1
|
Liu X, Cui D, Xu D, Bok R, Wang ZJ, Vigneron DB, Larson PEZ, Gordon JW. Dynamic T 2 * relaxometry of hyperpolarized [1- 13 C]pyruvate MRI in the human brain and kidneys. Magn Reson Med 2024; 91:1030-1042. [PMID: 38013217 PMCID: PMC10872504 DOI: 10.1002/mrm.29942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE This study aimed to quantifyT 2 * $$ {T}_2^{\ast } $$ for hyperpolarized [1-13 C]pyruvate and metabolites in the healthy human brain and renal cell carcinoma (RCC) patients at 3 T. METHODS DynamicT 2 * $$ {T}_2^{\ast } $$ values were measured with a metabolite-specific multi-echo spiral sequence. The dynamicT 2 * $$ {T}_2^{\ast } $$ of [1-13 C]pyruvate, [1-13 C]lactate, and 13 C-bicarbonate was estimated in regions of interest in the whole brain, sinus vein, gray matter, and white matter in healthy volunteers, as well as in kidney tumors and the contralateral healthy kidneys in a separate group of RCC patients.T 2 * $$ {T}_2^{\ast } $$ was fit using a mono-exponential function; and metabolism was quantified using pyruvate-to-lactate conversion rate maps and lactate-to-pyruvate ratio maps, which were compared with and without an estimatedT 2 * $$ {T}_2^{\ast } $$ correction. RESULTS TheT 2 * $$ {T}_2^{\ast } $$ of pyruvate was shown to vary during the acquisition, whereas theT 2 * $$ {T}_2^{\ast } $$ of lactate and bicarbonate were relatively constant through time and across the organs studied. TheT 2 * $$ {T}_2^{\ast } $$ of lactate was similar in gray matter (29.75 ± 1.04 ms), white matter (32.89 ± 0.9 ms), healthy kidney (34.61 ± 4.07 ms), and kidney tumor (33.01 ± 2.31 ms); and theT 2 * $$ {T}_2^{\ast } $$ of bicarbonate was different between whole-brain (108.17 ± 14.05 ms) and healthy kidney (58.45 ± 6.63 ms). TheT 2 * $$ {T}_2^{\ast } $$ of pyruvate had similar trends in both brain and RCC studies, reducing from 75.56 ± 2.23 ms to 22.24 ± 1.24 ms in the brain and reducing from 122.72 ± 9.86 ms to 57.38 ± 7.65 ms in the kidneys. CONCLUSION Multi-echo dynamic imaging can quantifyT 2 * $$ {T}_2^{\ast } $$ and metabolism in a single integrated acquisition. Clear differences were observed in theT 2 * $$ {T}_2^{\ast } $$ of metabolites and in their behavior throughout the timecourse.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Di Cui
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Duan Xu
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Robert Bok
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Zhen J Wang
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Daniel B Vigneron
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, California, USA
| | - Peder E Z Larson
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, California, USA
| | - Jeremy W Gordon
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Takahashi AM, Sharma J, Guarin DO, Miller J, Wakimoto H, Cahill DP, Yen YF. Inductively coupled, transmit-receive coils for proton MRI and X-nucleus MRI/MRS in small animals. JOURNAL OF MAGNETIC RESONANCE OPEN 2023; 16-17:100123. [PMID: 38046795 PMCID: PMC10691784 DOI: 10.1016/j.jmro.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We report several inductively coupled RF coil designs that are very easy to construct, produce high signal-to-noise ratio (SNR) and high spatial resolution while accommodating life support, anesthesia and monitoring in small animals. Inductively coupled surface coils were designed for hyperpolarized 13 C MR spectroscopic imaging (MRSI) of mouse brain, with emphases on the simplicity of the circuit design, ease of use, whole-brain coverage, and high SNR. The simplest form was a resonant loop designed to crown the mouse head for a snug fit to achieve full coverage of the brain with high sensitivity when inductively coupled to a broadband pick-up coil. Here, we demonstrated the coil's performance in hyperpolarized 13 C MRSI of a normal mouse and a glioblastoma mouse model at 4.7 T. High SNR exceeding 70:1 was obtained in the brain with good spatial resolution (1.53 mm × 1.53 mm). Similar inductively coupled loop for other X-nuclei can be made very easily in a few minutes and achieve high performance, as demonstrated in 31 P spectroscopy. Similar design concept was expanded to splitable, inductively coupled volume coils for high-resolution proton MRI of marmoset at 3T and 9.4T, to easily accommodate head restraint, vital-sign monitoring, and anesthesia delivery.
Collapse
Affiliation(s)
- Atsushi M. Takahashi
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, McGovern Institute for Brain Research, Cambridge, MA 02139, USA
| | - Jitendra Sharma
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, McGovern Institute for Brain Research, Cambridge, MA 02139, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Stanley Center for Psychiatric Research, Broad Institute, MIT, Cambridge, MA 02139, USA
- Tan and Yang Center for Autism Research, McGovern Institute for Brain Research, MIT, Cambridge MA 02139, USA
| | - David O. Guarin
- Polarize ApS, Frederiksberg 1808, Denmark
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Julie Miller
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel P. Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
3
|
Woitek R, Brindle KM. Hyperpolarized Carbon-13 MRI in Breast Cancer. Diagnostics (Basel) 2023; 13:2311. [PMID: 37443703 DOI: 10.3390/diagnostics13132311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
One of the hallmarks of cancer is metabolic reprogramming, including high levels of aerobic glycolysis (the Warburg effect). Pyruvate is a product of glucose metabolism, and 13C-MR imaging of the metabolism of hyperpolarized (HP) [1-13C]pyruvate (HP 13C-MRI) has been shown to be a potentially versatile tool for the clinical evaluation of tumor metabolism. Hyperpolarization of the 13C nuclear spin can increase the sensitivity of detection by 4-5 orders of magnitude. Therefore, following intravenous injection, the location of hyperpolarized 13C-labeled pyruvate in the body and its subsequent metabolism can be tracked using 13C-MRI. Hyperpolarized [13C]urea and [1,4-13C2]fumarate are also likely to translate to the clinic in the near future as tools for imaging tissue perfusion and post-treatment tumor cell death, respectively. For clinical breast imaging, HP 13C-MRI can be combined with 1H-MRI to address the need for detailed anatomical imaging combined with improved functional tumor phenotyping and very early identification of patients not responding to standard and novel neoadjuvant treatments. If the technical complexity of the hyperpolarization process and the relatively high associated costs can be reduced, then hyperpolarized 13C-MRI has the potential to become more widely available for large-scale clinical trials.
Collapse
Affiliation(s)
- Ramona Woitek
- Research Centre for Medical Image Analysis and AI, Danube Private University, 3500 Krems, Austria
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
4
|
Skinner JG, Topping GJ, Nagel L, Heid I, Hundshammer C, Grashei M, van Heijster FHA, Braren R, Schilling F. Spectrally selective bSSFP using off-resonant RF excitations permits high spatiotemporal resolution 3D metabolic imaging of hyperpolarized [1- 13 C]Pyruvate-to-[1- 13 C]lactate conversion. Magn Reson Med 2023. [PMID: 37093981 DOI: 10.1002/mrm.29676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE To develop a high spatiotemporal resolution 3D dynamic pulse sequence for preclinical imaging of hyperpolarized [1-13 C]pyruvate-to-[1-13 C]lactate metabolism at 7T. METHODS A standard 3D balanced SSFP (bSSFP) sequence was modified to enable alternating-frequency excitations. RF pulses with 2.33 ms duration and 900 Hz FWHM were placed off-resonance of the target metabolites, [1-13 C]pyruvate (by approximately -245 Hz) and [1-13 C]lactate (by approximately 735 Hz), to selectively excite those resonances. Relatively broad bandwidth (compared to those metabolites' chemical shift offset) permits a short TR of 6.29 ms, enabling higher spatiotemporal resolution. Bloch equation simulations of the bSSFP response profile guided the sequence parameter selection to minimize spectral contamination between metabolites and preserve magnetization over time. RESULTS Bloch equation simulations, phantom studies, and in vivo studies demonstrated that the two target resonances could be cleanly imaged without substantial bSSFP banding artifacts and with little spectral contamination between lactate and pyruvate and from pyruvate hydrate. High spatiotemporal resolution 3D images were acquired of in vivo pyruvate-lactate metabolism in healthy wild-type and endogenous pancreatic tumor-bearing mice, with 1.212 s acquisition time per single-metabolite image and (1.75 mm)3 isotropic voxels with full mouse abdomen 56 × 28 × 21 mm3 FOV and fully-sampled k-space. Kidney and tumor lactate/pyruvate ratios of two consecutive measurements in one animal, 1 h apart, were consistent. CONCLUSION Spectrally selective bSSFP using off-resonant RF excitations can provide high spatio-temporal resolution 3D dynamic images of pyruvate-lactate metabolic conversion.
Collapse
Affiliation(s)
- Jason G Skinner
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Geoffrey J Topping
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Irina Heid
- Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Frits H A van Heijster
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rickmer Braren
- Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Bogner W, Otazo R, Henning A. Accelerated MR spectroscopic imaging-a review of current and emerging techniques. NMR IN BIOMEDICINE 2021; 34:e4314. [PMID: 32399974 PMCID: PMC8244067 DOI: 10.1002/nbm.4314] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/14/2023]
Abstract
Over more than 30 years in vivo MR spectroscopic imaging (MRSI) has undergone an enormous evolution from theoretical concepts in the early 1980s to the robust imaging technique that it is today. The development of both fast and efficient sampling and reconstruction techniques has played a fundamental role in this process. State-of-the-art MRSI has grown from a slow purely phase-encoded acquisition technique to a method that today combines the benefits of different acceleration techniques. These include shortening of repetition times, spatial-spectral encoding, undersampling of k-space and time domain, and use of spatial-spectral prior knowledge in the reconstruction. In this way in vivo MRSI has considerably advanced in terms of spatial coverage, spatial resolution, acquisition speed, artifact suppression, number of detectable metabolites and quantification precision. Acceleration not only has been the enabling factor in high-resolution whole-brain 1 H-MRSI, but today is also common in non-proton MRSI (31 P, 2 H and 13 C) and applied in many different organs. In this process, MRSI techniques had to constantly adapt, but have also benefitted from the significant increase of magnetic field strength boosting the signal-to-noise ratio along with high gradient fidelity and high-density receive arrays. In combination with recent trends in image reconstruction and much improved computation power, these advances led to a number of novel developments with respect to MRSI acceleration. Today MRSI allows for non-invasive and non-ionizing mapping of the spatial distribution of various metabolites' tissue concentrations in animals or humans, is applied for clinical diagnostics and has been established as an important tool for neuro-scientific and metabolism research. This review highlights the developments of the last five years and puts them into the context of earlier MRSI acceleration techniques. In addition to 1 H-MRSI it also includes other relevant nuclei and is not limited to certain body regions or specific applications.
Collapse
Affiliation(s)
- Wolfgang Bogner
- High‐Field MR Center, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Ricardo Otazo
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew York, New YorkUSA
| | - Anke Henning
- Max Planck Institute for Biological CyberneticsTübingenGermany
- Advanced Imaging Research Center, UT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
6
|
pH Dependence of T2 for Hyperpolarizable 13C-Labelled Small Molecules Enables Spatially Resolved pH Measurement by Magnetic Resonance Imaging. Pharmaceuticals (Basel) 2021; 14:ph14040327. [PMID: 33918366 PMCID: PMC8067065 DOI: 10.3390/ph14040327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Hyperpolarized 13C magnetic resonance imaging often uses spin-echo-based pulse sequences that are sensitive to the transverse relaxation time T2. In this context, local T2-changes might introduce a quantification bias to imaging biomarkers. Here, we investigated the pH dependence of the apparent transverse relaxation time constant (denoted here as T2) of six 13C-labelled molecules. We obtained minimum and maximum T2 values within pH 1–13 at 14.1 T: [1-13C]acetate (T2,min = 2.1 s; T2,max = 27.7 s), [1-13C]alanine (T2,min = 0.6 s; T2,max = 10.6 s), [1,4-13C2]fumarate (T2,min = 3.0 s; T2,max = 18.9 s), [1-13C]lactate (T2,min = 0.7 s; T2,max = 12.6 s), [1-13C]pyruvate (T2,min = 0.1 s; T2,max = 18.7 s) and 13C-urea (T2,min = 0.1 s; T2,max = 0.1 s). At 7 T, T2-variation in the physiological pH range (pH 6.8–7.8) was highest for [1-13C]pyruvate (ΔT2 = 0.95 s/0.1pH) and [1-13C]acetate (ΔT2 = 0.44 s/0.1pH). Concentration, salt concentration, and temperature alterations caused T2 variations of up to 45.4% for [1-13C]acetate and 23.6% for [1-13C]pyruvate. For [1-13C]acetate, spatially resolved pH measurements using T2-mapping were demonstrated with 1.6 pH units accuracy in vitro. A strong proton exchange-based pH dependence of T2 suggests that pH alterations potentially influence signal strength for hyperpolarized 13C-acquisitions.
Collapse
|
7
|
Müller CA, Hundshammer C, Braeuer M, Skinner JG, Berner S, Leupold J, Düwel S, Nekolla SG, Månsson S, Hansen AE, von Elverfeldt D, Ardenkjaer-Larsen JH, Schilling F, Schwaiger M, Hennig J, Hövener JB. Dynamic 2D and 3D mapping of hyperpolarized pyruvate to lactate conversion in vivo with efficient multi-echo balanced steady-state free precession at 3 T. NMR IN BIOMEDICINE 2020; 33:e4291. [PMID: 32154970 DOI: 10.1002/nbm.4291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to acquire the transient MRI signal of hyperpolarized tracers and their metabolites efficiently, for which specialized imaging sequences are required. In this work, a multi-echo balanced steady-state free precession (me-bSSFP) sequence with Iterative Decomposition with Echo Asymmetry and Least squares estimation (IDEAL) reconstruction was implemented on a clinical 3 T positron-emission tomography/MRI system for fast 2D and 3D metabolic imaging. Simulations were conducted to obtain signal-efficient sequence protocols for the metabolic imaging of hyperpolarized biomolecules. The sequence was applied in vitro and in vivo for probing the enzymatic exchange of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate. Chemical shift resolution was achieved using a least-square, iterative chemical species separation algorithm in the reconstruction. In vitro, metabolic conversion rate measurements from me-bSSFP were compared with NMR spectroscopy and free induction decay-chemical shift imaging (FID-CSI). In vivo, a rat MAT-B-III tumor model was imaged with me-bSSFP and FID-CSI. 2D metabolite maps of [1-13 C]pyruvate and [1-13 C]lactate acquired with me-bSSFP showed the same spatial distributions as FID-CSI. The pyruvate-lactate conversion kinetics measured with me-bSSFP and NMR corresponded well. Dynamic 2D metabolite mapping with me-bSSFP enabled the acquisition of up to 420 time frames (scan time: 180-350 ms/frame) before the hyperpolarized [1-13 C]pyruvate was relaxed below noise level. 3D metabolite mapping with a large field of view (180 × 180 × 48 mm3 ) and high spatial resolution (5.6 × 5.6 × 2 mm3 ) was conducted with me-bSSFP in a scan time of 8.2 seconds. It was concluded that Me-bSSFP improves the spatial and temporal resolution for metabolic imaging of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate compared with either of the FID-CSI or EPSI methods reported at 3 T, providing new possibilities for clinical and preclinical applications.
Collapse
Affiliation(s)
- Christoph A Müller
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consortium for Translational Cancer Research (DKTK), Partnersite Freiburg, German Center for Cancer Research (DKFZ), Heidelberg, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
- Munich School of Bioengineering, Technical University of Munich, Garching, Germany
| | - Miriam Braeuer
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Jason G Skinner
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Stephan Berner
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consortium for Translational Cancer Research (DKTK), Partnersite Freiburg, German Center for Cancer Research (DKFZ), Heidelberg, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Düwel
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Sven Månsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Denmark
| | - Dominik von Elverfeldt
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, University Hospital rechts der Isar, Munich, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan-Bernd Hövener
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig Holstein (UKSH), Kiel University, Germany
| |
Collapse
|
8
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
9
|
Milshteyn E, Reed GD, Gordon JW, von Morze C, Cao P, Tang S, Leynes AP, Larson PEZ, Vigneron DB. Simultaneous T 1 and T 2 mapping of hyperpolarized 13C compounds using the bSSFP sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106691. [PMID: 32058912 PMCID: PMC7227792 DOI: 10.1016/j.jmr.2020.106691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
As in conventional 1H MRI, T1 and T2 relaxation times of hyperpolarized (HP) 13C nuclei can provide important biomedical information. Two new approaches were developed for simultaneous T1 and T2 mapping of HP 13C probes based on balanced steady state free precession (bSSFP) acquisitions: a method based on sequential T1 and T2 mapping modules, and a model-based joint T1/T2 approach analogous to MR fingerprinting. These new methods were tested in simulations, HP 13C phantoms, and in vivo in normal Sprague-Dawley rats. Non-localized T1 values, low flip angle EPI T1 maps, bSSFP T2 maps, and Bloch-Siegert B1 maps were also acquired for comparison. T1 and T2 maps acquired using both approaches were in good agreement with both literature values and data from comparative acquisitions. Multiple HP 13C compounds were successfully mapped, with their relaxation time parameters measured within heart, liver, kidneys, and vasculature in one acquisition for the first time.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | | | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Andrew P Leynes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
10
|
Tang S, Bok R, Qin H, Reed G, VanCriekinge M, Delos Santos R, Overall W, Santos J, Gordon J, Wang ZJ, Vigneron DB, Larson PEZ. A metabolite-specific 3D stack-of-spiral bSSFP sequence for improved lactate imaging in hyperpolarized [1- 13 C]pyruvate studies on a 3T clinical scanner. Magn Reson Med 2020; 84:1113-1125. [PMID: 32086845 DOI: 10.1002/mrm.28204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 01/17/2023]
Abstract
PURPOSE The balanced steady-state free precession sequence has been previously explored to improve the efficient use of nonrecoverable hyperpolarized 13C magnetization, but suffers from poor spectral selectivity and long acquisition time. The purpose of this study was to develop a novel metabolite-specific 3D bSSFP ("MS-3DSSFP") sequence with stack-of-spiral readouts for improved lactate imaging in hyperpolarized [1-13 C]pyruvate studies on a clinical 3T scanner. METHODS Simulations were performed to evaluate the spectral response of the MS-3DSSFP sequence. Thermal 13C phantom experiments were performed to validate the MS-3DSSFP sequence. In vivo hyperpolarized [1-13 C], pyruvate studies were performed to compare the MS-3DSSFP sequence with metabolite-specific gradient echo ("MS-GRE") sequences for lactate imaging. RESULTS Simulations, phantom, and in vivo studies demonstrate that the MS-3DSSFP sequence achieved spectrally selective excitation on lactate while minimally perturbing other metabolites. Compared with MS-GRE sequences, the MS-3DSSFP sequence showed approximately a 2.5-fold SNR improvement for lactate imaging in rat kidneys, prostate tumors in a mouse model, and human kidneys. CONCLUSIONS Improved lactate imaging using the MS-3DSSFP sequence in hyperpolarized [1-13 C]pyruvate studies was demonstrated in animals and humans. The MS-3DSSFP sequence could be applied for other clinical applications such as in the brain or adapted for imaging other metabolites such as pyruvate and bicarbonate.
Collapse
Affiliation(s)
- Shuyu Tang
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hecong Qin
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mark VanCriekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - William Overall
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Juan Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Zhen Jane Wang
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel B Vigneron
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Gordon JW, Chen HY, Dwork N, Tang S, Larson PEZ. Fast Imaging for Hyperpolarized MR Metabolic Imaging. J Magn Reson Imaging 2020; 53:686-702. [PMID: 32039520 DOI: 10.1002/jmri.27070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
MRI with hyperpolarized carbon-13 agents has created a new type of noninvasive, in vivo metabolic imaging that can be applied in cell, animal, and human studies. The use of 13 C-labeled agents, primarily [1-13 C]pyruvate, enables monitoring of key metabolic pathways with the ability to image substrate and products based on their chemical shift. Over 10 sites worldwide are now performing human studies with this new approach for studies of cancer, heart disease, liver disease, and kidney disease. Hyperpolarized metabolic imaging studies must be performed within several minutes following creation of the hyperpolarized agent due to irreversible decay of the net magnetization back to equilibrium, so fast imaging methods are critical. The imaging methods must include multiple metabolites, separated based on their chemical shift, which are also undergoing rapid metabolic conversion (via label exchange), further exacerbating the challenges of fast imaging. This review describes the state-of-the-art in fast imaging methods for hyperpolarized metabolic imaging. This includes the approach and tradeoffs between three major categories of fast imaging methods-fast spectroscopic imaging, model-based strategies, and metabolite specific imaging-as well additional options of parallel imaging, compressed sensing, tailored RF flip angles, refocused imaging methods, and calibration methods that can improve the scan coverage, speed, signal-to-noise ratio (SNR), resolution, and/or robustness of these studies. To date, these approaches have produced extremely promising initial human imaging results. Improvements to fast hyperpolarized metabolic imaging methods will provide better coverage, SNR, resolution, and reproducibility for future human imaging studies. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA.,UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA.,UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley, California, USA
| |
Collapse
|
12
|
Chen HY, Gordon JW, Bok RA, Cao P, von Morze C, van Criekinge M, Milshteyn E, Carvajal L, Hurd RE, Kurhanewicz J, Vigneron DB, Larson PE. Pulse sequence considerations for quantification of pyruvate-to-lactate conversion k PL in hyperpolarized 13 C imaging. NMR IN BIOMEDICINE 2019; 32:e4052. [PMID: 30664305 PMCID: PMC6380928 DOI: 10.1002/nbm.4052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 05/26/2023]
Abstract
Hyperpolarized 13 C MRI takes advantage of the unprecedented 50 000-fold signal-to-noise ratio enhancement to interrogate cancer metabolism in patients and animals. It can measure the pyruvate-to-lactate conversion rate, kPL , a metabolic biomarker of cancer aggressiveness and progression. Therefore, it is crucial to evaluate kPL reliably. In this study, three sequence components and parameters that modulate kPL estimation were identified and investigated in model simulations and through in vivo animal studies using several specifically designed pulse sequences. These factors included a magnetization spoiling effect due to RF pulses, a crusher gradient-induced flow suppression, and intrinsic image weightings due to relaxation. Simulation showed that the RF-induced magnetization spoiling can be substantially improved using an inputless kPL fitting. In vivo studies found a significantly higher apparent kPL with an additional gradient that leads to flow suppression (kPL,FID-Delay,Crush /kPL,FID-Delay = 1.37 ± 0.33, P < 0.01, N = 6), which agrees with simulation outcomes (12.5% kPL error with Δv = 40 cm/s), indicating that the gradients predominantly suppressed flowing pyruvate spins. Significantly lower kPL was found using a delayed free induction decay (FID) acquisition versus a minimum-TE version (kPL,FID-Delay /kPL,FID = 0.67 ± 0.09, P < 0.01, N = 5), and the lactate peak had broader linewidth than pyruvate (Δωlactate /Δωpyruvate = 1.32 ± 0.07, P < 0.000 01, N = 13). This illustrated that lactate's T2 *, shorter than that of pyruvate, can affect calculated kPL values. We also found that an FID sequence yielded significantly lower kPL versus a double spin-echo sequence that includes spin-echo spoiling, flow suppression from crusher gradients, and more T2 weighting (kPL,DSE /kPL,FID = 2.40 ± 0.98, P < 0.0001, N = 7). In summary, the pulse sequence, as well as its interaction with pharmacokinetics and the tissue microenvironment, can impact and be optimized for the measurement of kPL . The data acquisition and analysis pipelines can work synergistically to provide more robust and reproducible kPL measures for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Mark van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Ralph E. Hurd
- Department of Radiology, Stanford University, California, United States
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
13
|
Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, Gallagher FA, Keshari KR, Kjaer A, Laustsen C, Mankoff DA, Merritt ME, Nelson SJ, Pauly JM, Lee P, Ronen S, Tyler DJ, Rajan SS, Spielman DM, Wald L, Zhang X, Malloy CR, Rizi R. Hyperpolarized 13C MRI: Path to Clinical Translation in Oncology. Neoplasia 2019; 21:1-16. [PMID: 30472500 PMCID: PMC6260457 DOI: 10.1016/j.neo.2018.09.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
This white paper discusses prospects for advancing hyperpolarization technology to better understand cancer metabolism, identify current obstacles to HP (hyperpolarized) 13C magnetic resonance imaging's (MRI's) widespread clinical use, and provide recommendations for overcoming them. Since the publication of the first NIH white paper on hyperpolarized 13C MRI in 2011, preclinical studies involving [1-13C]pyruvate as well a number of other 13C labeled metabolic substrates have demonstrated this technology's capacity to provide unique metabolic information. A dose-ranging study of HP [1-13C]pyruvate in patients with prostate cancer established safety and feasibility of this technique. Additional studies are ongoing in prostate, brain, breast, liver, cervical, and ovarian cancer. Technology for generating and delivering hyperpolarized agents has evolved, and new MR data acquisition sequences and improved MRI hardware have been developed. It will be important to continue investigation and development of existing and new probes in animal models. Improved polarization technology, efficient radiofrequency coils, and reliable pulse sequences are all important objectives to enable exploration of the technology in healthy control subjects and patient populations. It will be critical to determine how HP 13C MRI might fill existing needs in current clinical research and practice, and complement existing metabolic imaging modalities. Financial sponsorship and integration of academia, industry, and government efforts will be important factors in translating the technology for clinical research in oncology. This white paper is intended to provide recommendations with this goal in mind.
Collapse
Affiliation(s)
- John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | | | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center, Houston, TX, USA
| | - Kevin Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | | | - David A Mankoff
- Department of Radiology, University of Pennsylvania, PA, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - John M Pauly
- Department of Electric Engineering, Stanford University, USA
| | - Philips Lee
- Functional Metabolism Group, Singapore Biomedical Consortium, Agency for Science, Technology and Research, Singapore
| | - Sabrina Ronen
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Damian J Tyler
- Department of Biomedical Science, University of Oxford, Oxford, UK
| | - Sunder S Rajan
- Center for Devices and Radiological Health (CDRH), FDA, White Oak, MD, USA
| | - Daniel M Spielman
- Departments of Radiology and Electric Engineering, Stanford University, USA
| | - Lawrence Wald
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, PA, USA
| |
Collapse
|
14
|
Abstract
Magnetic resonance spectroscopy (MRS) can be performed in vivo using commercial MRI systems to obtain biochemical information about tissues and cancers. Applications in brain, prostate and breast aid lesion detection and characterisation (differential diagnosis), treatment planning and response assessment. Multi-centre clinical trials have been performed in all these tissues. Single centre studies have been performed in many other tissues including cervix, uterus, musculoskeletal and liver. While generally MRS is used to study endogenous metabolites it has also been used in drug studies, for example those that include 19F as part of their structure. Recently the hyperpolarisation of compounds enriched with 13C such as [1-13C] pyruvate has been demonstrated in animal models and now in preliminary clinical studies, permitting the monitoring of biochemical processes with unprecedented sensitivity. This review briefly introduces the underlying methods and then discusses the current status of these applications.
Collapse
Affiliation(s)
- Geoffrey S Payne
- University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
15
|
Milshteyn E, von Morze C, Gordon JW, Zhu Z, Larson PEZ, Vigneron DB. High spatiotemporal resolution bSSFP imaging of hyperpolarized [1- 13 C]pyruvate and [1- 13 C]lactate with spectral suppression of alanine and pyruvate-hydrate. Magn Reson Med 2018; 80:1048-1060. [PMID: 29451329 PMCID: PMC5980670 DOI: 10.1002/mrm.27104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/02/2017] [Accepted: 01/03/2018] [Indexed: 12/23/2022]
Abstract
Purpose The bSSFP acquisition enables high spatiotemporal resolution for hyperpolarized 13C MRI at 3T, but is limited by spectral contamination from adjacent resonances. The purpose of this study was to develop a framework for in vivo dynamic high resolution imaging of hyperpolarized [1-13C]pyruvate and [1-13C]lactate generated in vivo at 3T by simplifying the spectrum through the use of selective suppression pulses. Methods Spectral suppression pulses were incorporated into the bSSFP sequence for suppression of [1-13C]alanine and [1-13C]pyruvate-hydrate signals, leaving only the pyruvate and lactate resonances. Subsequently, the bSSFP pulse width, time-bandwidth, and repetition time were optimized for imaging these dual resonances. Results The spectral suppression reduced both the alanine and pyruvate-hydrate signals by 85.5 ± 4.9% and had no significant effect on quantitation of pyruvate to lactate conversion (liver: P = 0.400, kidney: P = 0.499). High resolution (2 × 2 mm2 and 3 × 3 mm2) sub-second 2D coronal projections and 3D 2.5 mm isotropic images were obtained in rats and tumor-bearing mice with 1.8-5 s temporal resolution, allowing for calculation of lactate-to-pyruvate ratios and k PL. Conclusion The developed framework presented here shows the capability for dynamic high resolution volumetric hyperpolarized bSSFP imaging of pyruvate-to-lactate conversion on a clinical 3T MR scanner.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Zihan Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| |
Collapse
|
16
|
Magnetic resonance imaging of cancer metabolism with hyperpolarized 13C-labeled cell metabolites. Curr Opin Chem Biol 2018; 45:187-194. [DOI: 10.1016/j.cbpa.2018.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
|
17
|
Milshteyn E, von Morze C, Reed GD, Shang H, Shin PJ, Larson PEZ, Vigneron DB. Using a local low rank plus sparse reconstruction to accelerate dynamic hyperpolarized 13C imaging using the bSSFP sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 290:46-59. [PMID: 29567434 PMCID: PMC6054792 DOI: 10.1016/j.jmr.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 05/27/2023]
Abstract
Acceleration of dynamic 2D (T2 Mapping) and 3D hyperpolarized 13C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2-13C]pyruvate, [1-13C]lactate, [13C, 15N2]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T2 maps.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | | | - Peter J Shin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA.
| |
Collapse
|
18
|
Wespi P, Steinhauser J, Kwiatkowski G, Kozerke S. High-resolution hyperpolarized metabolic imaging of the rat heart using k-t PCA and k-t SPARSE. NMR IN BIOMEDICINE 2018; 31:e3876. [PMID: 29244228 DOI: 10.1002/nbm.3876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/07/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Patrick Wespi
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Jonas Steinhauser
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Cho A, Lau JYC, Geraghty BJ, Cunningham CH, Keshari KR. Noninvasive Interrogation of Cancer Metabolism with Hyperpolarized 13C MRI. J Nucl Med 2017; 58:1201-1206. [PMID: 28596156 DOI: 10.2967/jnumed.116.182170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022] Open
Abstract
This review will highlight recent advances in hyperpolarized 13C MR spectroscopic imaging, which can be used to noninvasively interrogate tumor metabolism. After providing an overview of MR and hyperpolarization, we will discuss the latest advances in data acquisition techniques. Next, we will shift our focus to hyperpolarized probe design and provide an overview of the latest hyperpolarized 13C MR spectroscopic imaging probes developed in the last several years.
Collapse
Affiliation(s)
- Andrew Cho
- Weill Cornell Medical College, New York, New York
| | - Justin Y C Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin J Geraghty
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kayvan R Keshari
- Weill Cornell Medical College, New York, New York .,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|