1
|
Martins C, de Oliveira Galvão MF, Costa PM, Dreij K. Antagonistic effects of a COX1/2 inhibitor drug in human HepG2 cells exposed to an environmental carcinogen. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104453. [PMID: 38642625 DOI: 10.1016/j.etap.2024.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Understanding interactions between legacy and emerging environmental contaminants has important implications for risk assessment, especially when mutagens and carcinogens are involved, whose critical effects are chronic and therefore difficult to predict. The current work aimed to investigate potential interactions between benzo[a]pyrene (B[a]P), a carcinogenic polycyclic aromatic hydrocarbon and legacy pollutant, and diclofenac (DFC), a non-steroidal anti-inflammatory drug and pollutant of emerging concern, and how DFC affects B[a]P toxicity. Exposure to binary mixtures of these chemicals resulted in substantially reduced cytotoxicity in human HepG2 cells compared to single-chemical exposures. Significant antagonistic effects were observed in response to high concentrations of B[a]P in combination with DFC at IC50 and ⅕ IC50. While additive effects were found for levels of intracellular reactive oxygen species, antagonistic mixture effects were observed for genotoxicity. B[a]P induced DNA strand breaks, γH2AX activation, and micronuclei formation at ½ IC50 concentrations or lower, whereas DFC induced only low levels of DNA strand breaks. Their mixture caused significantly lower levels of genotoxicity by all three endpoints compared to those expected based on concentration additivity. In addition, antagonistic mixture effects on CYP1 enzyme activity suggested that the observed reduced genotoxicity of B[a]P was due to its reduced metabolic activation as a result of enzymatic inhibition by DFC. Overall, the findings further support the growing concern that co-exposure to environmental toxicants and their non-additive interactions may be a confounding factor that should not be neglected in environmental and human health risk assessment.
Collapse
Affiliation(s)
- Carla Martins
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2819 516, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2819 516, Portugal; Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden.
| | - Marcos Felipe de Oliveira Galvão
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden
| | - Pedro M Costa
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2819 516, Portugal; UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica 2819 516, Portugal
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden.
| |
Collapse
|
2
|
Huchthausen J, Braasch J, Escher BI, König M, Henneberger L. Effects of Chemicals in Reporter Gene Bioassays with Different Metabolic Activities Compared to Baseline Toxicity. Chem Res Toxicol 2024; 37:744-756. [PMID: 38652132 PMCID: PMC11110108 DOI: 10.1021/acs.chemrestox.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
High-throughput cell-based bioassays are used for chemical screening and risk assessment. Chemical transformation processes caused by abiotic degradation or metabolization can reduce the chemical concentration or, in some cases, lead to the formation of more toxic transformation products. Unaccounted loss processes may falsify the bioassay results. Capturing the formation and effects of transformation products is important for relating the in vitro effects to in vivo. Reporter gene cell lines are believed to have low metabolic activity, but inducibility of cytochrome P450 (CYP) enzymes has been reported. Baseline toxicity is the minimal toxicity a chemical can have and is caused by the incorporation of the chemical into cell membranes. In the present study, we improved an existing baseline toxicity model based on a newly defined critical membrane burden derived from freely dissolved effect concentrations, which are directly related to the membrane concentration. Experimental effect concentrations of 94 chemicals in three bioassays (AREc32, ARE-bla and GR-bla) were compared with baseline toxicity by calculating the toxic ratio (TR). CYP activities of all cell lines were determined by using fluorescence-based assays. Only ARE-bla showed a low basal CYP activity and inducibility and AREc32 showed a low inducibility. Overall cytotoxicity was similar in all three assays despite the different metabolic activities indicating that chemical metabolism is not relevant for the cytotoxicity of the tested chemicals in these assays. Up to 28 chemicals showed specific cytotoxicity with TR > 10 in the bioassays, but baseline toxicity could explain the effects of the majority of the remaining chemicals. Seven chemicals showed TR < 0.1 indicating inaccurate physicochemical properties or experimental artifacts like chemical precipitation, volatilization, degradation, or other loss processes during the in vitro bioassay. The new baseline model can be used not only to identify specific cytotoxicity mechanisms but also to identify potential problems in the experimental performance or evaluation of the bioassay and thus improve the quality of the bioassay data.
Collapse
Affiliation(s)
- Julia Huchthausen
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jenny Braasch
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, 72076 Tübingen, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
3
|
McCarrick S, Delaval MN, Dauter UM, Krais AM, Snigireva A, Abera A, Broberg K, Eriksson AC, Isaxon C, Gliga AR. Toxicity of particles derived from combustion of Ethiopian traditional biomass fuels in human bronchial and macrophage-like cells. Arch Toxicol 2024; 98:1515-1532. [PMID: 38427118 PMCID: PMC10965653 DOI: 10.1007/s00204-024-03692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
The combustion of traditional fuels in low-income countries, including those in sub-Saharan Africa, leads to extensive indoor particle exposure. Yet, the related health consequences in this context are understudied. This study aimed to evaluate the in vitro toxicity of combustion-derived particles relevant for Sub-Saharan household environments. Particles (< 2.5 µm) were collected using a high-volume sampler during combustion of traditional Ethiopian biomass fuels: cow dung, eucalyptus wood and eucalyptus charcoal. Diesel exhaust particles (DEP, NIST 2975) served as reference particles. The highest levels of particle-bound polycyclic aromatic hydrocarbons (PAHs) were found in wood (3219 ng/mg), followed by dung (618 ng/mg), charcoal (136 ng/mg) and DEP (118 ng/mg) (GC-MS). BEAS-2B bronchial epithelial cells and THP-1 derived macrophages were exposed to particle suspensions (1-150 µg/mL) for 24 h. All particles induced concentration-dependent genotoxicity (comet assay) but no pro-inflammatory cytokine release in epithelial cells, whereas dung and wood particles also induced concentration-dependent cytotoxicity (Alamar Blue). Only wood particles induced concentration-dependent cytotoxicity and genotoxicity in macrophage-like cells, while dung particles were unique at increasing secretion of pro-inflammatory cytokines (IL-6, IL-8, TNF-α). In summary, particles derived from combustion of less energy dense fuels like dung and wood had a higher PAH content and were more cytotoxic in epithelial cells. In addition, the least energy dense and cheapest fuel, dung, also induced pro-inflammatory effects in macrophage-like cells. These findings highlight the influence of fuel type on the toxic profile of the emitted particles and warrant further research to understand and mitigate health effects of indoor air pollution.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Mathilde N Delaval
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Ulrike M Dauter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Asmamaw Abera
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
- Addis Ababa University, Addis Ababa, Ethiopia
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Axel C Eriksson
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Recoules C, Mirey G, Audebert M. Effect of cell treatment procedures on in vitro genotoxicity assessment. Arch Toxicol 2024; 98:1225-1236. [PMID: 38427119 DOI: 10.1007/s00204-024-03690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
So far, the majority of in vitro toxicological experiments are conducted after an acute 24 h treatment that does not represent a realistic human chemical exposure. Recently, new in vitro approaches have been proposed to study the chemical toxicological effect over several days in order to be more predictive of a representative exposure scenario. In this study, we investigated the genotoxic potential of chemicals (direct or bioactived clastogen, aneugen and apoptotic inducer) with the γH2AX and pH3 biomarkers, in the human liver-derived HepaRP cell line. We used different treatment durations, with or without a three-day recovery stage (release period), before genotoxicity measurement. Data were analysed with the Benchmark Dose approach. We observed that the detection of clastogenic compounds (notably for DNA damaging agents) was more sensitive after three days of repeated treatment compared to one or three treatments over 24 h. In contrast, aneugenic chemicals were detected as genotoxic in a similar manner whether after a 24 h exposure or a three-day repeated treatment. Globally, the release period decreases the genotoxicity measurement substantially. For DNA damaging agents, after high concentration treatments, γH2AX induction was always observed after a three-day release period. In contrast, for DNA topoisomerase inhibitors, no effect could be observed after the release period. In conclusion, in the HepaRP cell line, there are some important differences between a one-day acute and a three-day repeated treatment protocol, indicating that different cell treatment procedures may differentiate chemical genotoxic mechanisms of action more efficiently.
Collapse
Affiliation(s)
- Cynthia Recoules
- Toxalim, INRAE-UMR1331, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 Chemin de Tournefeuille, BP 93173, 31027, Toulouse Cedex 3, France
| | - Gladys Mirey
- Toxalim, INRAE-UMR1331, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 Chemin de Tournefeuille, BP 93173, 31027, Toulouse Cedex 3, France
| | - Marc Audebert
- Toxalim, INRAE-UMR1331, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, 180 Chemin de Tournefeuille, BP 93173, 31027, Toulouse Cedex 3, France.
| |
Collapse
|
5
|
Wohlfahrt J, Verma N, Alsaleh R, Kersch C, Schmitz-Spanke S. A pilot study exploring time- and dose-dependent DNA damage and chromosomal instability caused by benzo[a]pyrene in two urothelial cell types. Mutat Res 2024; 828:111855. [PMID: 38569440 DOI: 10.1016/j.mrfmmm.2024.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 09/17/2023] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Environmental and occupational exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with adverse health effects in humans. Uncertainty exists regarding the causation of urinary bladder cancer by benzo[a]pyrene (B[a]P) due to a lack of sufficient data. In this work, we focused on in-vitro DNA damage and the formation of micronuclei and chromosomal aberrations as predictors of cancer risk, applying a wide range of dosages and time periods to quantify the onset, intensity, and duration of the response. We chose two urothelial cell types to compare susceptibility and the ability to increase the malignity of a pre-existing bladder cancer: a cancer cell line (T24) and a pooled sample of primary urinary bladder epithelia cells (PUBEC) from pigs. The highest level of DNA damage assessed by comet assay was observed following 24-h treatment in both cell types, whereas PUBEC cells were clearly more susceptible. Even 4-h treatment induced DNA damage in PUBEC cells with benchmark doses of 0.0027 µM B[a]P and 0.00023 µM after 4-h and 24-h exposure, respectively. Nearly no effect was observed for periods of 48 h. The frequency of micronucleus formation increased more markedly in T24 cells, particularly with 24-h treatment. In PUBEC cells, 48-h exposure notably induced the formation of nucleoplasmic bridges and nuclear buds. Even though only one biological replicate was studied due to the sophisticated study design, our results give a strong indication of the potential of B[a]P to induce and increase malignity in human-relevant cell types.
Collapse
Affiliation(s)
- Jonas Wohlfahrt
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany
| | - Nisha Verma
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany
| | - Rasha Alsaleh
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, Erlangen 91054, Germany.
| |
Collapse
|
6
|
Caipa Garcia AL, Kucab JE, Al-Serori H, Beck RSS, Fischer F, Hufnagel M, Hartwig A, Floeder A, Balbo S, Francies H, Garnett M, Huch M, Drost J, Zilbauer M, Arlt VM, Phillips DH. Metabolic Activation of Benzo[ a]pyrene by Human Tissue Organoid Cultures. Int J Mol Sci 2022; 24:ijms24010606. [PMID: 36614051 PMCID: PMC9820386 DOI: 10.3390/ijms24010606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Organoids are 3D cultures that to some extent reproduce the structure, composition and function of the mammalian tissues from which they derive, thereby creating in vitro systems with more in vivo-like characteristics than 2D monocultures. Here, the ability of human organoids derived from normal gastric, pancreas, liver, colon and kidney tissues to metabolise the environmental carcinogen benzo[a]pyrene (BaP) was investigated. While organoids from the different tissues showed varied cytotoxic responses to BaP, with gastric and colon organoids being the most susceptible, the xenobiotic-metabolising enzyme (XME) genes, CYP1A1 and NQO1, were highly upregulated in all organoid types, with kidney organoids having the highest levels. Furthermore, the presence of two key metabolites, BaP-t-7,8-dihydrodiol and BaP-tetrol-l-1, was detected in all organoid types, confirming their ability to metabolise BaP. BaP bioactivation was confirmed both by the activation of the DNA damage response pathway (induction of p-p53, pCHK2, p21 and γ-H2AX) and by DNA adduct formation. Overall, pancreatic and undifferentiated liver organoids formed the highest levels of DNA adducts. Colon organoids had the lowest responses in DNA adduct and metabolite formation, as well as XME expression. Additionally, high-throughput RT-qPCR explored differences in gene expression between organoid types after BaP treatment. The results demonstrate the potential usefulness of organoids for studying environmental carcinogenesis and genetic toxicology.
Collapse
Affiliation(s)
- Angela L. Caipa Garcia
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Jill E. Kucab
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Halh Al-Serori
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Rebekah S. S. Beck
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Franziska Fischer
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Institute of Applied Biosciences, 76131 Karlsruhe, Germany
| | - Andrew Floeder
- Division of Environmental Health Sciences, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Silvia Balbo
- Division of Environmental Health Sciences, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, 3584 CS Utrecht, The Netherlands
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
- Correspondence:
| |
Collapse
|
7
|
DNA adducts as link between in vitro and in vivo carcinogenicity - A case study with benzo[ a]pyrene. Curr Res Toxicol 2022; 4:100097. [PMID: 36590448 PMCID: PMC9794893 DOI: 10.1016/j.crtox.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
To reduce the need for animal tests, in vitro assays are often used as alternative methods. To derive toxic doses for higher tier organisms from in vitro assay results, quantitative in vitro-in vivo extrapolation (qIVIVE) based on physiological-based toxicokinetic (PBTK) models is typically the preferred approach. Such PBTK models require many input parameters to address the route from dose to target site concentration. However, respective data is very often not available. Hence, our aim is to call attention to an alternative way to build a link between animal (in vivo) and cell-derived (in vitro) toxicity data. To this end, we selected the carcinogenic chemical benzo[a]pyrene (BaP) for our study. Our approach relates both in vitro assay and in vivo data to a main intermediate marker structure for carcinogenicity on the subcellular level - the BaP-DNA adduct BaP-7,8-dihydrodiol-9,10-epoxide-deoxyguanosine. Thus, BaP dose is directly linked to a measure of the toxicity-initiating event. We used Syrian hamster embryo (SHE) and Balb/c 3T3 cell transformation assay as in vitro data and compared these data to outcomes of in vivo carcinogenicity tests in rodents. In vitro and in vivo DNA adduct levels range within three orders of magnitude. Especially metabolic saturation at higher doses and interspecies variabilities are identified and critically discussed as possible sources of errors in our simplified approach. Finally, our study points out possible routes to overcome limitations of the envisaged approach in order to allow for a reliable qIVIVE in the future.
Collapse
|
8
|
Comparative Analysis of Transcriptional Responses to Genotoxic and Non-Genotoxic Agents in the Blood Cell Model TK6 and the Liver Model HepaRG. Int J Mol Sci 2022; 23:ijms23073420. [PMID: 35408779 PMCID: PMC8998745 DOI: 10.3390/ijms23073420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Transcript signatures are a promising approach to identify and classify genotoxic and non-genotoxic compounds and are of interest as biomarkers or for future regulatory application. Not much data, however, is yet available about the concordance of transcriptional responses in different cell types or tissues. Here, we analyzed transcriptomic responses to selected genotoxic food contaminants in the human p53-competent lymphoblastoid cell line TK6 using RNA sequencing. Responses to treatment with five genotoxins, as well as with four non-genotoxic liver toxicants, were compared with previously published gene expression data from the human liver cell model HepaRG. A significant overlap of the transcriptomic changes upon genotoxic stress was detectable in TK6 cells, whereas the comparison with the HepaRG model revealed considerable differences, which was confirmed by bioinformatic data mining for cellular upstream regulators or pathways. Taken together, the study presents a transcriptomic signature for genotoxin exposure in the human TK6 blood cell model. The data demonstrate that responses in different cell models have considerable variations. Detection of a transcriptomic genotoxin signature in blood cells indicates that gene expression analyses of blood samples might be a valuable approach to also estimate responses to toxic exposure in target organs such as the liver.
Collapse
|
9
|
Li X, Li Y, Ning KG, Chen S, Guo L, Bonzo JA, Mei N. The expression of Phase II drug-metabolizing enzymes in human B-lymphoblastoid TK6 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:106-118. [PMID: 35895929 PMCID: PMC9346962 DOI: 10.1080/26896583.2022.2044242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro genotoxicity testing plays an important role in chemical risk assessment. The human B-lymphoblastoid cell line TK6 is widely used as a standard cell line for regulatory safety evaluations. Like many other mammalian cell lines, TK6 cells have limited metabolic capacity; therefore, usually require a source of exogenous metabolic activation for use in genotoxicity testing. Previously, we developed a set of TK6-derived cell lines that individually express one of fourteen cytochrome P450s (CYPs). In the present study, we surveyed a panel of major Phase II drug-metabolizing enzymes to characterize their baseline expression in TK6 cells. These results may serve as a reference enzymatic profile of this commonly used cell line.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kylie G. Ning
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jessica A. Bonzo
- Division of Pharmacology/Toxicology for Immunology and Inflammation, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
10
|
Bankoglu EE, Schuele C, Stopper H. Cell survival after DNA damage in the comet assay. Arch Toxicol 2021; 95:3803-3813. [PMID: 34609522 PMCID: PMC8536587 DOI: 10.1007/s00204-021-03164-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
The comet assay is widely used in basic research, genotoxicity testing, and human biomonitoring. However, interpretation of the comet assay data might benefit from a better understanding of the future fate of a cell with DNA damage. DNA damage is in principle repairable, or if extensive, can lead to cell death. Here, we have correlated the maximally induced DNA damage with three test substances in TK6 cells with the survival of the cells. For this, we selected hydrogen peroxide (H2O2) as an oxidizing agent, methyl methanesulfonate (MMS) as an alkylating agent and etoposide as a topoisomerase II inhibitor. We measured cell viability, cell proliferation, apoptosis, and micronucleus frequency on the following day, in the same cell culture, which had been analyzed in the comet assay. After treatment, a concentration dependent increase in DNA damage and in the percentage of non-vital and apoptotic cells was found for each substance. Values greater than 20-30% DNA in tail caused the death of more than 50% of the cells, with etoposide causing slightly more cell death than H2O2 or MMS. Despite that, cells seemed to repair of at least some DNA damage within few hours after substance removal. Overall, the reduction of DNA damage over time is due to both DNA repair and death of heavily damaged cells. We recommend that in experiments with induction of DNA damage of more than 20% DNA in tail, survival data for the cells are provided.
Collapse
Affiliation(s)
- Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany
| | - Carolin Schuele
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany.
| |
Collapse
|
11
|
Seo JE, Davis K, Malhi P, He X, Bryant M, Talpos J, Burks S, Mei N, Guo X. Genotoxicity evaluation using primary hepatocytes isolated from rhesus macaque (Macaca mulatta). Toxicology 2021; 462:152936. [PMID: 34509578 DOI: 10.1016/j.tox.2021.152936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Non-human primates (NHPs) have played a vital role in fundamental, pre-clinical, and translational studies because of their high physiological and genetic similarity to humans. Here, we report a method to isolate primary hepatocytes from the livers of rhesus macaques (Macaca mulatta) after in situ whole liver perfusion. Isolated primary macaque hepatocytes (PMHs) were treated with various compounds known to have different pathways of genotoxicity/carcinogenicity and the resulting DNA damage was evaluated using the high-throughput CometChip assay. The comet data were quantified using benchmark dose (BMD) modeling and the BMD50 values for treatments of PMHs were compared with those generated from primary human hepatocytes (PHHs) in our previous study (Seo et al. Arch Toxicol 2020, 2207-2224). The results showed that despite varying CYP450 enzyme activities, PMHs had the same sensitivity and specificity as PHHs in detecting four indirect-acting (i.e., requiring metabolic activation) and seven direct-acting genotoxicants/carcinogens, as well as five non-carcinogens that are negative or equivocal for genotoxicity in vivo. The BMD50 estimates and their confidence intervals revealed species differences for DNA damage potency, especially for direct-acting compounds. The present study provides a practical method for maximizing the use of animal tissues by isolating primary hepatocytes from NHPs. Our data support the use of PMHs as a reliable surrogate of PHHs for evaluating the genotoxic hazards of chemical substances for humans.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Pritpal Malhi
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - John Talpos
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Susan Burks
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
12
|
da Silva Junior FC, Felipe MBMC, Castro DEFD, Araújo SCDS, Sisenando HCN, Batistuzzo de Medeiros SR. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116838. [PMID: 33714059 DOI: 10.1016/j.envpol.2021.116838] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Knowledge of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) has increased over time. Much of this knowledge is about the 16 United States - Environmental Protection Agency (US - EPA) priority PAHs; however, there are other US - EPA non-priority PAHs in the environment, whose toxic potential is underestimated. We conducted a systematic review of in vitro, in vivo, and in silico studies to assess the genotoxicity, mutagenicity, and carcinogenicity of 13 US - EPA non-priority parental PAHs present in the environment. Electronic databases, such as Science Direct, PubMed, Scopus, Google Scholar, and Web of Science, were used to search for research with selected terms without time restrictions. After analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, 249 articles, published between 1946 and 2020, were selected and the quality assessment of these studies was performed. The results showed that 5-methylchrysene (5-MC), 7,12-dimethylbenz[a]anthracene (7,12-DMBA), cyclopenta[cd]pyrene (CPP), and dibenzo[al]pyrene (Db[al]P) were the most studied PAHs. Moreover, 5-MC, 7,12-DMBA, benz[j]aceanthrylene (B[j]A), CPP, anthanthrene (ANT), dibenzo[ae]pyrene (Db[ae]P), and Db[al]P have been reported to cause mutagenic effects and have been being associated with a risk of carcinogenicity. Retene (RET) and benzo[c]fluorene (B[c]F), the least studied compounds, showed evidence of a strong influence on the mutagenicity and carcinogenicity endpoints. Overall, this systematic review provided evidence of the genotoxic, mutagenic, and carcinogenic endpoints of US - EPA non-priority PAHs. However, further studies are needed to improve the future protocols of environmental analysis and risk assessment in severely exposed populations.
Collapse
Affiliation(s)
- Francisco Carlos da Silva Junior
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | | | - Denis Elvis Farias de Castro
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Sinara Carla da Silva Araújo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Herbert Costa Nóbrega Sisenando
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
13
|
Chapman KE, Wilde EC, Chapman FM, Verma JR, Shah UK, Stannard LM, Seager AL, Tonkin JA, Brown MR, Doherty AT, Johnson GE, Doak SH, Jenkins GJS. Multiple-endpoint in vitro carcinogenicity test in human cell line TK6 distinguishes carcinogens from non-carcinogens and highlights mechanisms of action. Arch Toxicol 2021; 95:321-336. [PMID: 32910239 PMCID: PMC7811515 DOI: 10.1007/s00204-020-02902-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.
Collapse
Affiliation(s)
- Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK.
| | - Eleanor C Wilde
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Fiona M Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Jatin R Verma
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Ume-Kulsoom Shah
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Leanne M Stannard
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Anna L Seager
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - James A Tonkin
- College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - M Rowan Brown
- College of Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN, UK
| | - Ann T Doherty
- Discovery Safety, AstraZeneca, DSM, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - George E Johnson
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Swansea University, Singleton Campus, Swansea, SA2 8PP, UK
| |
Collapse
|
14
|
Shah UK, Verma JR, Chapman KE, Wilde EC, Tonkin JA, Brown MR, Johnson GE, Doak SH, Jenkins GJ. Detection of urethane-induced genotoxicity in vitro using metabolically competent human 2D and 3D spheroid culture models. Mutagenesis 2020; 35:445-452. [PMID: 33219664 DOI: 10.1093/mutage/geaa029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/22/2020] [Indexed: 11/14/2022] Open
Abstract
In vitro genotoxicity studies are a quick and high throughput approach to assess the genotoxic potential of chemicals; however, the reliability of these tests and their relevance to in vivo effects depends on the choice of representative cell line and optimisation of assay conditions. For chemicals like urethane that require specific metabolic activation to cause genotoxicity, it is important that in vitro tests are conducted using cell lines exhibiting the activity and induction of CYP450 enzymes, including CYP2E1 enzyme that is important in the metabolism of urethane, at a concentration representing actual or perceived chemical exposure. We compared 2D MCL-5 cells and HepG2 cells with 3D HepG2 hanging drop spheroids to determine the genotoxicity of urethane using the micronucleus assay. Our 2D studies with MCL-5 did not show any statistically significant genotoxicity [99% relative population doubling (RPD)] compared to controls for concentrations and time point tested in vitro. HepG2 cells grown as 2D indicated that exposure to urethane of up to 30 mM for 23 h did not cause any genotoxic effect (102% RPD) but, at higher concentrations, genotoxicity was produced with only 89-85% RPD. Furthermore, an exposure of 20-50 mM for 23 h using 3D hanging drop spheroid assays revealed a higher MN frequency, thus exhibiting in vitro genotoxicity of urethane in metabolically active cell models. In comparison with previous studies, this study indicated that urethane genotoxicity is dose, sensitivity of cell model (2D vs. 3D) and exposure dependent.
Collapse
Affiliation(s)
- Ume-Kulsoom Shah
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - Jatin R Verma
- Associate Scientist, Genetic & Molecular Toxicology, Covance Laboratories Limited, Otley Road, Harrogate, North Yorkshire, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - Eleanor C Wilde
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - James A Tonkin
- College of Engineering, Bay Campus, Swansea University, Swansea, UK
| | - Martyn R Brown
- College of Engineering, Bay Campus, Swansea University, Swansea, UK
| | - George E Johnson
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| | - Gareth J Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Singleton Campus, Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
15
|
Cocchi V, Gasperini S, Hrelia P, Tirri M, Marti M, Lenzi M. Novel Psychoactive Phenethylamines: Impact on Genetic Material. Int J Mol Sci 2020; 21:ijms21249616. [PMID: 33348640 PMCID: PMC7766159 DOI: 10.3390/ijms21249616] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Psychedelic and stimulating phenethylamines belong to the family of new psychoactive substances (NPS). The acute toxicity framework has begun to be investigated, while studies showing genotoxic potential are very limited or not available. Therefore, in order to fill this gap, the aim of the present work was to evaluate the genotoxicity by treating TK6 cells with 2C-H, 2C-I, 2C-B, 25B-NBOMe, and the popular 3,4-Methylenedioxymethylamphetamine (MDMA). On the basis of cytotoxicity and cytostasis results, we selected the concentrations (6.25–35 µM) to be used in genotoxicity analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by an automated flow cytometric protocol. All substances, except MDMA, resulted genotoxic; therefore, we evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the demonstrated genotoxicity. The obtained results showed a statistically significant increase in ROS levels for all genotoxic phenethylamines confirming this hypothesis. Our results highlight the importance of genotoxicity evaluation for a complete assessment of the risk associated also with NPS exposure. Indeed, the subjects who do not have hazardous behaviors or require hospitalization by using active but still “safe” doses could run into genotoxicity and in the well-known long-term effects associated.
Collapse
Affiliation(s)
- Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
- Correspondence:
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
| | - Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| |
Collapse
|
16
|
Chapman FM, Sparham C, Hastie C, Sanders DJ, van Egmond R, Chapman KE, Doak SH, Scott AD, Jenkins GJS. Comparison of passive-dosed and solvent spiked exposures of pro-carcinogen, benzo[a]pyrene, to human lymphoblastoid cell line, MCL-5. Toxicol In Vitro 2020; 67:104905. [PMID: 32497684 DOI: 10.1016/j.tiv.2020.104905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Genotoxicity testing methods in vitro provide a means to predict the DNA damaging effects of chemicals on human cells. This is hindered in the case of hydrophobic test compounds, however, which will partition to in vitro components such as plastic-ware and medium proteins, in preference to the aqueous phase of the exposure medium. This affects the freely available test chemical concentration, and as this freely dissolved aqueous concentration is that bioavailable to cells, it is important to define and maintain this exposure. Passive dosing promises to have an advantage over traditional 'solvent spiking' exposure methods and involves the establishment and maintenance of known chemical concentrations in the in vitro medium, and therefore aqueous phase. Passive dosing was applied in a novel format to expose the MCL-5 human lymphoblastoid cell line to the pro-carcinogen, benzo[a]pyrene (B[a]P) and was compared to solvent (dimethyl sulphoxide) spiked B[a]P exposures over 48 h. Passive dosing induced greater changes, at lower concentrations, to micronucleus frequency, p21 mRNA expression, cell cycle abnormalities, and cell and nuclear morphology. This was attributed to a maintained, definable, free chemical concentration using passive dosing and the presence or absence of solvent, and highlights the influence of exposure choice on genotoxic outcomes.
Collapse
Affiliation(s)
- Fiona M Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK.
| | - Chris Sparham
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Colin Hastie
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - David J Sanders
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Roger van Egmond
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Katherine E Chapman
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Andrew D Scott
- Safety and Environmental Assurance Centre, Unilever, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science 1, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| |
Collapse
|
17
|
Li X, Chen S, Guo X, Wu Q, Seo JE, Guo L, Manjanatha MG, Zhou T, Witt KL, Mei N. Development and Application of TK6-derived Cells Expressing Human Cytochrome P450s for Genotoxicity Testing. Toxicol Sci 2020; 175:251-265. [PMID: 32159784 PMCID: PMC7334878 DOI: 10.1093/toxsci/kfaa035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metabolism plays a key role in chemical genotoxicity; however, most mammalian cells used for in vitro genotoxicity testing lack effective metabolizing enzymes. We recently developed a battery of TK6-derived cell lines that individually overexpress 1 of 8 cytochrome P450s (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, and 3A4) using a lentiviral expression system. The increased expression and metabolic function of each individual CYP in each established cell line were confirmed using real-time PCR, Western blotting, and mass spectrometry analysis; the parental TK6 cells and empty vector (EV) transduced cells had negligible CYP levels. Subsequently, we evaluated these cell lines using 2 prototypical polyaromatic hydrocarbon mutagens, 7,12-dimethylbenz[a]anthracene (DMBA) and benzo[a]pyrene (B[a]P), that require metabolic activation to exert their genotoxicity. DMBA-induced cytotoxicity, phosphorylation of histone H2A.X, and micronucleus formation were significantly increased in TK6 cells with CYP1A1, 1B1, 2B6, and 2C19 expression as compared with EV controls. B[a]P significantly increased cytotoxicity, DNA damage, and chromosomal damage in TK6 cells overexpressing CYP1A1 and 1B1 when compared with EV controls. B[a]P also induced micronucleus formation in TK6 cells expressing CYP1A2. These results suggest that our CYP-expressing TK6 cell system can be used to detect the genotoxicity of compounds requiring metabolic transformation.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | | | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | | | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland 20855
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Nan Mei
- Division of Genetic and Molecular Toxicology
| |
Collapse
|
18
|
Liu W, Xi J, Cao Y, You X, Chen R, Zhang X, Han L, Pan G, Luan Y. An Adaption of Human-Induced Hepatocytes to In Vitro Genetic Toxicity Tests. Mutagenesis 2020; 34:165-171. [PMID: 30590776 DOI: 10.1093/mutage/gey041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metabolic activation is essential in standard in vitro genotoxicity test systems. At present, there is a lack of suitable cell models that can express the major characteristics of liver function for predicting substance toxicity in humans. Human-induced hepatocytes (hiHeps), which have been generated from fibroblasts by lentiviral expression of liver transcription factors, can express hepatic gene programs and can be expanded in vitro and display functional characteristics of mature hepatocytes, including cytochrome P450 enzyme activity and biliary drug clearance. Our purpose was to investigate whether hiHeps could be used as a more suitable model for genotoxicity evaluation of chemicals. Therefore, a direct mutagen, methylmethanesulfonate (MMS), and five promutagens [2-nitrofluorene (2-NF), benzo[a]pyrene (B[a]P), aflatoxin B1, cyclophosphamide and N-nitrosodiethylamine] were tested by the cytokinesis-block micronucleus test and the comet assay. Results from genotoxicity tests showed that the micronucleus frequencies were significantly increased by all of the six clastogens tested. Moreover, MMS, 2-NF and B[a]P induced significant increases in the % Tail DNA in the comet assay. In conclusion, our findings from the preliminary study demonstrated that hiHeps could detect the genotoxicity of indirect carcinogens, suggesting their potential to be applied as an effective tool for in vitro genotoxicity assessments.
Collapse
Affiliation(s)
- Weiying Liu
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xi
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Cao
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue You
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixue Chen
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Zhang
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yang Luan
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Fischer FC, Abele C, Henneberger L, Klüver N, König M, Mühlenbrink M, Schlichting R, Escher BI. Cellular Metabolism in High-Throughput In Vitro Reporter Gene Assays and Implications for the Quantitative In Vitro–In Vivo Extrapolation. Chem Res Toxicol 2020; 33:1770-1779. [DOI: 10.1021/acs.chemrestox.0c00037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fabian C. Fischer
- Department Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Cedric Abele
- Department Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nils Klüver
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Maria König
- Department Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Marie Mühlenbrink
- Department Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Rita Schlichting
- Department Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Centre for Applied Geoscience, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
20
|
Guo X, Seo JE, Li X, Mei N. Genetic toxicity assessment using liver cell models: past, present, and future. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:27-50. [PMID: 31746269 DOI: 10.1080/10937404.2019.1692744] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
21
|
Spassova MA. Statistical Approach to Identify Threshold and Point of Departure in Dose-Response Data. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:940-956. [PMID: 30253453 DOI: 10.1111/risa.13191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
The study presents an integrated, rigorous statistical approach to define the likelihood of a threshold and point of departure (POD) based on dose-response data using nested family of bent-hyperbola models. The family includes four models: the full bent-hyperbola model, which allows for transition between two linear regiments with various levels of smoothness; a bent-hyperbola model reduced to a spline model, where the transition is fixed to a knot; a bent-hyperbola model with a restricted negative asymptote slope of zero, named hockey-stick with arc (HS-Arc); and spline model reduced further to a hockey-stick type model (HS), where the first linear segment has a slope of zero. A likelihood-ratio test is used to discriminate between the models and determine if the more flexible versions of the model provide better or significantly better fit than a hockey-stick type model. The full bent-hyperbola model can accommodate both threshold and nonthreshold behavior, can take on concave up and concave down shapes with various levels of curvature, can approximate the biochemically relevant Michaelis-Menten model, and even be reduced to a straight line. Therefore, with the use of this model, the presence or absence of a threshold may even become irrelevant and the best fit of the full bent-hyperbola model be used to characterize the dose-response behavior and risk levels, with no need for mode of action (MOA) information. Point of departure (POD), characterized by exposure level at which some predetermined response is reached, can be defined using the full model or one of the better fitting reduced models.
Collapse
|
22
|
Bemis JC, Heflich RH. In vitro mammalian cell mutation assays based on the Pig-a gene: A report of the 7th International Workshop on Genotoxicity Testing (IWGT) Workgroup. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403028. [PMID: 31699348 DOI: 10.1016/j.mrgentox.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
Pig-a gene mutation assays enumerate cells with the glycosylphosphatidylinositol (GPI) anchor-deficient phenotype as a reporter of mutation in the endogenous Pig-a gene. Methods for measuring mutation in this gene are quite well established for in vivo systems. This approach to mutagenicity assessment has now been extended to in vitro mammalian cell-based systems. An expert workgroup from the 7th International Workshop on Genotoxicity Testing tasked with assessing the status of in vitro mammalian cell mutation assays has investigated the merits and limitations of in vitro Pig-a gene mutation assays. A review of the current status of these developing methodologies and the formation of consensus statements on the utility and application of these assays were performed to provide guidance for their potential use in genotoxicity hazard identification and risk assessment.
Collapse
Affiliation(s)
- J C Bemis
- Litron Laboratories, Rochester, NY, USA.
| | - R H Heflich
- US Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
23
|
McCarrick S, Cunha V, Zapletal O, Vondráček J, Dreij K. In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:678-687. [PMID: 30616058 DOI: 10.1016/j.envpol.2018.12.092] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/19/2018] [Accepted: 12/28/2018] [Indexed: 05/23/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a group of environmental pollutants found in complex mixtures together with PAHs. In contrast to the extensively studied PAHs, which have been established to have mutagenic and carcinogenic properties, much less is known about the effects of oxy-PAHs. The present work aimed to investigate the genotoxic potency of a set of environmentally relevant oxy-PAHs along with environmental soil samples in human bronchial epithelial cells (HBEC). We found that all oxy-PAHs tested induced DNA strand breaks in a dose-dependent manner and some of the oxy-PAHs further induced micronuclei formation. Our results showed weak effects in response to the oxy-PAH containing subfraction of the soil sample. The genotoxic potency was confirmed in both HBEC and HepG2 cells following exposure to oxy-PAHs by an increased level of phospho-Chk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro. We further exposed zebrafish embryos to single oxy-PAHs or a binary mixture with PAH benzo[a]pyrene (B[a]P) and found the mixture to induce comparable or greater effects on the induction of DNA strand breaks compared to the sum of that induced by B[a]P and oxy-PAHs alone. In conclusion, oxy-PAHs were found to elicit genotoxic effects at similar or higher levels to that of B[a]P which indicates that oxy-PAHs may contribute significantly to the total carcinogenic potency of environmental PAH mixtures. This emphasizes further investigations of these compounds as well as the need to include oxy-PAHs in environmental monitoring programs in order to improve health risk assessment.
Collapse
Affiliation(s)
- Sarah McCarrick
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden
| | - Virginia Cunha
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden
| | - Ondřej Zapletal
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
24
|
Abstract
Heterocyclic aromatic amines, acrylamide, 5-hydroxymethylfurfural, furan, polycyclic aromatic hydrocarbons, nitrosamines, acrolein, chloropropanols and chloroesters are generated toxicants formed in some foodstuffs, mainly starchy and protein-rich food during thermal treatment such as frying, roasting and baking. The formation of these chemical compounds is associated with development of aromas, colors and flavors. One of the challenges facing the food industry today is to minimize these toxicants without adversely affecting the positive attributes of thermal processing. To achieve this objective, it is essential to have a detailed understanding of the mechanism of formation of these toxicants in processed foods. All reviewed toxicants in that paper are classified as probable, possible or potential human carcinogens and have been proven to be carcinogenic in animal studies. The purpose of that review is to summarize some of the most frequent occurring heat-generated food toxicants during conventional heating, their metabolism and carcinogenicity. Moreover, conventional and microwave heating were also compared as two different heat treatment methods, especially how they change food chemical composition and which thermal food toxicants are formed during specific method.
Collapse
Affiliation(s)
- Agnieszka Koszucka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
25
|
Reprint of: A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 834:35-41. [DOI: 10.1016/j.mrgentox.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Shah UK, Mallia JDO, Singh N, Chapman KE, Doak SH, Jenkins GJ. A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 825:51-58. [DOI: 10.1016/j.mrgentox.2017.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022]
|
27
|
Li R, Zhao L, Zhang L, Chen M, Dong C, Cai Z. DNA damage and repair, oxidative stress and metabolism biomarker responses in lungs of rats exposed to ambient atmospheric 1-nitropyrene. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:14-20. [PMID: 28668703 DOI: 10.1016/j.etap.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/17/2017] [Accepted: 06/19/2017] [Indexed: 05/03/2023]
Abstract
1-Nitropyrene (1-NP) is a mutagenic and carcinogenic pollutant very widespread in the environment. However, the relative investigations on genotoxicity, oxidative stress and metabolic enzymes in lungs of mammalian caused by 1-NP have not been fully established. In this study, the 1-NP solutions at 3 dosages (1.0×10-5, 4.0×10-5 and 1.6×10-4mg/kg body weight) were respectively given to rats by the intratracheal instillation. The responses of 1-NP on DNA damage and repair, oxidative stress and metabolism biomarkers in rat lungs after exposure to 1-NP were measured. The results showed 1-NP at three dosages induced obvious DNA strand breaks, 8-OH-dG formation and DNA-protein cross-link in rat lungs compared with the control. Higher dosage 1-NP (4.0×10-5 and 1.6×10-4mg/kg body weight) greatly activated DNA repair gene OGG1 and inhibited MTH1 and XRCC1 expressions, and they significantly elevated the levels of GADD153, heme oxygenase-1 and malondialdehyde and decreased SOD activity, accompanied by the increases of CYP450, CYP1A1, CYP1A2 and GST levels. These results suggested the genotoxicity of 1-NP might rely on 1-NP-caused DNA damage and its combined effects on the suppression of DNA repair and the enhancement of oxidative stress and metabolic enzyme activity.
Collapse
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Li Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Minghui Chen
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
28
|
Li R, Zhao L, Zhang L, Chen M, Shi J, Dong C, Cai Z. Effects of ambient PM 2.5 and 9-nitroanthracene on DNA damage and repair, oxidative stress and metabolic enzymes in the lungs of rats. Toxicol Res (Camb) 2017; 6:654-663. [PMID: 30090532 PMCID: PMC6061955 DOI: 10.1039/c7tx00065k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/16/2017] [Indexed: 01/26/2023] Open
Abstract
Ambient fine particulate matter (PM2.5) is a complex mixture associated with lung cancer risk. PM2.5-bound nitro-polycyclic aromatic hydrocarbons (NPAHs) have been demonstrated to possess mutagenicity and carcinogenicity. Previous studies showed that PM2.5 induced DNA damage, whereas there is little knowledge of whether 9-nitroanthracene (9-NA), a typical compound of NPAHs in PM2.5, causes DNA damage. Also, the regulating mechanisms of PM2.5 and 9-NA in DNA damage and repair are not yet fully established. Here we sought to investigate the molecular mechanisms of DNA damage and repair in the lungs of male Wistar rats exposed to PM2.5 (1.5 mg per kg body weight) or three different dosages of 9-NA. And then DNA strand breaks, 8-OH-dG formation, DNA-protein crosslink and DNA repair gene expressions in rat lungs were analyzed. In addition, alteration in oxidative stress factors and metabolic enzymes were detected. The results showed that (1) PM2.5 and higher dosage 9-NA (4.0 × 10-5 and 1.2 × 10-4 mg per kg body weight) significantly caused lung DNA damage, accompanied by increasing OGG1 expression while inhibiting MTH1 and XRCC1 expression, elevating the levels of GADD153, hemeoxygenase-1 and malondialdehyde, and promoting the activities of CYP450 isozymes and glutathione S-transferase. (2) 1.3 × 10-5 mg kg-1 9-NA exposure couldn't cause DNA damage and oxidative stress. (3) At the approximately equivalent dose level, PM2.5-induced DNA damage effects were more obvious than 9-NA with positive correlation. It suggests that DNA damage caused by PM2.5 and 9-NA may be mediated partially through influencing the DNA repair capacity and enhancing oxidative stress and biotransformation, and this negative effect of 9-NA might be related to the PM2.5-induced lung genotoxicity.
Collapse
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science , Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Lifang Zhao
- Institute of Environmental Science , Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Li Zhang
- Institute of Environmental Science , Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Minghui Chen
- Institute of Environmental Science , Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Jing Shi
- College of Environment and Resource , Shanxi University , Taiyuan , PR China
| | - Chuan Dong
- Institute of Environmental Science , Shanxi University , Taiyuan , PR China . ; ; Tel: (+86)-351-7011011
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China . ; ; Tel: (+852)-34117070
| |
Collapse
|
29
|
Kathera C, Zhang J, Janardhan A, Sun H, Ali W, Zhou X, He L, Guo Z. Interacting partners of FEN1 and its role in the development of anticancer therapeutics. Oncotarget 2017; 8:27593-27602. [PMID: 28187440 PMCID: PMC5432360 DOI: 10.18632/oncotarget.15176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Protein-protein interaction (PPI) plays a key role in cellular communication, Protein-protein interaction connected with each other with hubs and nods involved in signaling pathways. These interactions used to develop network based biomarkers for early diagnosis of cancer. FEN1(Flap endonuclease 1) is a central component in cellular metabolism, over expression and decrease of FEN1 levels may cause cancer, these regulation changes of Flap endonuclease 1reported in many cancer cells, to consider this data may needs to develop a network based biomarker. The current review focused on types of PPI, based on nature, detection methods and its role in cancer. Interacting partners of Flap endonuclease 1 role in DNA replication repair and development of anticancer therapeutics based on Protein-protein interaction data.
Collapse
Affiliation(s)
- Chandrasekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Avilala Janardhan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hongfang Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wajid Ali
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaolong Zhou
- The Laboratory of Animal Genetics, Breeding, and Reproduction, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|