receptors. ZEA is rapidly absorbed and metabolized in vivo to α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). So, mixtures of them may be present in biological systems and suppose a hazard to animals and human health. The aims of this study were to determine the cytotoxic effects of ZEA and its metabolites, alone and in combination in ovarian (CHO-K1) cells during 24, 48 and 72h by the MTT assay; and to investigate the metabolism of the CHO-K1 cells on ZEA, and its conversion into α-ZOL and β-ZOL by CHO-K1 cell after 24 and 48h of exposure. The IC50 value obtained for individual mycotoxins range from 60.3 to >100.0μM, from 30.0 to 33.0μM and from 55.0 to >75.0μM for ZEA, α-ZOL and β-ZOL, respectively. Cytotoxic interactions were assayed by the isobologram method, which provides a combination index (CI) value as a quantitative measure of the degree of the three mycotoxin interaction. The CI values for binary combinations ranged from 0.56±0.15 (synergism at low concentrations) to 5.25±5.10 (addition at high concentrations) and tertiary combinations from 2.95±0.75 (antagonism at low concentrations) to 0.41±0.23 (synergism at high concentrations). The concentration of ZEA and its metabolites was determined with liquid chromatography coupled to the mass spectrometer detector-linear ion trap (LC-MS-LIT). The percentage of ZEA degradation ranged from 4% (24h) to 81% (48h). In the same conditions, α-ZOL and β-ZOL concentration decreased from 8% to 85%. No conversion of ZEA in α-ZOL and β-ZOL was detected. However, at 24h of exposure other degradation products of ZEA and its derived were detected.
Collapse
Affiliation(s)
- Elena Tatay
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | | | | | | |
Collapse
|
26
|
Marin DE, Pistol GC, Neagoe IV, Calin L, Taranu I. Effects of zearalenone on oxidative stress and inflammation in weanling piglets. Food Chem Toxicol 2013; 58:408-15. [PMID: 23727178 DOI: 10.1016/j.fct.2013.05.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/30/2013] [Accepted: 05/18/2013] [Indexed: 02/02/2023]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by the fungi of Fusarium genera. Piglets were fed for 18 days with a control or a ZEN (316 ppb) contaminated diet. At the end of the experiment tissue samples were taken for assessment of: lymphocyte proliferation, monocytes and granulocytes respiratory burst, inflammatory cytokine synthesis in blood and liver, expression of genes involved in oxidative stress or in inflammation, plasma biochemical parameters, total antioxidant status and nitric oxide synthesis. In blood, ZEN increases the respiratory burst of monocytes and the inflammatory cytokine (TNF alpha, IL-1 beta, IFN gamma) synthesis, while in liver, ZEN decreases the synthesis of all inflammatory cytokines investigated. In liver and spleen, different effect on the expression of genes involved in oxidative stress and inflammation was observed. While in liver, ZEN decrease the expression of cyclooxigenase gene, but increase the expression of glutathione peroxydase and catalase genes; in spleen, ZEN induces a decrease of the superoxide dismutase gene expression together with an increase of the cyclooxigenase. In conclusion, our results showed that liver, spleen and blood may also be target tissues in weanling piglets fed ZEN contaminated diet, with different effects on oxidative stress and inflammation.
Collapse
Affiliation(s)
- Daniela E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania.
| | | | | | | | | |
Collapse
|
27
|
Comparative analysis of clastogen-induced chromosome aberrations observed with light microscopy and by means of atomic force microscopy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 753:29-35. [DOI: 10.1016/j.mrgentox.2012.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/12/2012] [Accepted: 12/15/2012] [Indexed: 11/22/2022]
|
28
|
De Boevre M, Jacxsens L, Lachat C, Eeckhout M, Di Mavungu JD, Audenaert K, Maene P, Haesaert G, Kolsteren P, De Meulenaer B, De Saeger S. Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicol Lett 2013; 218:281-92. [PMID: 23454655 DOI: 10.1016/j.toxlet.2013.02.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 11/19/2022]
Abstract
In the present study, a quantitative dietary exposure assessment of mycotoxins and their masked forms was conducted on a national representative sample of the Belgian population using the contamination data of cereal-based foods. Cereal-based food products (n=174) were analysed for the occurrence of deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, zearalenone, α-zearalenol, β-zearalenol, T-2-toxin, HT-2-toxin, and their respective masked forms, including, deoxynivalenol-3-glucoside, zearalenone-4-glucoside, α-zearalenol-4-glucoside, β-zearalenol-4-glucoside and zearalenone-4-sulfate. Fibre-enriched bread, bran-enriched bread, breakfast cereals, popcorn and oatmeal were collected in Belgian supermarkets according to a structured sampling plan and analysed during the period from April 2010 to October 2011. The habitual intake of these food groups was estimated from a national representative food intake survey. According to a probabilistic exposure analysis, the mean (and P95) mycotoxin intake for the sum of the deoxynivalenol-equivalents, zearalenone-equivalents, and the sum of HT-2-and T-2-toxin for all cereal-based foods was 0.1162 (0.4047, P95), 0.0447 (0.1568, P95) and 0.0258 (0.0924, P95) μg kg(-1)body weight day(-1), respectively. These values were below the tolerable daily intake (TDI) levels for deoxynivalenol, zearalenone and the sum of T-2 and HT-2 toxin (1.0, 0.25 and 0.1 μg kg(-1)body weight day(-1), respectively). The absolute level exceeding the TDI for all cereal-based foods was calculated, and recorded 0.85%, 2.75% and 4.11% of the Belgian population, respectively.
Collapse
Affiliation(s)
- Marthe De Boevre
- Department of Bioanalysis, Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chatopadhyay P, Pandey A, Chaurasia AK, Upadhyay A, Karmakar S, Singh L. Hepatic hyperplasia and damages induces by zearalenone Fusarium mycotoxins in BALB/c mice. ARQUIVOS DE GASTROENTEROLOGIA 2012; 49:77-81. [DOI: 10.1590/s0004-28032012000100013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/20/2011] [Indexed: 02/07/2023]
Abstract
CONTEXT: Zearalenone is a mycoestrogen and considered a mycotoxin. OBJECTIVE: To establish whether zearalenone produced hepatotoxicity via oral administration. METHODS: Zearalenone was orally administered at a dose of 50 mg, 100 mg and 200 mg ZEN/body weight/daily, respectively, for 14 days to three groups of BALB/c mice. Diagnostic modalities used to evaluate hepatic damage and impaired hepatic function pre- and post zearalenone administration included hepatic marker enzyme activity, pentobarbital sleeping time, cytochrome P-450 activities and histopathologic evaluation of liver. RESULTS: Significant histopathologic changes viz. sinusoidal congestion, cytoplasmic vacuolization, hepatocellular necrosis and neutrophil infiltration were observed after evaluating of liver section from each group after accumulated zearalenone exposure. Further, zearalenone exposure increased activities of alanine transaminase, aspartate transaminase and lipid peroxides whereas activities of tissue glutathione and cytochrome P450 were decreased as compared to control mice. Zearalenone also increased the sleeping time and decreased sleeping latency after pentobarbital through intraperitoneal route as compared to control mice which indicates that the impairment of hepatic metabolizing enzymes by zearalenone. CONCLUSION: Zearalenone is a potential hepatotoxin by oral route.
Collapse
|