1
|
McKenna F, Miles L, Donaldson J, Castellanos FX, Lazar M. Diffusion kurtosis imaging of gray matter in young adults with autism spectrum disorder. Sci Rep 2020; 10:21465. [PMID: 33293640 PMCID: PMC7722927 DOI: 10.1038/s41598-020-78486-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/29/2020] [Indexed: 01/20/2023] Open
Abstract
Prior ex vivo histological postmortem studies of autism spectrum disorder (ASD) have shown gray matter microstructural abnormalities, however, in vivo examination of gray matter microstructure in ASD has remained scarce due to the relative lack of non-invasive methods to assess it. The aim of this work was to evaluate the feasibility of employing diffusional kurtosis imaging (DKI) to describe gray matter abnormalities in ASD in vivo. DKI data were examined for 16 male participants with a diagnosis of ASD and IQ>80 and 17 age- and IQ-matched male typically developing (TD) young adults 18-25 years old. Mean (MK), axial (AK), radial (RK) kurtosis and mean diffusivity (MD) metrics were calculated for lobar and sub-lobar regions of interest. Significantly decreased MK, RK, and MD were found in ASD compared to TD participants in the frontal and temporal lobes and several sub-lobar regions previously associated with ASD pathology. In ASD participants, decreased kurtosis in gray matter ROIs correlated with increased repetitive and restricted behaviors and poor social interaction symptoms. Decreased kurtosis in ASD may reflect a pathology associated with a less restrictive microstructural environment such as decreased neuronal density and size, atypically sized cortical columns, or limited dendritic arborizations.
Collapse
Affiliation(s)
- Faye McKenna
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA.
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA.
| | - Laura Miles
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
| | - Jeffrey Donaldson
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mariana Lazar
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
McKenna FF, Miles L, Babb JS, Goff DC, Lazar M. Diffusion kurtosis imaging of gray matter in schizophrenia. Cortex 2019; 121:201-224. [PMID: 31629198 DOI: 10.1016/j.cortex.2019.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 01/08/2023]
Abstract
Prior postmortem studies have shown gray matter (GM) microstructural abnormalities in schizophrenia. However, few studies to date have examined GM microstructural integrity in schizophrenia in vivo. Here, we employed diffusion kurtosis imaging (DKI) to test for differences in GM microstructure in eighteen schizophrenia (SZ) patients versus nineteen healthy controls (HC). GM microstructure was characterized in each participant using DKI-derived metrics of mean kurtosis (MK) and mean diffusivity (MD). Individual T1-weighted images were used to create subject-specific cortically-labelled regions of interest (ROIs) of the four cortical lobes and sixty-eight cortical GM regions delineated by the Desikan-Killiany atlas, and to derive the associated cortical thickness and area measures. The derived ROIs were also registered to the diffusion space of each subject and used to generate region-specific mean MK and MD values. We additionally administered the Wisconsin Card Sorting Test (WCST), Stroop test, and Trail Making Test part B (Trails-B) to test the relationship between GM metrics and executive function in SZ. We found significantly increased MK and MD in SZ compared to HC participants in the temporal lobe, sub-lobar temporal cortical regions (fusiform, inferior temporal, middle temporal and temporal pole), and posterior cingulate cortex after correcting for multiple comparisons. Correlational analyses revealed significant associations of MK and MD with executive function scores derived from the WCST, Stroop, and Trails-B tests, along with an inverse relationship between MK and MD and cortical thickness and area. A hierarchical multiple linear regression analysis showed that up to 85% of the inter-subject variability in cognitive function in schizophrenia measured by the WCST could be explained by MK in combination with either GM thickness or area. MK and MD appear to be sensitive to GM microstructural pathology in schizophrenia and may provide useful biomarkers of abnormal cortical microstructure in this disorder.
Collapse
Affiliation(s)
- Faye F McKenna
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA.
| | - Laura Miles
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - James S Babb
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Donald C Goff
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mariana Lazar
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Li L, Chopp M, Ding G, Davoodi-Bojd E, Li Q, Mahmood A, Xiong Y, Jiang Q. Diffuse white matter response in trauma-injured brain to bone marrow stromal cell treatment detected by diffusional kurtosis imaging. Brain Res 2019; 1717:127-135. [PMID: 31009610 PMCID: PMC6571170 DOI: 10.1016/j.brainres.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Diffuse white matter (WM) response to traumatic brain injury (TBI) and transplantation of human bone marrow stromal cells (hMSCs) after the injury were non-invasively and dynamically investigated. Male Wistar rats (300-350 g) subjected to TBI were intravenously injected with 1 ml of saline (n = 10) or with hMSCs in suspension (∼3 × 106 hMSCs, n = 10) 1-week post-TBI. MRI measurements of T2-weighted imaging and diffusional kurtosis imaging (DKI) were acquired on all animals at multiple time points up to 3-months post-injury. Functional outcome was assessed using the Morris water maze test. DKI-derived metrics of fractional anisotropy (FA), axonal water fraction (AWF) and radial kurtosis (RK) longitudinally reveal an evolving pattern of structural alteration post-TBI occurring in the brain region remote from primary impact site. The progressive structural change is characterized by gradual disruption of WM integrity at an early stage (weeks post-TBI), followed by spontaneous recovery at a later stage (months post-TBI). Transplantation of hMSCs post-TBI promotes this structural plasticity as indicated by significantly increased FA and AWF in conjunction with substantially elevated RK at the later stage. Our long-term imaging data demonstrate that hMSC therapy leads to modified temporal profiles of these metrics, inducing an earlier presence of enhanced structural remodeling, which may contribute to improved functional recovery.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
4
|
Nie X, Falangola MF, Ward R, McKinnon ET, Helpern JA, Nietert PJ, Jensen JH. Diffusion MRI detects longitudinal white matter changes in the 3xTg-AD mouse model of Alzheimer's disease. Magn Reson Imaging 2019; 57:235-242. [PMID: 30543850 PMCID: PMC6331227 DOI: 10.1016/j.mri.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/19/2018] [Accepted: 12/08/2018] [Indexed: 12/13/2022]
Abstract
The sensitivity of multiple diffusion MRI (dMRI) parameters to longitudinal changes in white matter microstructure was investigated for the 3xTg-AD transgenic mouse model of Alzheimer's disease, which manifests both amyloid beta plaques and neurofibrillary tangles. By employing a specific dMRI method known as diffusional kurtosis imaging, eight different diffusion parameters were quantified to characterize distinct aspects of water diffusion. Four female 3xTg-AD mice were imaged at five time points, ranging from 4.5 to 18 months of age, and the diffusion parameters were investigated in four white matter regions (fimbria, external capsule, internal capsule and corpus callosum). Significant changes were observed in several diffusion parameters, particularly in the fimbria and in the external capsule, with a statistically significant decrease in diffusivity and a statistically significant increase in kurtosis. Our preliminary results demonstrate that dMRI can detect microstructural changes in white matter for the 3xTg-AD mouse model due to aging and/or progression of pathology, depending strongly on the diffusion parameter and anatomical region.
Collapse
Affiliation(s)
- Xingju Nie
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.
| | - Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Ralph Ward
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Emilie T McKinnon
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Li C, Lan C, Zhang X, Yin L, Hao X, Tian J, Lin L, Sun H, Yao Z, Feng X, Jia J, Yang Y. Evaluation of Diffusional Kurtosis Imaging in Sub-acute Ischemic Stroke: Comparison with Rehabilitation Treatment Effect. Cell Transplant 2019; 28:1053-1061. [PMID: 30907127 PMCID: PMC6728709 DOI: 10.1177/0963689719837919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stroke is a serious worldwide medical condition that causes neurological function disability. Diffusional kurtosis imaging, which measures the non-Gaussianity of water diffusion, has been demonstrated to be a sensitive biomarker in many neuro-pathologies. This study explores the relationship between neural function recovery and transformation of the ischemic lesion and/or corticospinal tract during the sub-acute phase after stroke by using diffusional kurtosis imaging. We performed a prospective study of function recovery and K metrics of 43 patients with sub-acute ischemic stroke in the middle cerebral artery territory. The effect of rehabilitation treatment was evaluated using both the Fugl-Meyer motor function score and modified Barthel index score at post-treatment compared with admission, and patients were allocated to two groups: good and poor rehabilitation effect (GRE and PRE). Metrics of diffusional kurtosis imaging within ischemic lesion and along the corticospinal tract were acquired, respectively. All three relative axial diffusional kurtoses (rKas) along the corticospinal tract in the GRE group ( n = 21) were significantly larger than those of the PRE group ( n = 22), including rKa in the posterior limb of internal capsule, rKa in the cerebral peduncle, and rKa in the basal part of the pons ( p = 0.014, 0.005, and 0.021, respectively). This multi-parametric magnetic resonance imaging study showed that diffusional kurtosis imaging has the potential to complement existing stroke imaging techniques and revealed its own advantages in elucidating the possible biophysical mechanism of functional restoration underlying ischemic stroke.
Collapse
Affiliation(s)
- C. Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - C. Lan
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
- Department of Rehabilitation, Shanxi Dayi Hospital, Taiyuan, China
| | - X. Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - L. Yin
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China
| | - X. Hao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - J. Tian
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University, China
| | - L. Lin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - H. Sun
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Z. Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - X. Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - J. Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
- Both the authors contributed equally to this article
| | - Y. Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Both the authors contributed equally to this article
| |
Collapse
|
6
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
7
|
Nguyen TL, Duchon A, Manousopoulou A, Loaëc N, Villiers B, Pani G, Karatas M, Mechling AE, Harsan LA, Limanton E, Bazureau JP, Carreaux F, Garbis SD, Meijer L, Herault Y. Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. Dis Model Mech 2018; 11:dmm035634. [PMID: 30115750 PMCID: PMC6176987 DOI: 10.1242/dmm.035634] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Growing evidence supports the implication of DYRK1A in the development of cognitive deficits seen in Down syndrome (DS) and Alzheimer's disease (AD). We here demonstrate that pharmacological inhibition of brain DYRK1A is able to correct recognition memory deficits in three DS mouse models with increasing genetic complexity [Tg(Dyrk1a), Ts65Dn, Dp1Yey], all expressing an extra copy of Dyrk1a Overexpressed DYRK1A accumulates in the cytoplasm and at the synapse. Treatment of the three DS models with the pharmacological DYRK1A inhibitor leucettine L41 leads to normalization of DYRK1A activity and corrects the novel object cognitive impairment observed in these models. Brain functional magnetic resonance imaging reveals that this cognitive improvement is paralleled by functional connectivity remodelling of core brain areas involved in learning/memory processes. The impact of Dyrk1a trisomy and L41 treatment on brain phosphoproteins was investigated by a quantitative phosphoproteomics method, revealing the implication of synaptic (synapsin 1) and cytoskeletal components involved in synaptic response and axonal organization. These results encourage the development of DYRK1A inhibitors as drug candidates to treat cognitive deficits associated with DS and AD.
Collapse
Affiliation(s)
- Thu Lan Nguyen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
| | - Antigoni Manousopoulou
- Faculty of Medicine/Cancer Sciences & Clinical and Experimental Medicine, University of Southampton, Center for Proteomic Research, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nadège Loaëc
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Benoît Villiers
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Guillaume Pani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
| | - Meltem Karatas
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, and University Hospital Strasbourg, Department of Biophysics and Nuclear Medicine, University of Strasbourg, 67400 Illkirch, France
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - Anna E Mechling
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - Laura-Adela Harsan
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), UMR 7357, and University Hospital Strasbourg, Department of Biophysics and Nuclear Medicine, University of Strasbourg, 67400 Illkirch, France
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Breisacher Strasse 60a, 79106 Freiburg, Germany
| | - Emmanuelle Limanton
- Université de Rennes 1, ISCR (Institut des sciences chimiques de Rennes)-UMR, 6226, 35000 Rennes, France
| | - Jean-Pierre Bazureau
- Université de Rennes 1, ISCR (Institut des sciences chimiques de Rennes)-UMR, 6226, 35000 Rennes, France
| | - François Carreaux
- Université de Rennes 1, ISCR (Institut des sciences chimiques de Rennes)-UMR, 6226, 35000 Rennes, France
| | - Spiros D Garbis
- Faculty of Medicine/Cancer Sciences & Clinical and Experimental Medicine, University of Southampton, Center for Proteomic Research, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France
- Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
8
|
Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies. mSphere 2017; 2:mSphere00003-17. [PMID: 28289724 PMCID: PMC5343170 DOI: 10.1128/msphere.00003-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/13/2017] [Indexed: 11/29/2022] Open
Abstract
Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia. The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia.
Collapse
|
9
|
Imaging the Transformation of Ipsilateral Internal Capsule Following Focal Cerebral Ischemia in Rat by Diffusion Kurtosis Imaging. J Stroke Cerebrovasc Dis 2017; 26:42-48. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
|
10
|
Fast imaging of mean, axial and radial diffusion kurtosis. Neuroimage 2016; 142:381-393. [PMID: 27539807 DOI: 10.1016/j.neuroimage.2016.08.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022] Open
Abstract
Diffusion kurtosis imaging (DKI) is being increasingly reported to provide sensitive biomarkers of subtle changes in tissue microstructure. However, DKI also imposes larger data requirements than diffusion tensor imaging (DTI), hence, the widespread adaptation and exploration of DKI would benefit from more efficient acquisition and computational methods. To meet this demand, we recently developed a method capable of estimating mean kurtosis with only 13 diffusion weighted images. This approach was later shown to provide very accurate mean kurtosis estimates and to be more efficient in terms of contrast to noise per unit time. However, insofar, the computation of two other critical DKI parameters, radial and axial kurtosis, has required the estimation of all 22 variables parameterizing the full DKI signal expression. Here, we present two strategies for estimating all of DKI's principal parameters - mean kurtosis, radial kurtosis, and axial kurtosis - using only 19 diffusion weighted images, compared to the current state-of-the-art acquisitions typically requiring about 60 images. The first approach is based on axially symmetric diffusion and kurtosis tensors, presented here for the first time, and referred to as axially symmetric DKI. The second approach is applicable in tissues with a priori known principal diffusion direction, and does not require fitting of any kind. The approaches are evaluated in human brain in vivo as well as in fixed rat spinal cord, and are demonstrated to provide metrics in good agreement with their full DKI counterparts estimated with nonlinear least squares. For small data sets and in white matter, axially symmetric DKI provides more accurate and robust estimates than unconstrained DKI. The significant acceleration achieved further paves the way to routine application of the technique.
Collapse
|
11
|
Rosenberger DS, Falangola MF, Ledreux A, Nie X, Suhre WM, Boger HA, Granholm AC. Memory and hippocampal architecture following short-term midazolam in western diet-treated rats. Neurosci Lett 2016; 621:68-74. [PMID: 27080429 PMCID: PMC4853265 DOI: 10.1016/j.neulet.2016.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/15/2016] [Accepted: 04/09/2016] [Indexed: 01/01/2023]
Abstract
The impact of short-term benzodiazepine exposure on cognition in middle-aged or older patients is a highly debated topic among anesthesiologists, critical care physicians and public media. "Western diet" (WD) consumption is linked to impaired cognition as well. The combination of benzodiazepines with substantial exposure to WD might set the stage for increased hippocampal vulnerability for benzodiazepines leading to exaggerated cognitive impairment in the postoperative period. In this study, Fischer 344 rats were fed either WD or standard rodent diet from 5 to 10.5 months of age. Rats were exposed to midazolam or placebo two days prior to an MRI scan using Diffusional Kurtosis Imaging (DKI) to assess brain microstructural integrity, followed by behavioral testing using a water radial arm maze. Hippocampal tissue was collected to assess alterations in protein biochemistry in brain regions associated with learning and memory. Our results showed that rats exposed to the combination of midazolam and WD had significantly delayed time of learning and exhibited spatial memory impairment. Further, we observed an overall increase of kurtosis metrics in the hippocampus and increased expression of the mitochondrial protein VDAC2 in midazolam-treated rats. Our data suggest that both the short-acting benzodiazepine midazolam and WD contribute to negatively affect the brain in middle-aged rats. This study is the first application of DKI on the effects of midazolam and WD exposure, and the findings demonstrate that diffusion metrics are sensitive indicators of changes in the complexity of neurite architecture.
Collapse
Affiliation(s)
- Dorothea S Rosenberger
- Department of Anesthesiology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Maria F Falangola
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC 29425, United States; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Aurélie Ledreux
- Department of Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Xingju Nie
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC 29425, United States; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Wendy M Suhre
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, United States
| | - Heather A Boger
- Department of Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Ann-Charlotte Granholm
- Department of Neuroscience and the Center on Aging, Medical University of South Carolina, Charleston, SC 29425, United States; Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| |
Collapse
|
12
|
Hamlett ED, Boger HA, Ledreux A, Kelley CM, Mufson EJ, Falangola MF, Guilfoyle DN, Nixon RA, Patterson D, Duval N, Granholm ACE. Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome. Curr Alzheimer Res 2016; 13:35-52. [PMID: 26391050 PMCID: PMC5034871 DOI: 10.2174/1567205012666150921095505] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/08/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022]
Abstract
Down syndrome (DS) is the most common non-lethal genetic condition that affects approximately 1 in 700 births in the United States of America. DS is characterized by complete or segmental chromosome 21 trisomy, which leads to variable intellectual disabilities, progressive memory loss, and accelerated neurodegeneration with age. During the last three decades, people with DS have experienced a doubling of life expectancy due to progress in treatment of medical comorbidities, which has allowed this population to reach the age when they develop early onset Alzheimer's disease (AD). Individuals with DS develop cognitive and pathological hallmarks of AD in their fourth or fifth decade, and are currently lacking successful prevention or treatment options for dementia. The profound memory deficits associated with DS-related AD (DS-AD) have been associated with degeneration of several neuronal populations, but mechanisms of neurodegeneration are largely unexplored. The most successful animal model for DS is the Ts65Dn mouse, but several new models have also been developed. In the current review, we discuss recent findings and potential treatment options for the management of memory loss and AD neuropathology in DS mouse models. We also review agerelated neuropathology, and recent findings from neuroimaging studies. The validation of appropriate DS mouse models that mimic neurodegeneration and memory loss in humans with DS can be valuable in the study of novel preventative and treatment interventions, and may be helpful in pinpointing gene-gene interactions as well as specific gene segments involved in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ann-Charlotte E Granholm
- Department Neurosciences, Director, Center on Aging, Medical Univ. South Carolina, Basic Science Bldg, Room 403, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|