1
|
Gonciar D, Berciu AG, Dulf EH, Orzan RI, Mocan T, Danku AE, Lorenzovici N, Agoston-Coldea L. Computer-Assisted Algorithm for Quantification of Fibrosis by Native Cardiac CT: A Pilot Study. J Clin Med 2024; 13:4807. [PMID: 39200950 PMCID: PMC11355413 DOI: 10.3390/jcm13164807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Recent advances in artificial intelligence, particularly in cardiac imaging, can potentially enhance patients' diagnosis and prognosis and identify novel imaging markers. We propose an automated, computer-aided algorithm utilizing native cardiac computed tomography (CT) imaging to identify myocardial fibrosis. This study aims to evaluate its performance compared to CMR markers of fibrosis in a cohort of patients diagnosed with breast cancer. Methods: The study included patients diagnosed with early HER2+ breast cancer, who presented LV dysfunction (LVEF < 50%) and myocardial fibrosis detected on CMR at the time of diagnosis. The patients were also evaluated by cardiac CT, and the extracted images were processed for the implementation of the automatic, computer-assisted algorithm, which marked as fibrosis every pixel that fell within the range of 60-90 HU. The percentage of pixels with fibrosis was subsequently compared with CMR parameters. Results: A total of eight patients (n = 8) were included in the study. High positive correlations between the algorithm's result and the ECV fraction (r = 0.59, p = 0.126) and native T1 (r = 0.6, p = 0.112) were observed, and a very high positive correlation with LGE of the LV(g) and the LV-LGE/LV mass percentage (r = 0.77, p = 0.025; r = 0.81, p = 0.015). A very high negative correlation was found with GLS (r = -0.77, p = 0.026). The algorithm presented an intraclass correlation coefficient of 1 (95% CI 0.99-1), p < 0.001. Conclusions: The present pilot study proposes a novel promising imaging marker for myocardial fibrosis, generated by an automatic algorithm based on native cardiac CT images.
Collapse
Affiliation(s)
- Diana Gonciar
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.G.); (R.I.O.); (L.A.-C.)
| | - Alexandru-George Berciu
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
| | - Eva-Henrietta Dulf
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
| | - Rares Ilie Orzan
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.G.); (R.I.O.); (L.A.-C.)
| | - Teodora Mocan
- Physiology Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania
| | - Alex Ede Danku
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
| | - Noemi Lorenzovici
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.G.); (R.I.O.); (L.A.-C.)
| |
Collapse
|
2
|
Scalia IG, Gheyath B, Tamarappoo BK, Moudgil R, Otton J, Pereyra M, Narayanasamy H, Larsen C, Herrmann J, Arsanjani R, Ayoub C. Chemotherapy Related Cardiotoxicity Evaluation-A Contemporary Review with a Focus on Cardiac Imaging. J Clin Med 2024; 13:3714. [PMID: 38999280 PMCID: PMC11242267 DOI: 10.3390/jcm13133714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The long-term survivorship of patients diagnosed with cancer has improved due to accelerated detection and rapidly evolving cancer treatment strategies. As such, the evaluation and management of cancer therapy related complications has become increasingly important, including cardiovascular complications. These have been captured under the umbrella term "cardiotoxicity" and include left ventricular dysfunction and heart failure, acute coronary syndromes, valvular abnormalities, pericardial disease, arrhythmia, myocarditis, and vascular complications. These complications add to the burden of cardiovascular disease (CVD) or are risk factors patients with cancer treatment are presenting with. Of note, both pre- and newly developing CVD is of prognostic significance, not only from a cardiovascular perspective but also overall, potentially impacting the level of cancer therapy that is possible. Currently, there are varying recommendations and practices regarding CVD risk assessment and mitigating strategies throughout the cancer continuum. This article provides an overview on this topic, in particular, the role of cardiac imaging in the care of the patient with cancer. Furthermore, it summarizes the current evidence on the spectrum, prevention, and management of chemotherapy-related adverse cardiac effects.
Collapse
Affiliation(s)
- Isabel G. Scalia
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Bashaer Gheyath
- Department of Imaging, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Balaji K. Tamarappoo
- Division of Cardiology, Banner University Medical Center, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Rohit Moudgil
- Department of Cardiology, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James Otton
- Clinical School, St. Vincent’s Hospital, UNSW, Sydney, NSW 2010, Australia
| | - Milagros Pereyra
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Hema Narayanasamy
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Carolyn Larsen
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Chadi Ayoub
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| |
Collapse
|
3
|
Khachatoorian Y, Fuisz A, Frishman WH, Aronow WS, Ranjan P. The Significance of Parametric Mapping in Advanced Cardiac Imaging. Cardiol Rev 2024:00045415-990000000-00243. [PMID: 38595125 DOI: 10.1097/crd.0000000000000695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cardiac magnetic resonance imaging has witnessed a transformative shift with the integration of parametric mapping techniques, such as T1 and T2 mapping and extracellular volume fraction. These techniques play a crucial role in advancing our understanding of cardiac function and structure, providing unique insights into myocardial tissue properties. Native T1 mapping is particularly valuable, correlating with histopathological fibrosis and serving as a marker for various cardiac pathologies. Extracellular volume fraction, an early indicator of myocardial remodeling, predicts adverse outcomes in heart failure. Elevated T2 relaxation time in cardiac MRI indicates myocardial edema, enabling noninvasive and early detection in conditions like myocarditis. These techniques offer precise insights into myocardial properties, enhancing the accuracy of diagnosis and prognosis across a spectrum of cardiac conditions, including myocardial infarction, autoimmune diseases, myocarditis, and sarcoidosis. Emphasizing the significance of these techniques in myocardial tissue analysis, the review provides a comprehensive overview of their applications and contributions to our understanding of cardiac diseases.
Collapse
Affiliation(s)
- Yeraz Khachatoorian
- From the Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| | | | | | | | | |
Collapse
|
4
|
Feng XL, Qi WY, Xiao ZY, Zheng X, Zhang XY, Liu T, Kou XY, Chen J. Assessment of early anthracycline-induced cardiotoxicity and liver injury with T2 and T2* mapping in rabbit models. Eur Radiol 2024; 34:226-235. [PMID: 37552260 DOI: 10.1007/s00330-023-10027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES To evaluate the early prevalence of anthracycline-induced cardiotoxicity (AIC) and anthracycline-induced liver injury (AILI) using T2 and T2* mapping and to explore their correlations. MATERIALS AND METHODS The study included 17 cardiotoxic rabbits that received weekly injections of doxorubicin and magnetic resonance imaging (MRI) every 2 weeks for 10 weeks. Cardiac function and T2 and T2* values were measured on each period. Histopathological examinations for two to five rabbits were performed after each MRI scan. The earliest sensitive time and the threshold of MRI parameters for detecting AIC and AILI based on these MRI parameters were obtained. Moreover, the relationship between myocardial and liver damage was assessed. RESULTS Early AIC could be detected by T2 mapping as early as the second week and focused on the 7th, 11th, and 12th segments of left ventricle. The cutoff value of 46.64 for the 7th segment had the best diagnostic value, with an area under the curve (of 0.767, sensitivity of 100%, and specificity of 52%. T2* mapping could detect the change in iron content for early AIC at the middle interventricular septum and AILI as early as the sixth week (p = 0.014, p = 0.027). The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver (r = 0.39, p = 0.002). CONCLUSION T2 and T2* mapping showed value one-stop assessment of AIC and AILI and could obtain the earliest MRI diagnosis point and optimal parameter thresholds for these conditions. CLINICAL RELEVANCE STATEMENT Anthracycline-induced cardiotoxicity could be detected by T2 mapping as earlier as the second week, mainly focusing on the 7th, 11th, and 12th segments of left ventricle. Combined with T2* mapping, hepatoxicity and supplementary cardiotoxicity were assessed by one-stop scan. KEY POINTS • MRI screening time of cardiotoxicity was as early as the second week with focusing on T2 values of the 7th, 11th, and 12th segments of left ventricle. • T2* mapping could be used as a complement to T2 mapping to evaluate cardiotoxicity and as an effective index to detect iron change in the early stages of chemotherapy. • The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver, indicating that iron content in the liver and heart increased with an increase in the chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiao-Lan Feng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Wan-Yin Qi
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Zheng-Yuan Xiao
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Xue Zheng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Xiao-Yong Zhang
- Department of Clinical Science, Philips Healthcare, Chengdu, 610000, China
| | - Tao Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Xing-Yuan Kou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Sanadgol G, Samimi S, Shirini D, Nakhaei P, Mohseni M, Alizadehasl A. Right ventricle toxicity in cancer treatment: a focused review on cardiac imaging. Future Cardiol 2023; 19:537-545. [PMID: 37830360 DOI: 10.2217/fca-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Background: The right ventricle (RV) remains the 'forgotten chamber' in the clinical assessment of cancer therapy-related cardiac dysfunction (CTRCD). Aim: We aimed to review the role that various cardiac imaging modalities play in RV assessment as part of the integrative management of patients undergoing cancer therapy. Discussion: RV assessment remains challenging by traditional 2D echocardiography. In this review we discuss other parameters such as right atrial strain, and other echocardiographic modalities such as 3D and stress echocardiography. We also elaborate on the specific role that cardiac magnetic resonance imaging and equilibrium radionuclide angiocardiography can play in assessing the RV. Conclusion: Biventricular function should be monitored following chemotherapy for early detection of subclinical CTRCD and possible solitary RV changes.
Collapse
Affiliation(s)
- Ghazal Sanadgol
- Shahid-Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Sahar Samimi
- Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Dorsa Shirini
- Cardiovascular Research Center, Shahid Beheshti University of Medical, Tehran, 1983969411, Iran Sciences
| | - Pooria Nakhaei
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical & Research Center, Iran University of Medical Sciences, Tehran, 1995614331, Iran
| | - Mina Mohseni
- Department of Cardio-oncology Research, Rajaie Cardiovascular Medical & Research Center, Iran University of Medical Sciences, Tehran, 1995614331, Iran
| | - Azin Alizadehasl
- Professor of Cardiology, Echocardiologist, Cardio-oncologist, Cardio-oncology Research Center, Shaheed Rajaie Cardiovascular Medical & Research Center, Iran University of Medical Science, Tehran, 1995614331, Iran
| |
Collapse
|
6
|
Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther 2023; 8:262. [PMID: 37414756 PMCID: PMC10326056 DOI: 10.1038/s41392-023-01469-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
Since their invention in the early 2000s, tyrosine kinase inhibitors (TKIs) have gained prominence as the most effective pathway-directed anti-cancer agents. TKIs have shown significant utility in the treatment of multiple hematological malignancies and solid tumors, including chronic myelogenous leukemia, non-small cell lung cancers, gastrointestinal stromal tumors, and HER2-positive breast cancers. Given their widespread applications, an increasing frequency of TKI-induced adverse effects has been reported. Although TKIs are known to affect multiple organs in the body including the lungs, liver, gastrointestinal tract, kidneys, thyroid, blood, and skin, cardiac involvement accounts for some of the most serious complications. The most frequently reported cardiovascular side effects range from hypertension, atrial fibrillation, reduced cardiac function, and heart failure to sudden death. The potential mechanisms of these side effects are unclear, leading to critical knowledge gaps in the development of effective therapy and treatment guidelines. There are limited data to infer the best clinical approaches for the early detection and therapeutic modulation of TKI-induced side effects, and universal consensus regarding various management guidelines is yet to be reached. In this state-of-the-art review, we examine multiple pre-clinical and clinical studies and curate evidence on the pathophysiology, mechanisms, and clinical management of these adverse reactions. We expect that this review will provide researchers and allied healthcare providers with the most up-to-date information on the pathophysiology, natural history, risk stratification, and management of emerging TKI-induced side effects in cancer patients.
Collapse
Affiliation(s)
- Sunitha Shyam Sunder
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Division of Cardiovascular Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saraswati Pokharel
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
7
|
Cannizzaro MT, Inserra MC, Passaniti G, Celona A, D'Angelo T, Romeo P, Basile A. Role of advanced cardiovascular imaging in chemotherapy-induced cardiotoxicity. Heliyon 2023; 9:e15226. [PMID: 37095987 PMCID: PMC10121465 DOI: 10.1016/j.heliyon.2023.e15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The development of cardiotoxicity induced by cancer treatments has emerged as a significant clinical problem, both in the short run, as it may influence drug administration in chemotherapeutic protocols, and in the long run, because it may determine adverse cardiovascular outcomes in survivors of various malignant diseases. Therefore, early detection of anticancer drug-related cardiotoxicity is an important clinical target to improve prevention of adverse effects and patient care. Today, echocardiography is the first-line cardiac imaging techniques used for identifying cardiotoxicity. Cardiac dysfunction, clinical and subclinical, is generally diagnosed by the reduction of left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS). However, myocardial injury detected by echocardiography is preceded by other alterations, such as myocardial perfusion and mitochondrial and metabolic dysfunction, that can only be recognized by second-level imaging techniques, like cardiac magnetic resonance (CMR) and nuclear imaging, which, using targeted radiotracers, may help to provide information on the specific mechanisms of cardiotoxicity. In this review, we focus on the current and emerging role of CMR, as a critical diagnostic tool of cardiotoxicity in the very early phase, due to its availability and because it allows the contemporary detection of functional alterations, tissue alterations (mainly performed using T1, T2 mapping with the evaluation of extracellular volume-ECV) and perfusional alteration (evaluated with rest-stress perfusion) and, in the next future, even metabolic changes. Moreover, in the subsequent future, the use of Artificial Intelligence and big data on imaging parameters (CT, CMR) and oncoming molecular imaging datasets, including differences for gender and countries, may help predict cardiovascular toxicity at its earliest stages, avoiding its progression, with precise tailoring of patients' diagnostic and therapeutic pathways.
Collapse
Affiliation(s)
| | | | | | | | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Ospital “Policlinico G. Martino”, Messina, Italy
| | - Placido Romeo
- Radiology Department of AO “San Marco”, A.U.O. Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- University of Catania, Department of Surgical and Medical Sciences and Advanced Technologies ‘G.F. Ingrassia’, Italy
| |
Collapse
|
8
|
Bennati E, Girolami F, Spaziani G, Calabri GB, Favre C, Parrini I, Lucà F, Tamburini A, Favilli S. Cardio-Oncology in Childhood: State of the Art. Curr Oncol Rep 2022; 24:1765-1777. [PMID: 36181610 DOI: 10.1007/s11912-022-01329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Cardio-oncology is an increasingly important field of cardiology that focuses on the detection, monitoring, and treatment of cardiovascular disease (CVD) occurring during and after oncological treatments. The survival rate for childhood cancer patients has dramatically increased thanks to new treatment protocols and cardiovascular (CV) sequelae represent the third most frequent cause of mortality in surviving patients. This study aims to provide a complete and updated review of all the main aspects of cardio-oncology in childhood and to highlight the critical issues. RECENT FINDINGS The problem of CV complications in childhood cancer survivors raises the need to make an early diagnosis of cardiotoxicity by the new imaging and laboratory techniques in order to intervene promptly and to implement pharmacological strategies and lifestyle changes to reduce or even to prevent cardiac injury. Furthermore, a stratification of CV risk, also including new predisposing factors such as the presence of some genetic mutations, is of paramount importance before undertaking oncological treatments. Besides, a systematic and personalized planning of long-term follow-up is fundamental to ensure a transition from pediatric to adult hospital and to avoid missed or late diagnosis of cardiomyopathy. We reviewed the main risk factors for cardiotoxicity in children, both traditional and emerging ones: the mechanisms of toxicity of both old and new antineoplastic therapies, the techniques for detecting cardiac damage, and the current evidence regarding pharmacological cardioprotection. At the end, we focused our attention on the existing guidelines and strategies about the long-term follow-up of childhood cancer survivors.
Collapse
Affiliation(s)
- Elena Bennati
- Pediatric Cardiology Unit, Meyer Children's Hospital, Viale G. Pieraccini 24, Florence, Italy.
| | - Francesca Girolami
- Pediatric Cardiology Unit, Meyer Children's Hospital, Viale G. Pieraccini 24, Florence, Italy
| | - Gaia Spaziani
- Pediatric Cardiology Unit, Meyer Children's Hospital, Viale G. Pieraccini 24, Florence, Italy
| | | | - Claudio Favre
- Department of Pediatric Hematology-Oncology, Meyer Children's Hospital, Viale G. Pieraccini 24, Florence, Italy
| | - Iris Parrini
- Cardiology Unit, Mauriziano Umberto I Hospital, Corso Turati 62, Turin, Italy
| | - Fabiana Lucà
- Department of Cardiology, Grande Ospedale Metropolitano, Azienda Ospedaliera Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Angela Tamburini
- Department of Pediatric Hematology-Oncology, Meyer Children's Hospital, Viale G. Pieraccini 24, Florence, Italy
| | - Silvia Favilli
- Pediatric Cardiology Unit, Meyer Children's Hospital, Viale G. Pieraccini 24, Florence, Italy
| |
Collapse
|
9
|
Mabudian L, Jordan JH, Bottinor W, Hundley WG. Cardiac MRI assessment of anthracycline-induced cardiotoxicity. Front Cardiovasc Med 2022; 9:903719. [PMID: 36237899 PMCID: PMC9551168 DOI: 10.3389/fcvm.2022.903719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this review article is to discuss how cardiovascular magnetic resonance (CMR) imaging measures left ventricular (LV) function, characterizes tissue, and identifies myocardial fibrosis in patients receiving anthracycline-based chemotherapy (Anth-bC). Specifically, CMR can measure LV ejection fraction (EF), volumes at end-diastole (LVEDV), and end-systole (LVESV), LV strain, and LV mass. Tissue characterization is accomplished through T1/T2-mapping, late gadolinium enhancement (LGE), and CMR perfusion imaging. Despite CMR’s accuracy and efficiency in collecting data about the myocardium, there are challenges that persist while monitoring a cardio-oncology patient undergoing Anth-bC, such as the presence of other cardiovascular risk factors and utility controversies. Furthermore, CMR can be a useful adjunct during cardiopulmonary exercise testing to pinpoint cardiovascular mediated exercise limitations, as well as to assess myocardial microcirculatory damage in patients undergoing Anth-bC.
Collapse
Affiliation(s)
- Leila Mabudian
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
| | - Jennifer H. Jordan
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Wendy Bottinor
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
| | - W. Gregory Hundley
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
- *Correspondence: W. Gregory Hundley,
| |
Collapse
|
10
|
Identifying early stages of doxorubicin-induced cardiotoxicity in rat model by 7.0 tesla cardiovascular magnetic resonance combining hematological and pathological parameters. Magn Reson Imaging 2022; 90:17-25. [DOI: 10.1016/j.mri.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022]
|
11
|
Safaei AM, Kamangar TM, Asadian S, Rezaeian N, Esmati E, Kolahdouzan K, Hosseini L, Lashkari M, Jafari F, Hashemi FA. Detection of the Early Cardiotoxic Effects of Doxorubicin-Containing Chemotherapy Regimens in Patients with Breast Cancer through Novel Cardiac Magnetic Resonance Imaging: A Short-term Follow-up. J Clin Imaging Sci 2021; 11:33. [PMID: 34221642 PMCID: PMC8247694 DOI: 10.25259/jcis_58_2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives: Many patients with breast cancer (BC) require cardiotoxic anthracycline-based chemotherapy. We intended to assess the early cardiotoxic effects of doxorubicin utilizing cardiac magnetic resonance (CMR) imaging. Material and Methods: Forty-nine patients including 21 otherwise healthy females with BC at a mean age (±SD) of 47.62 ± 9.07 years and 28 normal controls at a mean age (±SD) of 45.18 ± 4.29 years were recruited. They underwent CMR and transthoracic echocardiography at baseline and 7 days after four biweekly cycles of doxorubicin and cyclophosphamide. Biventricular functional, volumetric, global strain, and tissue characterization findings were analyzed and compared with those of 28 controls. Results: In post-chemotherapy CMR, 4 patients (19.04%), three symptomatic and one asymptomatic, exhibited evidence of doxorubicin cardiotoxicity. Significant differences in biventricular ejection fraction, left ventricular end-systolic volume index, and all 3D global strain values were noted after chemotherapy in comparison with the baseline (all P < 0.05). More than half of the study population showed a significant change in all right ventricular global strain values. One patient (4.76%) exhibited evidence of diffuse myocardial edema in post-chemotherapy CMR, and 3 patients (14.28%) showed myocardial fibrosis. The study participants were clinically followed up for 4–10 months (mean = 7 months). Overall, 8 patients (38.09%) complained of dyspnea on exertion and fatigue on follow-up. None of the CMR markers was associated with the development of symptoms. Conclusion: Our investigation revealed striking changes in CMR parameters in the follow-up of BC patients treated with cardiotoxic chemotherapy. These exclusive CMR features assist in the early initiation of preventive cardiac strategies.
Collapse
Affiliation(s)
- Afsaneh Maddah Safaei
- Department of Radiation Oncology, Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Tara Molanaie Kamangar
- Department of Radiation Oncology, Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Asadian
- Department of Radiology, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Rezaeian
- Department of Radiology, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Esmati
- Department of Radiation Oncology, Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Kolahdouzan
- Department of Radiation Oncology, Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Hosseini
- Department of Radiology, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Lashkari
- Department of Radiation Oncology, Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jafari
- Department of Radiation Oncology, Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Amouzegar Hashemi
- Department of Radiation Oncology, Radiation Oncology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Gonciar D, Mocan L, Zlibut A, Mocan T, Agoston-Coldea L. Cardiotoxicity in HER2-positive breast cancer patients. Heart Fail Rev 2021; 26:919-935. [PMID: 33405000 DOI: 10.1007/s10741-020-10072-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/22/2023]
Abstract
Due to the recent advances in diagnosis and management of patients with HER2-positive breast cancer, especially through novel HER2-targeted agents, cardiotoxicity becomes an emerging problem. Although chemotherapy significantly increases survival, the risk of cardiovascular disease development is high and still underestimated and could imply treatment discontinuation. Frequently, due to lack of rigorous diagnosis strategies, cardiotoxicity assessment is delayed, and, moreover, the efficacy of current therapy options in restoring heart function is questionable. For a comprehensive risk assessment, it is vital to characterize the clinical spectrum of HER2-targeted agents and anthracyclines, as well as their pathogenic pathways involved in cardiotoxicity. Advanced cardiovascular multimodal imaging and circulating biomarkers plays primary roles in early assessing cardiotoxicity and also in guiding specific preventive measures. Even though the knowledge in this field is rapidly expanding, there are still questions that arise regarding the optimal approach in terms of timing and methods. The aim of the current review aims to providean overview of currently available data.
Collapse
Affiliation(s)
- Diana Gonciar
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Mocan
- 3rd Surgery Department, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Alexandru Zlibut
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Teodora Mocan
- Physiology Department, Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Affiliation(s)
- Michael A. Biersmith
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
| | - Matthew S. Tong
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
| | - Avirup Guha
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
- Harrington Heart and Vascular InstituteCase Western Reserve UniversityClevelandOH
| | - Orlando P. Simonetti
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
| | - Daniel Addison
- Cardio‐Oncology ProgramDivision of Cardiovascular MedicineDepartment of MedicineThe Ohio State UniversityColumbusOH
- Division of Cancer Prevention and ControlDepartment of MedicineCollege of MedicineThe Ohio State UniversityColumbusOH
| |
Collapse
|