1
|
Widmaier M, Kaiser A, Pandurevic P, Lim SI, Döring A, Huang Z, Wenz D, Xiao Y, Jiang Y, Xin L. 3D Creatine Kinase Imaging (CKI) for In Vivo Whole-Brain Mapping of Creatine Kinase Reaction Rates with 31P-Magnetization Transfer MR Fingerprinting. RESEARCH SQUARE 2024:rs.3.rs-5271263. [PMID: 39483893 PMCID: PMC11527232 DOI: 10.21203/rs.3.rs-5271263/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The creatine kinase (CK) is a key enzyme involved in brain bioenergetics, playing a key role in brain function and the pathogenesis of neurological and psychiatric diseases, but imaging its activity noninvasively in the human brain in vivo remains a significant challenge. This study aims to advance the magnetization transfer (MT)- 31P magnetic resonance fingerprinting (MRF) for 3D Creatine Kinase Imaging (CKI). The method was implemented and validated on a clinical 7 Tesla MRI scanner. It enables whole-brain mapping of CK reaction rates for the first time, showing robust reproducibility for 25-minute scan sessions. CKI acquisition also provided simultaneous mapping of adenosine triphosphate and phosphocreatine concentration ratios, phosphocreatine longitudinal relaxation time, andB 0 maps. Furthermore, a functional CKI (fCKI) study demonstrated the first CK activation map in response to visual stimulation, revealing a mean 15% increase in CK rates in the visual cortex. The novel imaging modalities, CKI and fCKI, have the potential to offer new insights into brain bioenergetics both at rest and during activity.
Collapse
Affiliation(s)
- Mark Widmaier
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
- Laboratory of functional and metabolic imaging, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Antonia Kaiser
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Pontus Pandurevic
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Song-I Lim
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Andre Döring
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Zhiwei Huang
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Ying Xiao
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
- Laboratory of functional and metabolic imaging, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| | - Yun Jiang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
- Institute of Physics, Ecole Polytechnique Federale de Lausanne (EPFL) Lausanne,Switzerland
| |
Collapse
|
2
|
Glänzel NM, Grings M, da Rosa-Junior NT, Cereta de Carvalho LM, Mohsen AW, Wipf P, Wajner M, Vockley J, Leipnitz G. The mitochondrial-targeted reactive species scavenger JP4-039 prevents sulfite-induced alterations in antioxidant defenses, energy transfer, and cell death signaling in striatum of rats. J Inherit Metab Dis 2021; 44:481-491. [PMID: 32882059 PMCID: PMC8039837 DOI: 10.1002/jimd.12310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/25/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Sulfite oxidase (SO) deficiency is a disorder caused either by isolated deficiency of SO or by defects in the synthesis of its molybdenum cofactor. It is characterized biochemically by tissue sulfite accumulation. Patients present with seizures, progressive neurological damage, and basal ganglia abnormalities, the pathogenesis of which is not fully established. Treatment is supportive and largely ineffective. To address the pathophysiology of sulfite toxicity, we examined the effects of intrastriatal administration of sulfite in rats on antioxidant defenses, energy transfer, and mitogen-activated protein kinases (MAPK) and apoptosis pathways in rat striatum. Sulfite administration decreased glutathione (GSH) concentration and glutathione peroxidase, glucose-6-phosphate dehydrogenase, glutathione S-transferase, and glutathione reductase activities in striatal tissue. Creatine kinase (CK) activity, a crucial enzyme for cell energy transfer, was also decreased by sulfite. Superoxide dismutase-1 (SOD1) and catalase (CAT) proteins were increased, while heme oxygenase-1 (HO-1) was decreased. Additionally, sulfite altered phosphorylation of MAPK by decreasing of p38 and increasing of ERK. Sulfite further augmented the content of GSK-3β, Bok, and cleaved caspase-3, indicating increased apoptosis. JP4-039 is a mitochondrial-targeted antioxidant that reaches higher intramitochondrial levels than other traditional antioxidants. Intraperitoneal injection of JP4-039 before sulfite administration preserved activity of antioxidant enzymes and CK. It also prevented or attenuated alterations in SOD1, CAT, and HO-1 protein content, as well as changes in p38, ERK, and apoptosis markers. In sum, oxidative stress and apoptosis induced by sulfite injection are prevented by JP4-039, identifying this molecule as a promising candidate for pharmacological treatment of SO-deficient patients.
Collapse
Affiliation(s)
- Nícolas Manzke Glänzel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nevton Teixeira da Rosa-Junior
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leila Maria Cereta de Carvalho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Al-Walid Mohsen
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter Wipf
- Departments of Chemistry, Pharmaceutical Sciences and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
de Moura Alvorcem L, Britto R, Parmeggiani B, Glanzel NM, da Rosa-Junior NT, Cecatto C, Bobermin LD, Amaral AU, Wajner M, Leipnitz G. Evidence that thiol group modification and reactive oxygen species are involved in hydrogen sulfide-induced mitochondrial permeability transition pore opening in rat cerebellum. Mitochondrion 2019; 47:141-150. [DOI: 10.1016/j.mito.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/01/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
|
4
|
Du F, Yuksel C, Chouinard VA, Huynh P, Pingali S, Ryan K, Cohen BM, Öngür D. Abnormalities in High-Energy Phosphate Metabolism in First-Episode Bipolar Disorder Measured Using 31P-Magnetic Resonance Spectroscopy. Biol Psychiatry 2018; 84:797-802. [PMID: 28527566 PMCID: PMC5632123 DOI: 10.1016/j.biopsych.2017.03.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Brain energy metabolism is critical for supporting synaptic function and information processing. A growing body of evidence suggests abnormalities in brain bioenergetics in psychiatric disorders, including both bipolar disorder (BD) and schizophrenia. 31P magnetic resonance spectroscopy provides a noninvasive window into these processes in vivo. Using this approach, we previously showed that patients with BD show normal adenosine triphosphate (ATP) and phosphocreatine levels at rest but cannot maintain normal ATP levels in the visual cortex during times of high energy demand (photic stimulation). Because ATP is replenished from phosphocreatine via the creatine kinase reaction, we have now measured the creatine kinase forward reaction rate constant in BD. METHODS We studied 20 patients experiencing a first episode of BD and 28 healthy control participants at 4T and quantified creatine kinase forward reaction rate constant using 31P magnetization transfer magnetic resonance spectroscopy as described previously. RESULTS We found a significant reduction in creatine kinase forward reaction rate constant in the BD group (F = 4.692, p = .036), whereas brain ATP and phosphocreatine concentrations, as well as brain parenchymal pH, were normal. CONCLUSIONS These results pinpoint a specific molecular mechanism underlying our previous observation of an inability to replenish brain ATP during times of high energy demand in BD.
Collapse
Affiliation(s)
- Fei Du
- McLean Hospital, Belmont, MA,Harvard Medical School, Boston, MA
| | - Cagri Yuksel
- McLean Hospital, Belmont, MA,Harvard Medical School, Boston, MA
| | | | | | | | | | - Bruce M. Cohen
- McLean Hospital, Belmont, MA,Harvard Medical School, Boston, MA
| | - Dost Öngür
- McLean Hospital, Belmont, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Lee BY, Zhu XH, Woo MK, Adriany G, Schillak S, Chen W. Interleaved 31 P MRS imaging of human frontal and occipital lobes using dual RF coils in combination with single-channel transmitter-receiver and dynamic B 0 shimming. NMR IN BIOMEDICINE 2018; 31:10.1002/nbm.3842. [PMID: 29073724 PMCID: PMC5736151 DOI: 10.1002/nbm.3842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 06/01/2023]
Abstract
In vivo 31 P magnetic resonance spectroscopy (MRS) provides a unique tool for the non-invasive study of brain energy metabolism and mitochondrial function. The assessment of bioenergetic impairment in different brain regions is essential to understand the pathophysiology and progression of human brain diseases. This article presents a simple and effective approach which allows the interleaved measurement of 31 P spectra and imaging from two distinct human brain regions of interest with dynamic B0 shimming capability. A transistor-transistor logic controller was employed to actively switch the single-channel X-nuclear radiofrequency (RF) transmitter-receiver between two 31 P RF surface coils, enabling the interleaved acquisition of two 31 P free induction decays (FIDs) from human occipital and frontal lobes within the same repetition time. Linear gradients were incorporated into the RF pulse sequence to perform the first-order dynamic shimming to further improve spectral resolution. The overall results demonstrate that the approach provides a cost-effective and time-efficient solution for reliable 31 P MRS measurement of cerebral phosphate metabolites and adenosine triphosphate (ATP) metabolic fluxes from two human brain regions with high detection sensitivity and spectral quality at 7 T. The same design concept can be extended to acquire multiple spectra from more than two brain regions or can be employed for other magnetic resonance applications beyond the 31 P spin.
Collapse
Affiliation(s)
- Byeong-Yeul Lee
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Myung Kyun Woo
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| | | | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
6
|
Lebda MA, Sadek KM, El-Sayed YS. Aspartame and Soft Drink-Mediated Neurotoxicity in Rats: Implication of Oxidative Stress, Apoptotic Signaling Pathways, Electrolytes and Hormonal Levels. Metab Brain Dis 2017; 32:1639-1647. [PMID: 28660358 DOI: 10.1007/s11011-017-0052-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/16/2017] [Indexed: 01/06/2023]
Abstract
A significant association between fructose corn syrup in sweetened beverages consumption and increased risk of detrimental central nervous system effects has been recently reported. We hypothesized that the aspartame and soft drink induced disturbances in energy production and endocrine function, which play a role in the induction of brain damage. Therefore, we aimed to assess the effect of aspartame and soft drink on brain function and the link between energy status in the brain, oxidative stress and molecular pathways of apoptosis. Thirty rats were randomly assigned to drink water, aspartame (240 mg/kg orally) and cola soft drinks (free access) daily for two months. Subchronic intake of aspartame and soft drink significantly disrupted the brain energy production, as indicated by inhibited serum and brain creatine kinase, specifically in soft drink-received rats. Moreover, they substantially altered serum electrolytes (increased Ca and Na, and depleted Cu, Fe, Zn and K levels), and accordingly the related hormonal status (increased T4 and PTH, and lowered T3 and aldosterone levels), particularly in soft drink-received rats reflecting brain damage. Additionally, significant increment of acetylcholine esterase activity concomitant with the reduction of antioxidant molecules (SOD, CAT, GSH-Px and GSH), and induction of malondialdehyde level are precisely indicative of oxidative brain damage. Brain mRNA transcripts of target genes showed that aspartame and soft drink induced upregulation of BAX, Casp3, P27 and Mdm2 (1.5-fold) and down-regulation of Bcl2, suggesting an activation of cellular apoptosis. Collectively, subchronic aspartame and soft drink-induced brain damage in rats may be driven via a mechanism that involves energy production disruption, electrolytes and hormonal imbalance, increased oxidative stress and activation of molecular pathway of neuronal apoptosis.
Collapse
Affiliation(s)
- Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
7
|
Kim SY, Chen W, Ongur D, Du F. Rapid and simultaneous measurement of phosphorus metabolite pool size ratio and reaction kinetics of enzymes in vivo. J Magn Reson Imaging 2017; 47:210-221. [PMID: 28480619 DOI: 10.1002/jmri.25744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/07/2017] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The metabolites phosphocreatine (PCr), adenosine triphosphate (ATP), and in-organic phosphate (Pi) are biochemically coupled. Their pool sizes, assessed by their magnetization ratios, have been extensively studied and reflect bioenergetics status in vivo. However, most such studies have ignored chemical exchange and T1 relaxation effects. In this work, we aimed to extend the T1nom method to simultaneously quantify the reaction rate constants as well as phosphorus metabolite pool size ratios under partially relaxed conditions. MATERIALS AND METHODS Modified Bloch-McConnell equations were used to simulate the effects of chemical exchanges on T1 relaxation times and magnetization ratios among PCr, γ-ATP, and Pi. The T1nom method with iteration approach was used to measure both reaction constants and metabolite pool size ratios. To validate our method, in vivo data from rat brains (N = 8) at 9.4 Tesla were acquired under two conditions, i.e., approximately full relaxation (TR = 9 s) and partial relaxation (TR = 3 s). We compared metabolite pool size ratios and reaction constants before and after correcting the chemical exchange and T1 relaxation effects. RESULTS There were significant errors in underestimation of PCr/γATP by 12 % (P = 0.03) and overestimation of ATP/Pi ratios by 14 % (P = 0.04) when not considering chemical exchange effects. These errors were minimized using our iteration approach, resulting in no significant differences (PCr/γATP, P = 0.47; ATP/Pi, P = 0.81) in metabolite pool size ratios and reaction constants between the two measurements (i.e., short versus long TR conditions). CONCLUSION Our method can facilitate broad biomedical applications of 31 P magnetization saturation transfer spectroscopy, requiring high temporal and/or spatial resolution for assessment of altered bioenergetics. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:210-221.
Collapse
Affiliation(s)
- Sang-Young Kim
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA.,Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dost Ongur
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Fei Du
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA.,Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| |
Collapse
|
8
|
de Moura Alvorcem L, da Rosa MS, Glänzel NM, Parmeggiani B, Grings M, Schmitz F, Wyse ATS, Wajner M, Leipnitz G. Disruption of Energy Transfer and Redox Status by Sulfite in Hippocampus, Striatum, and Cerebellum of Developing Rats. Neurotox Res 2017; 32:264-275. [PMID: 28417315 DOI: 10.1007/s12640-017-9732-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/19/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023]
Abstract
Patients with sulfite oxidase (SO) deficiency present severe brain abnormalities, whose pathophysiology is not yet elucidated. We evaluated the effects of sulfite and thiosulfate, metabolites accumulated in SO deficiency, on creatine kinase (CK) activity, mitochondrial respiration and redox status in hippocampus, striatum and cerebellum of developing rats. Our in vitro results showed that sulfite and thiosulfate decreased CK activity, whereas sulfite also increased malondialdehyde (MDA) levels in all brain structures evaluated. Sulfite further diminished mitochondrial respiration and increased DCFH oxidation and hydrogen peroxide production in hippocampus. Sulfite-induced CK activity decrease was prevented by melatonin (MEL), resveratrol (RSV), and dithiothreitol while increase of MDA levels was prevented by MEL and RSV. Regarding the antioxidant system, sulfite increased glutathione concentrations in hippocampus and striatum. In addition, sulfite decreased the activities of glutathione peroxidase in all brain structures, of glutathione S-transferase in hippocampus and cerebellum, and of glutathione reductase in cerebellum. In vivo experiments performed with intrahippocampal administration of sulfite demonstrated that this metabolite increased superoxide dismutase activity without altering other biochemical parameters in rat hippocampus. Our data suggest that impairment of energy metabolism and redox status may be important pathomechanisms involved in brain damage observed in individuals with SO deficiency.
Collapse
Affiliation(s)
- Leonardo de Moura Alvorcem
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Mateus Struecker da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Nícolas Manzke Glänzel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP 90035-003, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
9
|
Chen C, Stephenson MC, Peters A, Morris PG, Francis ST, Gowland PA. 31 P magnetization transfer magnetic resonance spectroscopy: Assessing the activation induced change in cerebral ATP metabolic rates at 3 T. Magn Reson Med 2017; 79:22-30. [PMID: 28303591 PMCID: PMC5706641 DOI: 10.1002/mrm.26663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/05/2017] [Accepted: 02/09/2017] [Indexed: 12/19/2022]
Abstract
Purpose In vivo 31P magnetic resonance spectroscopy (MRS) magnetization transfer (MT) provides a direct measure of neuronal activity at the metabolic level. This work aims to use functional 31P MRS‐MT to investigate the change in cerebral adenosine triphosphate (ATP) metabolic rates in healthy adults upon repeated visual stimuli. Methods A magnetization saturation transfer sequence with narrowband selective saturation of γ‐ATP was developed for 31P MT experiments at 3 T. Results Using progressive saturation of γ‐ATP, the intrinsic T1 relaxation times of phosphocreatine (PCr) and inorganic phosphate (Pi) at 3 T were measured to be 5.1 ± 0.8 s and 3.0 ± 1.4 s, respectively. Using steady‐state saturation of γ‐ATP, a significant 24% ± 14% and 11% ± 7% increase in the forward creatine kinase (CK) pseudo‐first‐order reaction rate constant, k1, was observed upon visual stimulation in the first and second cycles, respectively, of a paradigm consisting of 10‐minute rest followed by 10‐minute stimulation, with the measured baseline k1 being 0.35 ± 0.04 s−1. No significant changes in forward ATP synthase reaction rate, PCr/γ‐ATP, Pi/γ‐ATP, and nicotinamide adenine dinucleotide/γ‐ATP ratios, or intracellular pH were detected upon stimulation. Conclusion This work demonstrates the potential of studying cerebral bioenergetics using functional 31P MRS‐MT to determine the change in the forward CK reaction rate at 3 T. Magn Reson Med 79:22–30, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Chen Chen
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Mary C Stephenson
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Andrew Peters
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
| |
Collapse
|
10
|
Ren J, Sherry AD, Malloy CR. Efficient 31 P band inversion transfer approach for measuring creatine kinase activity, ATP synthesis, and molecular dynamics in the human brain at 7 T. Magn Reson Med 2016; 78:1657-1666. [PMID: 27868234 DOI: 10.1002/mrm.26560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/16/2016] [Accepted: 11/03/2016] [Indexed: 01/28/2023]
Abstract
PURPOSE To develop an efficient 31 P magnetic resonance spectroscopy (MRS) method for measuring creatine kinase (CK) activity, adenosine triphosphate (ATP) synthesis, and motion dynamics in the human brain at 7 Tesla (T). METHODS Three band inversion modules differing in center frequency were used to induce magnetization transfer (MT) effect in three exchange pathways: (i) CK-mediated reaction PCr → γ-ATP; (ii) de novo ATP synthesis Pi → γ-ATP; and (iii) ATP intramolecular 31 P-31 P cross-relaxation γ-(α-) ↔ β-ATP. The resultant MT data were analyzed using a 5-pool model in the format of magnetization matrix according to Bloch-McConnell-Solomon formalism. RESULTS With a repetition time (TR) of 4 s, the scan time for each module was approximately 8 min. The rate constants were kPCr → γATP 0.38 ± 0.02 s-1 , kPi → γATP 0.19 ± 0.02 s-1 , and σγ(α) ↔ βATP 0.19 ± 0.04 s-1 , corresponding to ATP rotation correlation time τc (0.8 ± 0.2) ·10-7 s. The T1 relaxation times were Pi 7.26 ± 1.76 s, PCr 5.99 ± 0.58 s, γ-ATP 0.98 ± 0.07 s, α-ATP 0.95 ± 0.04 s, and β-ATP 0.68 ± 0.03 s. CONCLUSION Short-TR band inversion modules provide a time-efficient way of measuring brain ATP metabolism and could be useful in studying metabolic disorders in brain diseases. Magn Reson Med 78:1657-1666, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,VA North Texas Health Care System, Dallas, Texas, USA
| |
Collapse
|
11
|
Sun Z, Lan X, Ahsan A, Xi Y, Liu S, Zhang Z, Chu P, Song Y, Piao F, Peng J, Lin Y, Han G, Tang Z. Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation. Apoptosis 2016; 21:283-97. [PMID: 26708229 DOI: 10.1007/s10495-015-1210-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phosphocreatine (PCr) is an exogenous energy substance, which provides phosphate groups for adenosine triphosphate (ATP) cycle and promotes energy metabolism in cells. However, it is still unclear whether PCr has influenced on mitochondrial energy metabolism as well as oxidative phosphorylation (OXPHO) in previous studies. Therefore, the aim of the present study was to investigate the regulation of PCr on lipopolsaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs) and mitochondrial OXPHO pathway. PCr protected HUVECs against LPS-induced apoptosis by suppressing the mitochondrial permeability transition, cytosolic release of cytochrome c (Cyt C), Ca(2+), reactive oxygen species and subsequent activation of caspases, and increasing Bcl2 expression, while suppressing Bax expression. More importantly, PCr significantly improved mitochondrial swelling and membrane potential, enhanced the activities of ATP synthase and mitochondrial creatine kinase (CKmt) in creatine shuttle, influenced on respiratory chain enzymes, respiratory control ratio, phosphorus/oxygen ratio and ATP production of OXPHO. Above PCr-mediated mitochondrial events were effectively more favorable to reduced form of flavin adenine dinucleotide (FADH2) pathway than reduced form of nicotinamide-adenine dinucleotid pathway in the mitochondrial respiratory chain. Our results revealed that PCr protects against LPS-induced HUVECs apoptosis, which probably related to stabilization of intracellular energy metabolism, especially for FADH2 pathway in mitochondrial respiratory chain, ATP synthase and CKmt. Our findings suggest that PCr may play a certain role in the treatment of atherosclerosis via protecting endothelial cell function.
Collapse
Affiliation(s)
- Zhengwu Sun
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China.,Pharmacy Department, Dalian Municipal Central Hospital, Dalian, China
| | - Xiaoyan Lan
- Neurology Department, Dalian Municipal Central Hospital, Dalian, China
| | - Anil Ahsan
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China
| | - Yalin Xi
- Pharmacy Department, Dalian Municipal Central Hospital, Dalian, China
| | - Shumin Liu
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China
| | - Zonghui Zhang
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China
| | - Yushu Song
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China
| | - Fengyuan Piao
- Public Health Department, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China
| | - Yuan Lin
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China
| | - Guozhu Han
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, West Section 9, South Road of Lvshun, Dalian, 116044, China.
| |
Collapse
|
12
|
da Rosa MS, Seminotti B, Ribeiro CAJ, Parmeggiani B, Grings M, Wajner M, Leipnitz G. 3-Hydroxy-3-methylglutaric and 3-methylglutaric acids impair redox status and energy production and transfer in rat heart: relevance for the pathophysiology of cardiac dysfunction in 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. Free Radic Res 2016; 50:997-1010. [PMID: 27430492 DOI: 10.1080/10715762.2016.1214952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A lyase (HL) deficiency is characterized by tissue accumulation of 3-hydroxy-3-methylglutaric (HMG), and 3-methylglutaric (MGA) acids. Affected patients present cardiomyopathy, whose pathomechanisms are not yet established. We investigated the effects of HMG and MGA on energy and redox homeostasis in rat heart using in vivo and in vitro models. In vivo experiments showed that intraperitoneal administration of HMG and MGA decreased the activities of the respiratory chain complex II and creatine kinase (CK), whereas HMG also decreased the activity of complex II-III. Furthermore, HMG and MGA injection increased reactive species production and carbonyl formation, and decreased glutathione concentrations. Regarding the enzymatic antioxidant defenses, HMG and MGA increased glutathione peroxidase (GPx) and glutathione reductase (GR) activities, while only MGA diminished the activities of superoxide dismutase (SOD) and catalase, as well as the protein content of SOD1. Pre-treatment with melatonin (MEL) prevented MGA-induced decrease of CK activity and SOD1 levels. In vitro results demonstrated that HMG and MGA increased reactive species formation, induced lipid peroxidation and decreased glutathione. We also verified that reactive species overproduction and glutathione decrease provoked by HMG and MGA were abrogated by MEL and lipoic acid (LA), while only MEL prevented HMG- and MGA-induced lipoperoxidation. Allopurinol (ALP) also prevented reactive species overproduction caused by both metabolites. Our data provide solid evidence that bioenergetics dysfunction and oxidative stress are induced by HMG and MGA in heart, which may explain the cardiac dysfunction observed in HL deficiency, and also suggest that antioxidant supplementation could be considered as adjuvant therapy for affected patients.
Collapse
Affiliation(s)
- Mateus Struecker da Rosa
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| | - Bianca Seminotti
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| | - César Augusto João Ribeiro
- b Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , São Bernardo do Campo , SP , Brazil
| | - Belisa Parmeggiani
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| | - Mateus Grings
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| | - Moacir Wajner
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil ;,c Departamento de Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil ;,d Serviço de Genética Médica , Hospital de Clínicas de Porto Alegre , Porto Alegre , RS , Brazil
| | - Guilhian Leipnitz
- a Programa de Pós-Graduação em Ciências Biológicas: Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil ;,c Departamento de Bioquímica , Instituto de Ciências Básicas da Saúde , UFRGS , Porto Alegre, RS , Brazil
| |
Collapse
|
13
|
Ren J, Sherry AD, Malloy CR. Band inversion amplifies 31 P- 31 P nuclear overhauser effects: Relaxation mechanism and dynamic behavior of ATP in the human brain by 31 P MRS at 7 T. Magn Reson Med 2016; 77:1409-1418. [PMID: 27060982 DOI: 10.1002/mrm.26236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 01/07/2023]
Abstract
PURPOSE To develop an improved method to measure the 31 P nuclear Overhauser effect (NOE) for evaluation of adenosine triphosphate (ATP) dynamics in terms of correlation time (τc ), and contribution of dipole-dipole (DD) and chemical shift anisotropy (CSA) mechanisms to T1 relaxation of ATP in human brain. METHODS The NOE of ATP in human brain was evaluated by monitoring changes in magnetization in the β-ATP signal following a band inversion of all downfield 31 P resonances. The magnetization changes observed were analyzed using the Bloch-McConnell-Solomon formulation to evaluate the relaxation and motion dynamic parameters that describe interactions of ATP with cellular solids in human brain tissue. RESULTS The maximal transient NOE, observed as a reduction in the β-ATP signal, was 24 ± 2% upon band inversion of γ- and α-ATP, which is 2-3-fold higher than achievable by frequency-selective inversion of either γ- or α-ATP. The rate of 31 P-31 P cross relaxation (0.21 ± 0.02 s-1 ) led to a τc value of (9.1 ± 0.8) × 10-8 s for ATP in human brain. The T1 relaxation of β-ATP is dominated by CSA over the DD mechanism (60%: 40%). CONCLUSIONS The band inversion method proved effective in amplifying 31 P NOE, and thus facilitating ATP τc and relaxation measurements. This technique renders ATP a potentially useful reporter molecule for cellular environments. Magn Reson Med 77:1409-1418, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390.,Department of Chemistry, University of Texas at Dallas, Richardson, TX, 75080
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390.,VA North Texas Health Care System, Dallas, TX, 75216
| |
Collapse
|
14
|
Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder. Mol Psychiatry 2015; 20:1079-84. [PMID: 25754079 DOI: 10.1038/mp.2015.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022]
Abstract
Converging evidence suggests bioenergetic abnormalities in bipolar disorder (BD). In the brain, phosphocreatine (PCr) acts a reservoir of high-energy phosphate (HEP) bonds, and creatine kinases (CK) catalyze the transfer of HEP from adenosine triphosphate (ATP) to PCr and from PCr back to ATP, at times of increased need. This study examined the activity of this mechanism in BD by measuring the levels of HEP molecules during a stimulus paradigm that increased local energy demand. Twenty-three patients diagnosed with BD-I and 22 healthy controls (HC) were included. Levels of phosphorus metabolites were measured at baseline and during visual stimulation in the occipital lobe using (31)P magnetic resonance spectroscopy at 4T. Changes in metabolite levels showed different patterns between the groups. During stimulation, HC had significant reductions in PCr but not in ATP, as expected. In contrast, BD patients had significant reductions in ATP but not in PCr. In addition, PCr/ATP ratio was lower at baseline in patients, and there was a higher change in this measure during stimulation. This pattern suggests a disease-related failure to replenish ATP from PCr through CK enzyme catalysis during tissue activation. Further studies measuring the CK flux in BD are required to confirm and extend this finding.
Collapse
|
15
|
Wang H, Xu Z, Wu A, Dong Y, Zhang Y, Yue Y, Xie Z. 2-deoxy-D-glucose enhances anesthetic effects in mice. Anesth Analg 2015; 120:312-9. [PMID: 25390277 DOI: 10.1213/ane.0000000000000520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The mechanisms of general anesthesia by volatile drugs remain largely unknown. Mitochondrial dysfunction and reduction in energy levels have been suggested to be associated with general anesthesia status. 2-Deoxy-D-glucose (2-DG), an analog of glucose, inhibits hexokinase and reduces cellular levels of adenosine triphosphate (ATP). 3-Nitropropionic acid is another compound which can deplete ATP levels. In contrast, idebenone and L-carnitine could rescue deficits of energy. We therefore sought to determine whether 2-DG and/or 3-nitropropionic acid can enhance the anesthetic effects of isoflurane, and whether idebenone and L-carnitine can reverse the actions of 2-DG. METHODS C57BL/6J mice (8 months old) received different concentrations of isoflurane with and without the treatments of 2-DG, 3-nitropropionic acid, idebenone, and L-carnitine. Isoflurane-induced loss of righting reflex (LORR) was determined in the mice. ATP levels in H4 human neuroglioma cells were assessed after these treatments. Finally, 31P-magnetic resonance spectroscopy was used to determine the effects of isoflurane on brain ATP levels in the mice. RESULTS 2-DG enhanced isoflurane-induced LORR (P = 0.002, N = 15). 3-Nitropropionic acid also enhanced the anesthetic effects of isoflurane (P = 0.005, N = 15). Idebenone (idebenone + saline versus idebenone + 2-DG: P = 0.165, N = 15), but not L-carnitine (L-carnitine + saline versus L-carnitine + 2-DG: P < 0.0001, N = 15), inhibited the effects of 2-DG on enhancing isoflurane-induced LORR in the mice, as evidenced by 2-DG not enhancing isoflurane-induced LORR in the mice pretreated with idebenone. Idebenone (idebenone + saline versus idebenone + 2-DG: P = 0.177, N = 6), but not L-carnitine (L-carnitine + saline versus L-carnitine + 2-DG: P = 0.029, N = 6), also mitigated the effects of 2-DG on reducing ATP levels in cells, as evidenced by 2-DG not decreasing ATP levels in the cells pretreated with idebenone. Finally, isoflurane decreased ATP levels in both cultured cells and mouse brains (β-ATP: P = 0.003, N = 10; β-ATP/phosphocreatine: P = 0.006, N = 10; β-ATP/inorganic phosphate: P = 0.001, N = 10). CONCLUSIONS These results from our pilot studies have established a system and generated a hypothesis that 2-DG enhances anesthetic effects via reducing energy levels. These findings should promote further studies to investigate anesthesia mechanisms.
Collapse
Affiliation(s)
- Hui Wang
- From the *Department of Anesthesia, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; †Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts; and ‡Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Du F, Cooper A, Thida T, Sehovic S, Lukas SE, Cohen BM, Zhang X, Öngür D. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy. JAMA Psychiatry 2014; 71:19-27. [PMID: 24196348 PMCID: PMC7461723 DOI: 10.1001/jamapsychiatry.2013.2287] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Abnormalities in neural activity and cerebral bioenergetics have been observed in schizophrenia (SZ). Further defining energy metabolism anomalies would provide crucial information about molecular mechanisms underlying SZ and may be valuable for developing novel treatment strategies. OBJECTIVE To investigate cerebral bioenergetics in SZ via measurement of creatine kinase activity using in vivo 31P magnetization transfer spectroscopy. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional case-control study in the setting of clinical services and a brain imaging center of an academic psychiatric hospital. Twenty-six participants with chronic SZ (including a subgroup diagnosed as having schizoaffective disorder) and 26 age-matched and sex-matched healthy control subjects (25 usable magnetic resonance spectroscopy data sets from the latter). INTERVENTION 31P magnetization transfer spectroscopy. MAIN OUTCOMES AND MEASURES The primary outcome measure was the forward rate constant (k(f)) of the creatine kinase enzyme in the frontal lobe. We also collected independent measures of brain intracellular pH and steady-state metabolite ratios of high-energy phosphate-containing compounds (phosphocreatine and adenosine triphosphate [ATP]), inorganic phosphate, and the 2 membrane phospholipids phosphodiester and phosphomonoester. RESULTS A substantial (22%) and statistically significant (P = .003) reduction in creatine kinase kf was observed in SZ. In addition, intracellular pH was significantly reduced (7.00 in the SZ group vs 7.03 in the control group, P = .007) in this condition. The phosphocreatine to ATP ratio, inorganic phosphate to ATP ratio, and phosphomonoester to ATP ratio were not substantially altered in SZ, but a significant (P = .02) reduction was found in the phosphodiester to ATP ratio. The abnormalities were similar between SZ and schizoaffective disorder. CONCLUSIONS AND RELEVANCE Using a novel 31P magnetization transfer magnetic resonance spectroscopy approach, we provide direct and compelling evidence for a specific bioenergetic abnormality in SZ. Reduced kf of the creatine kinase enzyme is consistent with an abnormality in storage and use of brain energy. The intracellular pH reduction suggests a relative increase in the contribution of glycolysis to ATP synthesis, providing convergent evidence for bioenergetic abnormalities in SZ. The similar phosphocreatine to ATP ratios in SZ and healthy controls suggest that the underlying bioenergetics abnormality is not associated with change in this metabolite ratio.
Collapse
Affiliation(s)
- Fei Du
- McLean Hospital,Harvard Medical School,Corresponding Author: Fei Du, Ph.D.,
Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical
School, 115 Mill St, Belmont MA, 02478, Phone: (617) 855-3945,
; Dost
Öngür, M.D. Ph.D., Psychotic Disorders Division, McLean
Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill St, Belmont
MA, 02478, Phone:(617) 855-3922,
| | | | | | | | | | | | - Xiaoliang Zhang
- Department of Radiology, University of California, San
Francisco
| | - Dost Öngür
- McLean Hospital,Harvard Medical School,Corresponding Author: Fei Du, Ph.D.,
Brain Imaging Center, McLean Hospital, Department of Psychiatry, Harvard Medical
School, 115 Mill St, Belmont MA, 02478, Phone: (617) 855-3945,
; Dost
Öngür, M.D. Ph.D., Psychotic Disorders Division, McLean
Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill St, Belmont
MA, 02478, Phone:(617) 855-3922,
| |
Collapse
|
17
|
Grings M, Moura AP, Parmeggiani B, Marcowich GF, Amaral AU, de Souza Wyse AT, Wajner M, Leipnitz G. Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: Potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene 2013; 531:191-8. [DOI: 10.1016/j.gene.2013.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 01/04/2023]
|
18
|
Seifert AC, Wright AC, Wehrli SL, Ong HH, Li C, Wehrli FW. 31P NMR relaxation of cortical bone mineral at multiple magnetic field strengths and levels of demineralization. NMR IN BIOMEDICINE 2013; 26:1158-66. [PMID: 23505120 PMCID: PMC3715596 DOI: 10.1002/nbm.2930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 05/10/2023]
Abstract
Recent work has shown that solid-state (1) H and (31) P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, (31) P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus. In this work, (31) P MRI signal-to-noise ratio (SNR) was predicted on the basis of T1 and T2 * (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5-11.7 T) and subsequently verified by 3D ultra-short echo-time and zero echo-time imaging. Further, T1 was measured in deuterium-exchanged bone and partially demineralized bone. (31) P T2 * was found to decrease from 220.3 ± 4.3 µs to 98.0 ± 1.4 µs from 1.5 to 11.7 T, and T1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s. Deuteron substitution of exchangeable water showed that 76% of the (31) P longitudinal relaxation rate is due to (1) H-(31) P dipolar interactions. Lastly, hypomineralization was found to decrease T1, which may have implications for (31) P MRI based mineralization density quantification. Despite the steep decrease in the T2 */T1 ratio, SNR should increase with field strength as B0 (0.4) for sample-dominated noise and as B0 (1.1) for coil-dominated noise. This was confirmed by imaging experiments.
Collapse
Affiliation(s)
- Alan C Seifert
- Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|