1
|
Cai D, Kuang L, Hu F, Shen Y. Abnormalities along the cortico-medullary junction on brain MRI caused by 1,2-dichloroethane-induced toxic encephalopathy. BMC Neurol 2024; 24:447. [PMID: 39548394 PMCID: PMC11566381 DOI: 10.1186/s12883-024-03952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND 1,2-dichloroethane (DCE) induced toxic encephalopathy, a rare toxic disease of the central nervous system, is mainly reported in developing countries. Although clinicians have got some understanding about the clinical and neuroimaging features of 1,2-DCE-induced toxic encephalopathy, abnormality along the cortico-medullary junction on diffusion-weighted image (DWI) mimicking neuronal intranuclear inclusion disease (NIID) has not yet been described in this entity. CASE PRESENTATION We reported a patient with 1,2-DCE-induced toxic encephalopathy who was admitted to our department due to a 7-day history of nausea, vomiting, and cognitive decline. Brain magnetic resonance imaging (MRI) showed symmetrical hyperintensities in bilateral subcortical white matte on T2-weghted and Fluid-attenuated inversion recovery (FLAIR) images. In addition, abnormal signal intensity could also be found in the cortico-medullary junction on DWI, mimicking NIID. After treated with glucocorticoid, dehydrating agents, neuroprotective agents, and hyperbaric oxygen, our patient received a partial recovery. CONCLUSION Our case highlights a special MRI finding-abnormalities along the cortico-medullary junction-that can be seen in 1,2-DCE-induced toxic encephalopathy. When confronted with patients with lesion located in the cortico-medullary junction and neuropsychiatric symptoms, our clinicians should not neglect the detailed inquiry of history of toxic exposure.
Collapse
Affiliation(s)
- Dan Cai
- Department of Neurology, Xinyu People's Hospital, Xinyu, Jiangxi Province, China
| | - Liqiang Kuang
- Department of Neurology, Shanggao People's Hospital, Shanggao, Jiangxi Province, China
| | - Fan Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi, National Regional Center for Neurological Diseases, Nanchang, Jiangxi Province, China
| | - Yaoyao Shen
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China.
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi, National Regional Center for Neurological Diseases, Nanchang, Jiangxi Province, China.
| |
Collapse
|
2
|
Qiu H, Xu J, Yuan Y, Alesi EJ, Liang X, Cao B. Low-disturbance land remediation using vertical groundwater circulation well technology: The first commercial deployment in an operational chemical plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173804. [PMID: 38848922 DOI: 10.1016/j.scitotenv.2024.173804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Soil and groundwater contamination by organic pollutants from chemical plants presents significant risks to both environmental and human health. We report a significant field trial where a chemical plant in operation showed soil and groundwater pollution, as verified by sampling and laboratory tests. While many remediation methods are effective, they often require the temporary shutdown of plant operations to install necessary equipment. This paper introduces a novel combination of low-disturbance contaminant remediation technologies, including groundwater circulation well (GCW), pump and treat (P&T), and in-situ chemical oxidation (ISCO) technologies, that can be applied on the premises of an active plant without halting production. The groundwater with dissolved contaminants is removed through P&T and GCW, while GCW enhances ISCO that focus on eliminating the remaining hard-to-pump contaminants. Results show: (1) after two years of remediation effort, the contaminant levels in soil and groundwater were significantly reduced; (2) the average concentration reduction rate of four contaminants, including 1,2-dichloroethane, methylbenzene, ethylbenzene, and M&P-xylene, exceeds 98 %; (3) the presented remediation strategy results in the improvement of remediation efficiency. Specifically, the concentration of 1,2-dichloroethane in observation wells dropped from 40,550.7 μg/L to 44.6 μg/L. This study offers a first-of-its-kind commercial deployment of a GCW-based remediation strategy in an active plant setting. Moreover, the combined remediation approach presented here can serve as a model for designing contaminant remediation projects that require minimal operational disruption.
Collapse
Affiliation(s)
- Huiyang Qiu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jian Xu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China.
| | - Yizhi Yuan
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Eduard J Alesi
- IEG Technologie GmbH, Hohlbachweg 2, D-73344 Gruibingen, Baden-Württemberg, Germany
| | - Xin Liang
- Jiangsu Zhongchuan Ecological Environment Co., Ltd, China
| | - Benyi Cao
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
3
|
Xiang Y, Zhang X, Tian Z, Cheng Y, Liu N, Meng X. Molecular mechanisms of 1,2-dichloroethane-induced neurotoxicity. Toxicol Res 2023; 39:565-574. [PMID: 37779589 PMCID: PMC10541367 DOI: 10.1007/s43188-023-00197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 10/03/2023] Open
Abstract
The production of industrial solvents and adhesives often utilizes 1,2-dichloroethane (1,2-DCE), a highly toxic halogenated hydrocarbon compound. Occupational 1,2-DCE poisoning occurs frequently and is a public health concern. Exposure to 1,2-DCE can damage the brain, liver, and kidneys. The main and most severe damage caused by exposure to 1,2-DCE is to the nervous system, especially the central nervous system. Current research on 1,2-DCE mainly focuses on the mechanism of brain edema. Several possible mechanisms of 1,2-DCE neurotoxicity have been proposed, including oxidative stress, calcium overload, blood-brain barrier damage, and neurotransmitter changes. This article reviews the research progress on 1,2-DCE neurotoxicity and the mechanism behind it to provide a scientific basis for the prevention and treatment of 1,2-DCE poisoning.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhoudadaobei, Guangzhou, Guangdong China
| | - Xiaoshun Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhoudadaobei, Guangzhou, Guangdong China
| | - Zhiling Tian
- Shanghai Key Laboratory of Forensic Medicine, Ministry of Justice, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Academy of Forensic Science, Shanghai, China
| | - Yibin Cheng
- Shanghai Key Laboratory of Forensic Medicine, Ministry of Justice, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Academy of Forensic Science, Shanghai, China
| | - Ningguo Liu
- Shanghai Key Laboratory of Forensic Medicine, Ministry of Justice, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Academy of Forensic Science, Shanghai, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhoudadaobei, Guangzhou, Guangdong China
| |
Collapse
|
4
|
Bariani MV, Cui YH, Ali M, Bai T, Grimm SL, Coarfa C, Walker CL, He YY, Yang Q, Al-Hendy A. TGFβ signaling links early life endocrine-disrupting chemicals exposure to suppression of nucleotide excision repair in rat myometrial stem cells. Cell Mol Life Sci 2023; 80:288. [PMID: 37689587 PMCID: PMC10492698 DOI: 10.1007/s00018-023-04928-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
Environmental exposure to endocrine-disrupting chemicals (EDCs) is linked to the development of uterine fibroids (UFs) in women. UFs, non-cancerous tumors, are thought to originate from abnormal myometrial stem cells (MMSCs). Defective DNA repair capacity may contribute to the emergence of mutations that promote tumor growth. The multifunctional cytokine TGFβ1 is associated with UF progression and DNA damage repair pathways. To investigate the impact of EDC exposure on TGFβ1 and nucleotide excision repair (NER) pathways, we isolated MMSCs from 5-month-old Eker rats exposed neonatally to diethylstilbestrol (DES), an EDC, or to vehicle (VEH). EDC-MMSCs exhibited overactivated TGFβ1 signaling and reduced mRNA and protein levels of NER pathway components compared to VEH-MMSCs. EDC-MMSCs also demonstrated impaired NER capacity. Exposing VEH-MMSCs to TGFβ1 decreased NER capacity while inhibiting TGFβ signaling in EDC-MMSCs restored it. RNA-seq analysis and further validation revealed decreased expression of Uvrag, a tumor suppressor gene involved in DNA damage recognition, in VEH-MMSCs treated with TGFβ1, but increased expression in EDC-MMSCs after TGFβ signaling inhibition. Overall, we demonstrated that the overactivation of the TGFβ pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased genetic instability, arise of mutations, and fibroid tumorigenesis. We demonstrated that the overactivation of the TGFβ pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased fibroid incidence.
Collapse
Affiliation(s)
| | - Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Tao Bai
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sandra L Grimm
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Cheryl L Walker
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Bariani MV, Cui YH, Ali M, Bai T, Grimm SL, Coarfa C, Walker CL, He YY, Yang Q, Al-Hendy A. TGFβ signaling links early-life endocrine-disrupting chemicals exposure to suppression of nucleotide excision repair in rat myometrial stem cells. RESEARCH SQUARE 2023:rs.3.rs-3001855. [PMID: 37333266 PMCID: PMC10274956 DOI: 10.21203/rs.3.rs-3001855/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Environmental exposure to endocrine-disrupting chemicals (EDCs) is linked to the development of uterine fibroids (UFs) in women. UFs, non-cancerous tumors, are thought to originate from abnormal myometrial stem cells (MMSCs). Defective DNA repair capacity may contribute to the emergence of mutations that promote tumor growth. The multifunctional cytokine TGFβ1 is associated with UF progression and DNA damage repair pathways. To investigate the impact of EDC exposure on TGFβ1 and nucleotide excision repair (NER) pathways, we isolated MMSCs from 5-months old Eker rats exposed neonatally to Diethylstilbestrol (DES), an EDC, or to vehicle (VEH). EDC-MMSCs exhibited overactivated TGFβ1 signaling and reduced mRNA and protein levels of NER pathway components compared to VEH-MMSCs. EDC-MMSCs also demonstrated impaired NER capacity. Exposing VEH-MMSCs to TGFβ1 decreased NER capacity while inhibiting TGFβ signaling in EDC-MMSCs restored it. RNA-seq analysis and further validation revealed decreased expression of Uvrag, a tumor suppressor gene involved in DNA damage recognition, in VEH-MMSCs treated with TGFβ1, but increased expression in EDC-MMSCs after TGFβ signaling inhibition. Overall, we demonstrated that the overactivation of the TGFβ pathway links early-life exposure to EDCs with impaired NER capacity, which would lead to increased genetic instability, arise of mutations, and fibroid tumorigenesis. We demonstrated that the overactivation of the TGFβ pathway links early-life exposure to EDCs with impaired NER capacity, which would lead to increased fibroid incidence.
Collapse
Affiliation(s)
| | | | - Mohamed Ali
- University of Chicago Department of Obstetrics and Gynecology
| | - Tao Bai
- University of Chicago Department of Obstetrics and Gynecology
| | | | | | | | - Yu-Ying He
- University of Chicago Department of Medicine
| | - Qiwei Yang
- University of Chicago Department of Obstetrics and Gynecology
| | - Ayman Al-Hendy
- University of Chicago Department of Obstetrics and Gynecology
| |
Collapse
|
6
|
Tu Z, Zhou Y, Zhou J, Han S, Liu J, Liu J, Sun Y, Yang F. Identification and Risk Assessment of Priority Control Organic Pollutants in Groundwater in the Junggar Basin in Xinjiang, P.R. China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2051. [PMID: 36767417 PMCID: PMC9915296 DOI: 10.3390/ijerph20032051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The Junggar Basin in Xinjiang is located in the hinterland of Eurasia, where the groundwater is a significant resource and has important ecological functions. The introduction of harmful organic pollutants into groundwater from increasing human activities and rapid socioeconomic development may lead to groundwater pollution at various levels. Therefore, to develop an effective regulatory framework, establishing a list of priority control organic pollutants (PCOPs) is in urgent need. In this study, a method of ranking the priority of pollutants based on their prevalence (Pv), occurrence (O) and persistent bioaccumulative toxicity (PBT) has been developed. PvOPBT in the environment was applied in the screening of PCOPs among 34 organic pollutants and the risk assessment of screened PCOPs in groundwater in the Junggar Basin. The results show that the PCOPs in groundwater were benzo[a]pyrene, 1,2-dichloroethane, trichloromethane and DDT. Among the pollutants, benzo[a]pyrene, 1,2-dichloroethane and DDT showed high potential ecological risk, whilst trichloromethane represented low potential ecological risk. With the exception of benzo[a]pyrene, which had high potential health risks, the other screened PCOPs had low potential health risks. Unlike the scatter distribution of groundwater benzo[a]pyrene, the 1,2-dichloroethane and trichloromethane in groundwater were mainly concentrated in the central part of the southern margin and the northern margin of the Junggar Basin, while the DDT in groundwater was only distributed in Jinghe County (in the southwest) and Beitun City (in the north). Industrial and agricultural activities were the main controlling factors that affected the distribution of PCOPs.
Collapse
Affiliation(s)
- Zhi Tu
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi 830052, China
- Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Yinzhu Zhou
- Center for Hydrogeology and Environmental Geology Survey, CGS, Baoding 071051, China
| | - Jinlong Zhou
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi 830052, China
- Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Shuangbao Han
- Center for Hydrogeology and Environmental Geology Survey, CGS, Baoding 071051, China
| | - Jinwei Liu
- Center for Hydrogeology and Environmental Geology Survey, CGS, Baoding 071051, China
| | - Jiangtao Liu
- Center for Hydrogeology and Environmental Geology Survey, CGS, Baoding 071051, China
| | - Ying Sun
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
- Xinjiang Hydrology and Water Resources Engineering Research Center, Urumqi 830052, China
- Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
| | - Fangyuan Yang
- College of Mathematics and Physics, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
7
|
Jeong WG, Kim JG, Lee SM, Baek K. CaO 2-based electro-Fenton-oxidation of 1,2-dichloroethane in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157065. [PMID: 35780882 DOI: 10.1016/j.scitotenv.2022.157065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
It has been well recognized that the Fenton reaction requires a rigorous pH control and suffers from the fast self-degradation of H2O2. In an effort to resolve the technical demerits of the conventional Fenton reaction, particular concern on the use of CaO2-based Fenton reaction was paid in this study. To realize the practical use of CaO2 in the Fenton reaction for groundwater remediation, it could be of great importance to control its reaction rate in the subsurface. As such, this study laid great emphasis on the combined process of electrochemical oxidation and CaO2-based Fenton oxidation, using 1,2-dichloroethane (1,2-DCA) as a model compound. It was hypothesized that the reaction rate is also highly contingent on the formation of Fe(II) (stemmed from iron anode oxidation). Eighty percent of 1,2-DCA were degraded by the CaO2-based Fenton reaction. The final pH was neutral, inferring that the reaction could be a viable option for the subsurface environment. Moreover, the supply of electric current in an iron anode expedited 1,2-DCA degradation efficiency from 35 % to 62 % via electrically generated Fe(II), which donated electrons to H2O2, producing more hydroxyl radicals. An anode-cathode configuration from the single-well system enhanced the degradation of 1,2-DCA, with less amount of energy consumption than the double-well system. Based on results, CaO2-based electro-Fenton oxidation can remove well 1,2-DCA in groundwater and can be a strategic measure for groundwater remediation.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Su-Min Lee
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
8
|
Huang W, Wang Z, Wang G, Li K, Jin Y, Zhao F. Disturbance of glutamate metabolism and inhibition of CaM-CaMKII-CREB signaling pathway in the hippocampus of mice induced by 1,2-dichloroethane exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119813. [PMID: 35868470 DOI: 10.1016/j.envpol.2022.119813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
1,2-Dichloroethane (1,2-DCE) is a highly toxic neurotoxicity, and the brain tissue is the main target organ. At present, long-term exposure to 1,2-DCE has been shown to cause cognitive dysfunction in some studies, but the mechanism is not clear. The results of this study showed that long-term 1,2-DCE exposure decreased learning and memory abilities in mice and impaired the structure and morphology of neurons in the hippocampal region. Moreover, except for the mRNA level of PAG, the enzymatic activities and protein levels of GS and PAG, as well as the mRNA level of GS were inhibited. With increasing dose of exposure, the protein and mRNA expression of GLAST and GLT-1 also decreased. Contrarily, there were protein and mRNA expression upregulation of GluN1, GluN2A and GluN2B in the hippocampus, as well as increased levels of extracellular Glu and intracellular Ca2+. In addition, 1,2-DCE exposure also downregulated the protein expression levels of CaM, CaMKII and CREB. Taken together, our results suggest that long-term 1,2-DCE exposure impairs the learning and memory capacity in mice, which may be attributed to the disruption of Glu metabolism and the inhibition of CaM- CaMKII-CREB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Weiyu Huang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zijiang Wang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning, People's Republic of China
| | - Gaoyang Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Kunyang Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaping Jin
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fenghong Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
9
|
Jeong WG, Kim JG, Baek K. Removal of 1,2-dichloroethane in groundwater using Fenton oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128253. [PMID: 35033913 DOI: 10.1016/j.jhazmat.2022.128253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Among the chlorinated aliphatic hydrocarbons, 1,2-dichloroethane (1,2-DCA) is widely used for the synthesis of vinyl chloride monomers. Despite the high demand for 1,2-DCA, it poses a risk to the environment because it is persistent and carcinogenic. Therefore, in this study, several reagents (dithionite, hydrosulfide, sulfite, persulfate, sulfate radicals, and hydroxyl radicals) were evaluated for the degradation of 1,2-DCA. Among these, the hydroxyl radicals generated by the Fenton reaction were the most suitable oxidant, decomposing 92% of 1,2-DCA. Chloride, one of the final oxidized products, was observed, which supported the oxidation reaction. Moreover, with an increasing concentration of hydroxyl radicals, the degradation of 1,2-DCA increased. Furthermore, sufficient amounts of hydrogen peroxide were more important than Fe(II) in the decomposition of 1,2-DCA. The radical reaction can generate larger molecules via the degradation of 1,2-DCA, which are degraded over time. The applicability of Fenton oxidation was evaluated using real 1,2-DCA-contaminated groundwater. Although the degradation of target contaminant was lowered due to the alkaline pH and the presence of chloride and bicarbonate ions in groundwater, the Fenton reaction was still efficient to oxidize 1,2-DCA. These results indicate that Fenton oxidation is an effective technique for the treatment of 1,2-DCA in contaminated groundwater.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
10
|
Pugsley K, Scherer SW, Bellgrove MA, Hawi Z. Environmental exposures associated with elevated risk for autism spectrum disorder may augment the burden of deleterious de novo mutations among probands. Mol Psychiatry 2022; 27:710-730. [PMID: 34002022 PMCID: PMC8960415 DOI: 10.1038/s41380-021-01142-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Although the full aetiology of autism spectrum disorder (ASD) is unknown, familial and twin studies demonstrate high heritability of 60-90%, indicating a predominant role of genetics in the development of the disorder. The genetic architecture of ASD consists of a complex array of rare and common variants of all classes of genetic variation usually acting additively to augment individual risk. The relative contribution of heredity in ASD persists despite selective pressures against the classic autistic phenotype; a phenomenon thought to be explained, in part, by the incidence of spontaneous (or de novo) mutations. Notably, environmental exposures attributed as salient risk factors for ASD may play a causal role in the emergence of deleterious de novo variations, with several ASD-associated agents having significant mutagenic potential. To explore this hypothesis, this review article assesses published epidemiological data with evidence derived from assays of mutagenicity, both in vivo and in vitro, to determine the likely role such agents may play in augmenting the genetic liability in ASD. Broadly, these exposures were observed to elicit genomic alterations through one or a combination of: (1) direct interaction with genetic material; (2) impaired DNA repair; or (3) oxidative DNA damage. However, the direct contribution of these factors to the ASD phenotype cannot be determined without further analysis. The development of comprehensive prospective birth cohorts in combination with genome sequencing is essential to forming a causal, mechanistic account of de novo mutations in ASD that links exposure, genotypic alterations, and phenotypic consequences.
Collapse
Affiliation(s)
- Kealan Pugsley
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Stephen W. Scherer
- grid.42327.300000 0004 0473 9646The Centre for Applied Genomics and Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Zhang Y, Chen D, Shi R, Kamijima M, Sakai K, Tian Y, Gao Y. Indoor volatile organic compounds exposures and risk of childhood acute leukemia: a case-control study in shanghai. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:190-198. [PMID: 33356863 DOI: 10.1080/10934529.2020.1861903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
A case-control study was conducted to investigate the relationship between indoor air pollution and childhood acute leukemia (AL) in Shanghai. 97 cases and 148 gender-, age-, and residence-matched controls were included. Indoor air pollution was evaluated by questionnaires and quantitative measurement including 14 volatile organic compounds (VOCs) and nitrogen dioxide (NO2) in the homes of the two groups. The levels of individual VOCs, VOC families, TVOC (sum of the concentrations of the individual VOCs) and NO2 were compared between the two groups. Exposure to styrene and butyl alcohol were associated with an increased risk of childhood AL (styrene: odds ratio (OR)=2.33, 95% confidence interval (CI): 1.07-5.07; butyl alcohol: OR = 2.51, 95%CI: 1.19-5.28); 4th quartile of chlorinated hydrocarbons (OR = 2.52, 95%CI: 1.02-6.26) and 3rd quartile of TVOC (OR = 4.03, 95%CI: 1.06-6.81) had significant higher ORs for childhood AL compared with that in the lowest quartiles. Elevated levels of individual VOCs, VOC families and TVOC were also associated with self-reported risk factors. Our findings suggest that VOCs exposure was associated with an elevated risk of childhood AL, underscore that more attention should be paid to indoor air pollution as a risk factor of childhood AL.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Didi Chen
- Department of School Health, Minhang District Center for Disease Control and Prevention, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University school of Medicine, Shanghai, China
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University school of Medicine, Shanghai, China
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University school of Medicine, Shanghai, China
| |
Collapse
|
12
|
Two Scenarios of Dechlorination of the Chlorinated Hydrocarbons over Nickel-Alumina Catalyst. Catalysts 2020. [DOI: 10.3390/catal10121446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dechlorination processes attract great interest since they are involved in environmental protection and waste disposal technologies. In this paper, the process of gas-phase dechlorination of 1,2-dichloroethane, chloroform, and chlorobenzene over Ni/Al2O3 catalyst (90 wt% Ni) prepared by a coprecipitation technique was investigated. The reduction behavior of the oxide precursor NiO/Al2O3 was studied by thermogravimetric analysis in a hydrogen medium. A thermodynamic assessment of the conditions under which metallic nickel undergoes deactivation due to the formation of nickel chloride was performed. The dechlorination of chlorinated substrates was studied using a gravimetric flow-through system equipped with McBain balances in a wide range of temperatures (350–650 °C) and hydrogen concentrations (0–98 vol%). The impact of these parameters on selectivity towards the products of hydrodechlorination (C2H4, C2H6, and C6H6) and catalytic pyrolysis (carbon nanomaterial and CH4) was explored. The relationship between the mechanisms of the catalytic hydrodechlorination and the carbide cycle was discussed, and the specific reaction conditions for the implementation of both scenarios were revealed. According to the electron microscopy data, the carbonaceous products deposited on nickel particles during catalytic pyrolysis are represented by nanofibers with a disordered structure formed due to the peculiarity of the process including the side carbon methanation reaction.
Collapse
|
13
|
LeBaron MJ, Hotchkiss JA, Zhang F, Koehler MW, Boverhof DR. Investigation of potential early key events and mode of action for 1,2-dichloroethane-induced mammary tumors in female rats. J Appl Toxicol 2020; 41:362-374. [PMID: 32830330 DOI: 10.1002/jat.4048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
1,2-dichloroethane (DCE or EDC) is a chlorinated hydrocarbon used as a chemical intermediate, including in the synthesis of polyvinyl chloride. Although DCE has induced tumors in both rats and mice, the overall weight-of-evidence suggests a lack of in vivo mutagenicity. The present study was conducted to explore a potential mode of action further for tumor formation in rat mammary tissue. Fischer 344 rats were exposed to target concentrations of 0 or 200 ppm of DCE vapors (6 hours/day, 7 days/week) for at least 28 days; 200 ppm represents a concentration of ~20% higher than that reported to induce mammary tumors. Endpoints examined included DNA damage (via Comet assay), glutathione (reduced, oxidized and conjugated), tissue DNA adducts, cell proliferation and serum prolactin levels. Exposure to DCE did not alter serum prolactin levels with consistent estrous stage, did not cause cell proliferation in mammary epithelial cells, nor result in histopathological alterations in the mammary gland. DNA adducts were identified, including the N7 -guanylethyl glutathione adduct, with higher adduct levels measured in liver (nontumorigenic target) compared with mammary tissue isolated from the same rats; no known mutagenic adducts were identified. DCE did not increase the Comet assay response in mammary epithelial cells, whereas DNA damage in the positive control (N-nitroso-N-methylurea) was significantly increased. Although the result of this study did not identify a specific mode of action for DCE-induced mammary tumors in rats, the lack of any exposure-related genotoxic responses further contributes to the weight-of-evidence suggesting that DCE is a nongenotoxic carcinogen.
Collapse
Affiliation(s)
- Matthew J LeBaron
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, Michigan, USA
| | - Jon A Hotchkiss
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, Michigan, USA
| | - Fagen Zhang
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, Michigan, USA
| | - Matthew W Koehler
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, Michigan, USA
| | - Darrell R Boverhof
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, Midland, Michigan, USA
| |
Collapse
|
14
|
Lee CC, Shen Y, Hsu CW, Fong JP, Uang SN, Chang JW. Reduced adiponectin:leptin ratio associated with inhalation exposure to vinyl chloride monomer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135488. [PMID: 31757555 DOI: 10.1016/j.scitotenv.2019.135488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/21/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The hepatic toxicity of vinyl chloride monomer (VCM) has often been reported, but few studies have assessed insulin resistance or adipose tissue dysfunction. We analyzed the chronic health effects of moderate exposure to VCM on factory workers in Taiwan. Data were collected from personal air samples, urine samples, and immunohistochemical (IHC) examinations of 122 recruited voluntary participants. Air samples were analyzed to assess personal levels of exposure to VCM and ethylene dichloride (EDC). Urine samples were collected from each worker before they started and after they finished their daily shift. Urinary thiodiglycolic acid (TDGA) levels were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). IHC examinations included liver function and serum adipokine level tests for insulin resistance. Consequently, the participants included for the final analysis were 113. After confounders had been adjusted for, the airborne VCM concentration significantly (P = 0.043) correlated with pre-shift urinary TDGA levels (β = 0.194). A multivariate analysis showed a significant (P = 0.013) inverse correlation between the adiponectin:leptin ratio and the airborne VCM concentration (β = -0.283), which means that exposure to VCM might increase the risk of insulin resistance and adiponectin abnormalities. We hypothesized that pre-shift urinary TDGA levels can be used as exposure biomarkers for the exposure of workers to VCM.
Collapse
Affiliation(s)
- Ching-Chang Lee
- Research Center for Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying Shen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Wei Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jer-Pei Fong
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Nian Uang
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, Taipei, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
15
|
Huang M, Zhong Y, Lin L, Liang B, Liu J, Jiang J, Hu M, Huang Y, Lin X, Lu L, Bian Z, Zhong W, Wu J, Zheng J, Rong W, Zhang Y, Jiang L, Wu J, Zhang X, Yang X, Hu Q, Huang Z. 1,2-Dichloroethane induces cerebellum granular cell apoptosis via mitochondrial pathway in vitro and in vivo. Toxicol Lett 2020; 322:87-97. [PMID: 31935479 DOI: 10.1016/j.toxlet.2020.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
1,2-Dichloroethane (1,2-DCE) is a widely used chlorinated organic toxicant, but little is known about the cerebellar dysfunction induced by excessive exposure to it. To uncover 1,2-DCE-induced neurotoxicity in cerebellar granular cells (CGCs), and to investigate the underlying mechanisms, we explored this, both in vitro and in vivo. Our findings showed significant cell viability inhibition in human CGCs (HCGCs) treated with 1,2-DCE. Flow cytometry and mitochondrial membrane potential analyses discovered an increase in apoptotic-mediated cell death in HCGCs after 1,2-DCE treatment. This HCGC apoptosis was involved in the increases of protein expression in Cytochrome c, Caspase-3, Bad, Bim, transformation related protein 53, Caspase-8, tumor necrosis factor-α, and Survivin. Quantitative real-time PCR (qPCR) and western blot confirmed the increases in Cytochrome c, Caspase-3, cleaved Caspase-3, and Bad in HCGCs after 1,2-DCE treatment. Bax inhibitor peptide V5 rescued 1,2-DCE-induced HCGC apoptosis. Furthermore, 80 CD-1 male mice were exposed to 1,2-DCE by inhalation at 0, 100, 350, and 700 mg/m3 for 6 h/day for 4 weeks. An open field test found abnormal neurobehavioral changes in the mice exposed to 1,2-DCE. Histopathological examination showed significantly shrunken and hypereosinophilic cytoplasm with nuclear pyknosis in mouse CGCs from the 700 mg/m3 1,2-DCE group. TdT-mediated dUTP nick-end labeling assay verified significant increases in apoptotic positive cells in the mouse CGCs after 1,2-DCE exposure. We confirmed the increases in the expressions of Cytochrome c, Caspase-3, cleaved Caspase-3 and Bad in the mice exposed to 1,2-DCE. These findings suggest that 1,2-DCE exposure can induce CGC apoptosis and cerebellar dysfunction, at least in part, through mitochondrial pathway.
Collapse
Affiliation(s)
- Manqi Huang
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Yizhou Zhong
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Li Lin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Junying Jiang
- Faculty of Preventive Medicine, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Manjiang Hu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xi Lin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lvliang Lu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ziwei Bian
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wenyu Zhong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiejiao Wu
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiewei Zheng
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Weifeng Rong
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Yating Zhang
- Faculty of Preventive Medicine, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liang Jiang
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jieling Wu
- Department of Healthcare, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Xin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xingfen Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qiansheng Hu
- Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Zhenlie Huang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
16
|
LncRNA-241 inhibits 1,2-Dichloroethane-induced hepatic apoptosis. Toxicol In Vitro 2019; 61:104650. [DOI: 10.1016/j.tiv.2019.104650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
|
17
|
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem Rev 2019; 119:4471-4568. [DOI: 10.1021/acs.chemrev.8b00408] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi He
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Xin Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Mark Douthwaite
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Samuel Pattisson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
18
|
Gesundheitliche Bewertung von 1,2-Dichlorethan (1,2-DCE) in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:114-117. [DOI: 10.1007/s00103-018-2849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Investigation of in vitro genotoxic effects of an anti-diabetic drug sitagliptin. Food Chem Toxicol 2018; 112:235-241. [DOI: 10.1016/j.fct.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/30/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
20
|
Munro JE, Kimyon Ö, Rich DJ, Koenig J, Tang S, Low A, Lee M, Manefield M, Coleman NV. Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater. FEMS Microbiol Ecol 2017; 93:4494361. [DOI: 10.1093/femsec/fix133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
|
21
|
Lone MI, Nazam N, Hussain A, Singh SK, Dar AH, Najar RA, Al-Qahtani MH, Ahmad W. Genotoxicity and immunotoxic effects of 1,2-dichloroethane in Wistar rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:169-186. [PMID: 27229631 DOI: 10.1080/10590501.2016.1193924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dichloroethane is widely used as a solvent, degreasing agent and in a variety of commercial products, and is known for being a ubiquitous contaminant in the environment. Important sources principally include the emissions from industrial processes, improper consumption, storage, and disposal methods. In view of the fact that the mechanism of its genotoxicity has not been satisfactorily elucidated, the acute in vivo toxicological impact is assessed in Rattus norvegicus. A systematic investigation has been made involving the use of conventional methods along with molecular and flow cytometric approaches. The micronucleus and chromosomal aberration frequencies were significantly elevated in bone marrow cells exposed to three concentrations at multiple treatment durations indicating positive time- and dose-response relationships. The mitotic index significantly decreased in similar concentrations in contrast to normal control. Separate studies were performed on blood cells for comet assay. It revealed dichloroethane-induced DNA damage in all exposures readily explainable in a dose- and time-dependent manner. Recent molecular techniques were further employed using leukocytes for the cell apoptosis/cycle and mitochondrial membrane potential employing propidium iodide staining and rhodamine-123, respectively. The effect on mitochondrial membrane permeability, cell cycle phases, and the DNA damage was analyzed through flow cytometry. These indicators revealed dichloroethane treatment decreased the mitochondrial membrane potential, affected the cell cycle, and confirmed the DNA damage, leading to apoptosis of the cells of the immune system responsible for immunotoxic effects of dichloroethane on rat leukocytes.
Collapse
Affiliation(s)
- Mohammad Iqbal Lone
- a Gene-Tox Laboratory, Division of Genetics, Department of Zoology, Aligarh Muslim University , Aligarh , UP , India
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Nazia Nazam
- a Gene-Tox Laboratory, Division of Genetics, Department of Zoology, Aligarh Muslim University , Aligarh , UP , India
| | - Aashiq Hussain
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Shashank K Singh
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Abid Hamid Dar
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
- c Department of Dermatology , University of Wisconsin , Madison , Wisconsin , USA
| | - Rauf Ahmad Najar
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | | | - Waseem Ahmad
- a Gene-Tox Laboratory, Division of Genetics, Department of Zoology, Aligarh Muslim University , Aligarh , UP , India
- d Center of Excellence in Genomic Medicine Research, King Abdulaziz University , Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Wang SY, Kuo YC, Huang YZ, Huang CW, Kao CM. Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:97-106. [PMID: 25863886 DOI: 10.1016/j.envpol.2015.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
In this study, the effectiveness of bioremediating 1,2-dichloroethane (DCA)-contaminated groundwater under different oxidation-reduction processes was evaluated. Microcosms were constructed using indigenous bacteria and activated sludge as the inocula and cane molasses and a slow polycolloid-releasing substrate (SPRS) as the primary substrates. Complete DCA removal was obtained within 30 days under aerobic and reductive dechlorinating conditions. In anaerobic microcosms with sludge and substrate addition, chloroethane, vinyl chloride, and ethene were produced. The microbial communities and DCA-degrading bacteria in microcosms were characterized by 16S rRNA-based denatured-gradient-gel electrophoresis profiling and nucleotide sequence analyses. Real-time polymerase chain reaction was applied to evaluate the variations in Dehalococcoides spp. and Desulfitobacterium spp. Increase in Desulfitobacterium spp. indicates that the growth of Desulfitobacterium might be induced by DCA. Results indicate that DCA could be used as the primary substrate under aerobic conditions. The increased ethene concentrations imply that dihaloelimination was the dominate mechanism for DCA biodegradation.
Collapse
Affiliation(s)
- S Y Wang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Y C Kuo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Y Z Huang
- Bioenvironmental Engineering Department, Chung Yuan University, Chung Li, Taiwan
| | - C W Huang
- Deaprtment of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Zeljezic D, Mladinic M, Kopjar N, Radulovic AH. Evaluation of genome damage in subjects occupationally exposed to possible carcinogens. Toxicol Ind Health 2015; 32:1570-80. [PMID: 25653038 DOI: 10.1177/0748233714568478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In occupational exposures, populations are simultaneously exposed to a mixture of chemicals. We aimed to evaluate DNA damage due to possible carcinogen exposure (phenylhydrazine, ethylene oxide, dichloromethane, and 1,2-dichloroethane) in lymphocytes of pharmaceutical industry workers from the same production line. Population comprised 16 subjects (9 females and 7 males) who were exposed to multiple chemicals for 8 months. Genome damage was assessed using alkaline comet assay, micronucleus assay, and comet assay coupled with fluorescent in situ hybridization (comet-FISH). After 8 months of exposure, the issue of irregular use of all available personal protective equipment (PPE) came into light. To decrease the risk of exposure, strict use of PPE was enforced. After 8 months of strict PPE use, micronuclei frequency and comet assay parameters in lymphocytes of pharmaceutical workers significantly decreased compared with prior period of irregular PPE use. Comet-FISH results indicated a significant shift in distribution of signals for the TP 53 gene toward a more frequent occurrence in the comet tail. Prolonged exposure to possible carcinogens may hinder DNA repair mechanisms and affect structural integrity of TP 53 Two indicators of loss of TP 53 gene integrity have risen, namely, TP 53 fragmentation rate in lymphocytes with persistently elevated primary damage and incidence of TP 53 deletions in undamaged lymphocytes.
Collapse
Affiliation(s)
- Davor Zeljezic
- Division for Mutagenesis, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marin Mladinic
- Division for Mutagenesis, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nevenka Kopjar
- Division for Mutagenesis, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | |
Collapse
|
24
|
Huang B, Lei C, Wei C, Zeng G. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies. ENVIRONMENT INTERNATIONAL 2014; 71:118-38. [PMID: 25016450 DOI: 10.1016/j.envint.2014.06.013] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 05/03/2023]
Abstract
Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections.
Collapse
Affiliation(s)
- Binbin Huang
- College of Environment Science and Engineering, Hunan University, Changsha 410082, P.R. China
| | - Chao Lei
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, P.R. China
| | - Chaohai Wei
- Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, South China University of Technology, Guangzhou 510006, P.R. China
| | - Guangming Zeng
- College of Environment Science and Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
25
|
Eastmond DA. Factors influencing mutagenic mode of action determinations of regulatory and advisory agencies. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:46-63. [DOI: 10.1016/j.mrrev.2012.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/11/2012] [Accepted: 04/21/2012] [Indexed: 11/17/2022]
|