1
|
Bitarishvili S, Shesterikova E, Smirnova A, Volkova P, Duarte G, Geras'kin S. Phytohormonal balance and differential gene expression in chronically irradiated Scots pine populations from the chernobyl affected zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60178-60188. [PMID: 39373840 DOI: 10.1007/s11356-024-35211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The impact of chronic radiation exposure on phytohormone content and expression of phytohormone- and stress-related genes of Scots pine in the zone affected by the Chernobyl accident was studied. Needle samples were collected from three plots with contrasting levels of radioactive contamination in the Polesye State Radiation-Ecological Reserve, Republic of Belarus, and two reference plots in the Kozeluzhsky forest in June 2022. The experimental plots were located within the artificial plantations of Scots pine established in 1982, before the accident in 1986. The activity of radionuclides 137Cs, 90Sr, 241Am, 238Pu, and 239+240Pu in soil and needles ensured dose rates ranging from 3.3 to 87 mGy × year-1, while at the reference plots, the range was 0.7‒0.8 mGy × year-1. Concentrations of plant hormones, including indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), zeatin, and abscisic acid (ABA) in needles were evaluated using high-performance liquid chromatography (HPLC). We demonstrate that chronic radiation exposure is a significant stress factor that affects both phytohormonal balance and the expression of some important phytohormone- and stress-related genes. We found a tendency toward decreased ABA and auxin concentrations in trees from plots contaminated with radionuclides. The ratio (IAA + IBA + zeatin)/ABA was drastically raised at the most contaminated plots Masany and Kulazhin, reflecting the functional rearrangements of cellular metabolism that ensure plant adaptation under chronic radiation exposure. Changes in gene expression indicated modulation of ABA and Ca2+ signalling pathways, decreased potential of zeatin biosynthesis, and activation of heat shock proteins biosynthesis.
Collapse
Affiliation(s)
- Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology of National Research Centre "Kurchatov Institute", 249035 Kievskoe Shosse, d 1, K 1, Obninsk, Kaluga Region, Russia.
| | - Ekaterina Shesterikova
- Russian Institute of Radiology and Agroecology of National Research Centre "Kurchatov Institute", 249035 Kievskoe Shosse, d 1, K 1, Obninsk, Kaluga Region, Russia
| | - Alyona Smirnova
- Russian Institute of Radiology and Agroecology of National Research Centre "Kurchatov Institute", 249035 Kievskoe Shosse, d 1, K 1, Obninsk, Kaluga Region, Russia
| | | | - Gustavo Duarte
- Belgian Nuclear Research Centre-SCK CEN, Unit for Biosphere Impact Studies, 2400, Mol, Belgium
| | - Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology of National Research Centre "Kurchatov Institute", 249035 Kievskoe Shosse, d 1, K 1, Obninsk, Kaluga Region, Russia
| |
Collapse
|
2
|
Wang E, Shuryak I, Brenner DJ. A competing risks machine learning study of neutron dose, fractionation, age, and sex effects on mortality in 21,000 mice. Sci Rep 2024; 14:17974. [PMID: 39095647 PMCID: PMC11297256 DOI: 10.1038/s41598-024-68717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
This study explores the impact of densely-ionizing radiation on non-cancer and cancer diseases, focusing on dose, fractionation, age, and sex effects. Using historical mortality data from approximately 21,000 mice exposed to fission neutrons, we employed random survival forest (RSF), a powerful machine learning algorithm accommodating nonlinear dependencies and interactions, treating cancer and non-cancer outcomes as competing risks. Unlike traditional parametric models, RSF avoids strict assumptions and captures complex data relationships through decision tree ensembles. SHAP (SHapley Additive exPlanations) values and variable importance scores were employed for interpretation. The findings revealed clear dose-response trends, with cancer being the predominant cause of mortality. SHAP value dose-response shapes differed, showing saturation for cancer hazard at high doses (> 2 Gy) and a more linear pattern at lower doses. Non-cancer responses remained more linear throughout the entire dose range. There was a potential inverse dose rate effect for cancer, while the evidence for non-cancer was less conclusive. Sex and age effects were less pronounced. This investigation, utilizing machine learning, enhances our understanding of the patterns of non-cancer and cancer mortality induced by densely-ionizing radiations, emphasizing the importance of such approaches in radiation research, including space travel and radioprotection.
Collapse
Affiliation(s)
- Eric Wang
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11, New York, NY, 10032, USA.
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11, New York, NY, 10032, USA
| |
Collapse
|
3
|
Mothersill C, Desai R, Seymour CB, Mendonca MS. "Lethal Mutations" a Misnomer or the Start of a Scientific Revolution? Radiat Res 2024; 202:205-214. [PMID: 38918004 DOI: 10.1667/rade-24-00018.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024]
Abstract
The aim of this paper is to review the history surrounding the discovery of lethal mutations, later described as delayed reproductive death. Lethal mutations were suggested very early on, to be due to a generalised instability in a cell population and are considered now to be one of the first demonstrations of "radiation-induced genomic instability" which led later to the establishment of the field of "non-targeted effects." The phenomenon was first described by Seymour et al. in 1986 and was confirmed by Trott's group in Europe and by Little and colleagues in the United States before being extended by Mendonca et al. in 1989, who showed conclusively that the distinguishing feature of lethal mutation occurrence was that it happened suddenly after about 9-10 population doublings in progeny which had survived the original dose of ionizing radiation. However, many authors then suggested that in fact, lethal mutations were implicit in the original experiments by Puck and Marcus in 1956 and were described in the extensive work by Sinclair in 1964, who followed clonal progeny for up to a year after irradiation and described "small colony formation" as a persistent consequence of ionizing radiation exposure. In this paper, we examine the history from 1956 to the present using the period from 1986-1989 as an anchor point to reach into the past and to go forward through the evolution of the field of low dose radiobiology where non-targeted effects predominate.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rhea Desai
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Marc S Mendonca
- Indiana University School of Medicine, Departments of Radiation Oncology and Medical and Molecular Genetics, Indianapolis, Indiana 46202
| |
Collapse
|
4
|
Jassi C, kuo WW, Kuo CH, Chang CM, Chen MC, Shih TC, Li CC, Huang CY. Mediation of radiation-induced bystander effect and epigenetic modification: The role of exosomes in cancer radioresistance. Heliyon 2024; 10:e34460. [PMID: 39114003 PMCID: PMC11304029 DOI: 10.1016/j.heliyon.2024.e34460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles produced by almost all mammalian cells. They play an important role in cell-to-cell communication by transferring biologically active molecules from the cell of origin to the recipient cells. Ionizing radiation influences exosome production and molecular cargo loading. In cancer management, ionizing radiation is a form of treatment that exerts its cancer cytotoxicity by induction of DNA damage and other alterations to the targeted tissue cells. However, normal bystander non-targeted cells may exhibit the effects of ionizing radiation, a phenomenon called radiation-induced bystander effect (RIBE). The mutual communication between the two groups of cells (targeted and non-targeted) via radiation-influenced exosomes enables the exchange of radiosensitive molecules. This facilitates indirect radiation exposure, leading, among other effects, to epigenetic remodeling and subsequent adaptation to radiation. This review discusses the role exosomes play in epigenetically induced radiotherapy resistance through the mediation of RIBE.
Collapse
Affiliation(s)
- Chikondi Jassi
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Wei-Wen kuo
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Ching Shih
- Department of Biomedical Imaging & Radiological Science College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Li
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
5
|
Jahng JWS, Little MP, No HJ, Loo BW, Wu JC. Consequences of ionizing radiation exposure to the cardiovascular system. Nat Rev Cardiol 2024:10.1038/s41569-024-01056-4. [PMID: 38987578 DOI: 10.1038/s41569-024-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Ionizing radiation is widely used in various industrial and medical applications, resulting in increased exposure for certain populations. Lessons from radiation accidents and occupational exposure have highlighted the cardiovascular and cerebrovascular risks associated with radiation exposure. In addition, radiation therapy for cancer has been linked to numerous cardiovascular complications, depending on the distribution of the dose by volume in the heart and other relevant target tissues in the circulatory system. The manifestation of symptoms is influenced by numerous factors, and distinct cardiac complications have previously been observed in different groups of patients with cancer undergoing radiation therapy. However, in contemporary radiation therapy, advances in treatment planning with conformal radiation delivery have markedly reduced the mean heart dose and volume of exposure, and these variables are therefore no longer sole surrogates for predicting the risk of specific types of heart disease. Nevertheless, certain cardiac substructures remain vulnerable to radiation exposure, necessitating close monitoring. In this Review, we provide a comprehensive overview of the consequences of radiation exposure on the cardiovascular system, drawing insights from various cohorts exposed to uniform, whole-body radiation or to partial-body irradiation, and identify potential risk modifiers in the development of radiation-associated cardiovascular disease.
Collapse
Affiliation(s)
- James W S Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, UK
| | - Hyunsoo J No
- Department of Radiation Oncology, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Greenstone Biosciences, Palo Alto, CA, USA.
| |
Collapse
|
6
|
Mothersill C, Seymour C, Cocchetto A, Williams D. Factors Influencing Effects of Low-dose Radiation Exposure. HEALTH PHYSICS 2024; 126:296-308. [PMID: 38526248 DOI: 10.1097/hp.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT It is now well accepted that the mechanisms induced by low-dose exposures to ionizing radiation (LDR) are different from those occurring after high-dose exposures. However, the downstream effects of these mechanisms are unclear as are the quantitative relationships between exposure, effect, harm, and risk. In this paper, we will discuss the mechanisms known to be important with an overall emphasis on how so-called "non-targeted effects" (NTE) communicate and coordinate responses to LDR. Targeted deposition of ionizing radiation energy in cells causing DNA damage is still regarded as the dominant trigger leading to all downstream events whether targeted or non-targeted. We regard this as an over-simplification dating back to formal target theory. It ignores that last 100 y of biological research into stress responses and signaling mechanisms in organisms exposed to toxic substances, including ionizing radiation. We will provide evidence for situations where energy deposition in cellular targets alone cannot be plausible as a mechanism for LDR effects. An example is where the energy deposition takes place in an organism not receiving the radiation dose. We will also discuss how effects after LDR depend more on dose rate and radiation quality rather than actual dose, which appears rather irrelevant. Finally, we will use recent evidence from studies of cataract and melanoma induction to suggest that after LDR, post-translational effects, such as protein misfolding or defects in energy metabolism or mitochondrial function, may dominate the etiology and progression of the disease. A focus on such novel pathways may open the way to successful prophylaxis and development of new biomarkers for better risk assessment after low dose exposures.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Colin Seymour
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Alan Cocchetto
- The National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045
| | - David Williams
- Cambridge University, The Old Schools, Trinity Lane, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
7
|
Cucinotta FA. Non-targeted effects and space radiation risks for astronauts on multiple International Space Station and lunar missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:166-175. [PMID: 38245342 DOI: 10.1016/j.lssr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 01/22/2024]
Abstract
Future space travel to the earth's moon or the planet Mars will likely lead to the selection of experienced International Space Station (ISS) or lunar crew persons for subsequent lunar or mars missions. Major concerns for space travel are galactic cosmic ray (GCR) risks of cancer and circulatory diseases. However large uncertainties in risk prediction occur due to the quantitative and qualitative differences in heavy ion microscopic energy deposition leading to differences in biological effects compared to low LET radiation. In addition, there are sparse radiobiology data and absence of epidemiology data for heavy ions and other high LET radiation. Non-targeted effects (NTEs) are found in radiobiology studies to increase the biological effectiveness of high LET radiation at low dose for cancer related endpoints. In this paper the most recent version of the NASA Space Cancer Risk model (NSCR-2022) is used to predict mission risks while considering NTEs in solid cancer risk predictions. I discuss predictions of space radiation risks of cancer and circulatory disease mortality for US Whites and US Asian-Pacific Islander (API) populations for 6-month ISS, 80-day lunar missions, and combined ISS-lunar mission. Model predictions suggest NTE increase cancer risks by about ∼2.3 fold over a model that ignores NTEs. US API are predicted to have a lower cancer risks of about 30% compared to US Whites. Cancer risks are slightly less than additive for multiple missions, which is due to the decease of risk with age of exposure and the increased competition with background risks as radiation risks increase. The inclusion of circulatory risks increases mortality estimates about 25% and 37% for females and males, respectively in the model ignoring NTEs, and 20% and 30% when NTEs are assumed to modify solid cancer risk. The predictions made here for combined ISS and lunar missions suggest risks are within risk limit recommendations by the National Council on Radiation Protection and Measurements (NCRP) for such missions.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Univerity of Nevada Las Vegas, Las Vegas, NV, 89154, United States of America.
| |
Collapse
|
8
|
Baverstock K. The Gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:e73-e88. [PMID: 38044248 DOI: 10.1016/j.pbiomolbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics, and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
9
|
Matarèse BFE, Rusin A, Seymour C, Mothersill C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int J Mol Sci 2023; 24:16464. [PMID: 38003655 PMCID: PMC10671017 DOI: 10.3390/ijms242216464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, UK;
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| |
Collapse
|
10
|
Mentana A, Orsière T, Malard V, Lamartiniere Y, Grisolia C, Tassistro V, Iaria O, Guardamagna I, Lonati L, Baiocco G. Gaining insight into genotoxicity with the comet assay in inhomogenoeous exposure scenarios: The effects of tritiated steel and cement particles on human lung cells in an inhalation perspective. Toxicol In Vitro 2023; 92:105656. [PMID: 37532108 DOI: 10.1016/j.tiv.2023.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The comet assay was recently applied for the first time to test the genotoxicity of micrometric stainless steel and cement particles, representative of those produced in the dismantling of nuclear power plants. A large dataset was obtained from in vitro exposure of BEAS-2B lung cells to different concentrations of hydrogenated (non-radiative control) and tritiated particles, to assess the impact of accidental inhalation. Starting from the distributions of the number of nuclei scored at different extent of DNA damage (% tail DNA values), we propose a new comet data treatment designed to consider the inhomogeneity of the action of such particles. Indeed, due to particle behavior in biological media and concentration, a large fraction of cells remains undamaged, and standard averaging of genotoxicity indicators leads to a misinterpretation of experimental results. The analysis we propose reaches the following goals: genotoxicity in human lung cells is assessed for stainless steel and cement microparticles; the role of radiative damage due to tritium is disentangled from particulate stress; the fraction of damaged cells and their average level of DNA damage are assessed separately, which is essential for carcinogenesis implications and sets the basis for a better-informed risk management for human exposure to radioactive particles.
Collapse
Affiliation(s)
- Alice Mentana
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Thierry Orsière
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, F-13005 Marseille, France
| | - Véronique Malard
- Aix Marseille Univ, CEA, CNRS, BIAM, IPM, F-13108 Saint Paul-Lez-Durance, France
| | | | | | - Virginie Tassistro
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, F-13005 Marseille, France
| | - Ombretta Iaria
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Isabella Guardamagna
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Leonardo Lonati
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy
| | - Giorgio Baiocco
- Laboratory of Radiation Biophysics and Radiobiology, Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy.
| |
Collapse
|
11
|
Najjar R. Radiology's Ionising Radiation Paradox: Weighing the Indispensable Against the Detrimental in Medical Imaging. Cureus 2023; 15:e41623. [PMID: 37435015 PMCID: PMC10331516 DOI: 10.7759/cureus.41623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 07/13/2023] Open
Abstract
Ionising radiation stands as an indispensable protagonist in the narrative of medical imaging, underpinning diagnostic evaluations and therapeutic interventions across an array of medical conditions. However, this protagonist poses a paradox - its inestimable service to medicine coexists with an undercurrent of potential health risks, primarily DNA damage and subsequent oncogenesis. The narrative of this comprehensive review unfurls around this intricate enigma, delicately balancing the indispensable diagnostic utility against the non-negotiable commitment to patient safety. In this critical discourse, the intricacies of ionising radiation are dissected, illuminating not only its sources but also the associated biological and health hazards. The exploration delves into the labyrinth of strategies currently deployed to minimise exposure and safeguard patients. By casting light on the scientific nuances of X-rays, computed tomography (CT), and nuclear medicine, it traverses the complex terrain of radiation use in radiology, to promote safer medical imaging practices, and to facilitate an ongoing dialogue about diagnostic necessity and risk. Through a rigorous examination, the pivotal relationship between radiation dose and dose response is elucidated, unravelling the mechanisms of radiation injury and distinguishing between deterministic and stochastic effects. Moreover, protection strategies are illuminated, demystifying concepts such as justification, optimisation, the As Low As Reasonably Achievable (ALARA) principle, dose and diagnostic reference levels, along with administrative and regulatory approaches. With an eye on the horizon, promising avenues of future research are discussed. These encompass low-radiation imaging techniques, long-term risk assessment in large patient cohorts, and the transformative potential of artificial intelligence in dose optimisation. This exploration of the nuanced complexities of radiation use in radiology aims to foster a collaborative impetus towards safer medical imaging practices. It underscores the need for an ongoing dialogue around diagnostic necessity and risk, thereby advocating for a continual reassessment in the narrative of medical imaging.
Collapse
Affiliation(s)
- Reabal Najjar
- Medical Imaging, Canberra Hospital, Australian Capital Territory (ACT) Health, Canberra, AUS
| |
Collapse
|
12
|
Zhao L, Tang A, Long F, Mi D, Sun Y. Modeling of ionizing radiation-induced chromosome aberration and tumor prevalence based on two classes of DNA double-strand breaks clustering in chromatin domains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115038. [PMID: 37229870 DOI: 10.1016/j.ecoenv.2023.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
There has been some controversy over the use of radiobiological models when modeling the dose-response curves of ionizing radiation (IR)-induced chromosome aberration and tumor prevalence, as those curves usually show obvious non-targeted effects (NTEs) at low doses of high linear energy transfer (LET) radiation. The lack of understanding the contribution of NTEs to IR-induced carcinogenesis can lead to distinct deviations of relative biological effectiveness (RBE) estimations of carcinogenic potential, which are widely used in radiation risk assessment and radiation protection. In this work, based on the initial pattern of two classes of IR-induced DNA double-strand breaks (DSBs) clustering in chromatin domains and the subsequent incorrect repair processes, we proposed a novel radiobiological model to describe the dose-response curves of two carcinogenic-related endpoints within the same theoretical framework. The representative experimental data was used to verify the consistency and validity of the present model. The fitting results indicated that, compared with targeted effect (TE) and NTE models, the current model has better fitting ability when dealing with the experimental data of chromosome aberration and tumor prevalence induced by multiple types of IR with different LETs. Notably, the present model without introducing an NTE term was adequate to describe the dose-response curves of IR-induced chromosome aberration and tumor prevalence with NTEs in low-dose regions. Based on the fitting parameters, the LET-dependent RBE values were calculated for three given low doses. Our results showed that the RBE values predicted by the current model gradually decrease with the increase of doses for the endpoints of chromosome aberration and tumor prevalence. In addition, the calculated RBE was also compared with those evaluated from other models. These analyses show that the proposed model can be used as an alternative tool to well describe dose-response curves of multiple carcinogenic-related endpoints and effectively estimate RBE in low-dose regions.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| | - Aiping Tang
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Fei Long
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian 116026, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| |
Collapse
|
13
|
Salazar A, Chavarria V, Flores I, Ruiz S, Pérez de la Cruz V, Sánchez-García FJ, Pineda B. Abscopal Effect, Extracellular Vesicles and Their Immunotherapeutic Potential in Cancer Treatment. Molecules 2023; 28:molecules28093816. [PMID: 37175226 PMCID: PMC10180522 DOI: 10.3390/molecules28093816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.
Collapse
Affiliation(s)
- Aleli Salazar
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
- Immunoregulation Lab, Department of Immunology, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itamar Flores
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Samanta Ruiz
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | | | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| |
Collapse
|
14
|
Murdoch I, Puertas R, Hamedani M, Khaw PT. Long-Term Safety and Outcomes of β-radiation for Trabeculectomy. J Glaucoma 2023; 32:171-177. [PMID: 36375094 DOI: 10.1097/ijg.0000000000002144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022]
Abstract
PRCIS β-radiation is a neglected antiscarring therapy with past concerns for safety. This report found it safe and efficacious when used as an adjuvant to trabeculectomy surgery in 101 people (135 eyes) over 20 years. PURPOSE β-radiation has been used as an adjunct to prevent scarring in trabeculectomy surgery for many decades. Safety concerns were raised with the use of high doses on the bare sclera. Moorfields Eye Hospital has a large cohort of patients who have received β-radiation therapy. We report a review of the long-term safety and efficacy. METHODS Cases undertaken between August 1992 and August 1996 were reviewed. Those with records available for postoperative review of more than 5 years were included. Failure (reintervention/>21 mm Hg on 2 successive occasions) and any complication previously reported in association with β-radiation were the primary outcomes. RESULTS In total, 292 operations using β-radiation were recorded and 101 people (135 eyes) with trabeculectomy surgery and postoperative follow-up for over 4.5 years were included. The median follow-up period was 22.5 years. At the final follow-up, 48 (48%) single eyes per person had failed and 20/51 (51%) eyes with primary open angle glaucoma had cataract surgery. Other complications were rare and associated with copathology. CONCLUSION In glaucoma patients at risk of scarring and failure after trabeculectomy, as an antiscarring adjuvant, a 750 cGY dose of β-radiation was found to be safe and efficacious in the long term.
Collapse
Affiliation(s)
- Ian Murdoch
- UCL Institute of Ophthalmology
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust
| | - Renata Puertas
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust
| | | | - Peng Tee Khaw
- UCL Institute of Ophthalmology
- Glaucoma Service, Moorfields Eye Hospital NHS Foundation Trust
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
15
|
Gaddini L, Bernardo A, Greco A, Campa A, Esposito G, Matteucci A. Adaptive Response in Rat Retinal Cell Cultures Irradiated with γ-rays. Int J Mol Sci 2023; 24:1972. [PMID: 36768293 PMCID: PMC9916556 DOI: 10.3390/ijms24031972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Retina can receive incidental γ-ray exposure from various sources. For example, although radiation therapy is a crucial tool for managing head and neck tumors, patients may develop ocular complications as collateral damage from accidental irradiation. Recently, there has been concern that retinal irradiation during space flight may compromise mission goals and long-term quality of life after space travel. Previously, in our in vitro model, we proved that immature retinal cells are more vulnerable to γ-radiation than differentiated neurons. Here, we investigate if a low-dose pre-irradiation (0.025 Gy), known to have a protective effect in various contexts, can affect DNA damage and oxidative stress in cells exposed to a high dose of γ-rays (2 Gy). Our results reveal that pre-irradiation reduces 2 Gy effects in apoptotic cell number, H2AX phosphorylation and oxidative stress. These defensive effects are also evident in glial cells (reduction in GFAP and ED1 levels) and antioxidant enzymes (catalase and CuZnSOD). Overall, our results confirm that rat retinal cultures can be an exciting tool to study γ-irradiation toxic effects on retinal tissue and speculate that low irradiation may enhance the skill of retinal cells to reduce damage induced by higher doses.
Collapse
Affiliation(s)
- Lucia Gaddini
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonietta Bernardo
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Anita Greco
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Alessandro Campa
- National Centre for Radiation Protecti on and Computational Physics, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giuseppe Esposito
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, 00185 Rome, Italy
| | - Andrea Matteucci
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
16
|
Okonkwo UC, Ohagwu CC, Aronu ME, Okafor CE, Idumah CI, Okokpujie IP, Chukwu NN, Chukwunyelu CE. Ionizing radiation protection and the linear No-threshold controversy: Extent of support or counter to the prevailing paradigm. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 253-254:106984. [PMID: 36057228 DOI: 10.1016/j.jenvrad.2022.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
This study has developed a relationship that categorized radiation protection and allows for a proper, clear, and concise review of the different classifications in terms of principles of protection, dose criteria, categories, fundamental tools, exposure situations, applications and control measures. With the groundwork laid, advances of the linear no-threshold (LNT) model which has attracted attention in the field of radiobiology and epidemiology were examined in detail. Various plausible dose-response relationship scenarios were x-rayed under low-dose extrapolation. Intensive review of factors opposing the LNT model involving radiophobia (including misdiagnosis, alternative surgery/imaging, suppression of ionizing radiation (IR) research); radiobiology (including DNA damage repair, apoptosis/necrosis, senescence protection) and cost issues (including-high operating cost of LNT, incorrect prioritization, exaggeration of LNT impact, risk-to-benefit analysis) were performed. On the other hand, factors supporting the use of LNT were equally examined, they include regulatory bodies' endorsement, insufficient statistical significance, partial DNA repair, variability of irradiated bodies, different latency periods for cancer, dynamic nature of threshold and conflicting interests. After considering the gaps in the scientific investigations that either support or counter the scientific paradigm on the use of LNT model, further research and advocacy is recommended that will ultimately lead to the acceptance of an alternative paradigm by the international regulators.
Collapse
Affiliation(s)
- Ugochukwu C Okonkwo
- Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria.
| | - Christopher C Ohagwu
- Department of Radiography and Radiological Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Michael E Aronu
- Department of Radiology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Christian E Okafor
- Department of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Christopher I Idumah
- Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Imhade P Okokpujie
- Department of Mechanical and Mechatronic Engineering, Afe-Babalola University, Ado-Ekiti, Nigeria
| | - Nelson N Chukwu
- National Engineering Design Development Institute, Nnewi, Anambra State, Nigeria
| | | |
Collapse
|
17
|
Changes in Radiosensitivity to Gamma-Rays of Lymphocytes from Hyperthyroid Patients Treated with I-131. Int J Mol Sci 2022; 23:ijms231710156. [PMID: 36077557 PMCID: PMC9456272 DOI: 10.3390/ijms231710156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the peripheral blood lymphocytes (PBL) response to a dose of γ-rays in patients treated with radioiodine (I-131) for hyperthyroidism vs. healthy controls, to gain information about the individual lymphocytes’ radio-sensitivity. Blood samples were taken from 18 patients and 10 healthy donors. Phosphorylated histone variant H2AX (γ-H2AX) and micronuclei (MN) induction were used to determine the change in PBL radio-sensitivity and the correlations between the two types of damage. The two assays showed large inter-individual variability in PBL background damage and in radio-sensitivity (patients vs. healthy donors). In particular, they showed an increased radio-sensitivity in 36% and 33% of patients, decrease in 36% and 44%, respectively. There was a scarce correlation between the two assays and no dependence on age or gender. A significant association was found between high radio-sensitivity conditions and induced hypothyroidism. PBL radio-sensitivity in the patient group was not significantly affected by treatment with I-131, whereas there were significant changes inter-individually. The association found between clinical response and PBL radio-sensitivity suggests that the latter could be used in view of the development of personalized treatments.
Collapse
|
18
|
Papenfuß F, Maier A, Fournier C, Kraft G, Friedrich T. In-vivo dose determination in a human after radon exposure: proof of principle. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:279-292. [PMID: 35377069 PMCID: PMC9021097 DOI: 10.1007/s00411-022-00972-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/09/2022] [Indexed: 05/27/2023]
Abstract
Radon-222 is pervasive in our environment and the second leading cause of lung cancer induction after smoking while it is simultaneously used to mediate anti-inflammatory effects. During exposure, radon gas distributes inhomogeneously in the body, making a spatially resolved dose quantification necessary to link physical exposure conditions with accompanying risks and beneficial effects. Current dose predictions rely on biokinetic models based on scarce input data from animal experiments and indirect exhalation measurements of a limited number of humans, which shows the need for further experimental verification. We present direct measurements of radon decay in the abdomen and thorax after inhalation as proof of principle in one patient. At both sites, most of the incorporated radon is removed within ~ 3 h, whereas a smaller fraction is retained longer and accounts for most of the deposited energy. The obtained absorbed dose values were [Formula: see text] µGy (abdomen, radon gas) and [Formula: see text] µGy (thorax, radon and progeny) for a one-hour reference exposure at a radon activity concentration of 55 kBq m-3. The accumulation of long-retained radon in the abdomen leads to higher dose values at that site than in the thorax. Contrasting prior work, our measurements are performed directly at specific body sites, i.e. thorax and abdomen, which allows for direct spatial distinction of radon kinetics in the body. They show more incorporated and retained radon than current approaches predict, suggesting higher doses. Although obtained only from one person, our data may thus represent a challenge for the barely experimentally benchmarked biokinetic dose assessment model.
Collapse
Affiliation(s)
- Franziska Papenfuß
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany
| | - Andreas Maier
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany
| | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany
| | - Gerhard Kraft
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany
| | - Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany.
| |
Collapse
|
19
|
Vives I Batlle J, Biermans G, Copplestone D, Kryshev A, Melintescu A, Mothersill C, Sazykina T, Seymour C, Smith K, Wood MD. Towards an ecological modelling approach for assessing ionizing radiation impact on wildlife populations. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:020507. [PMID: 35467551 DOI: 10.1088/1361-6498/ac5dd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The emphasis of the international system of radiological protection of the environment is to protect populations of flora and fauna. Throughout the MODARIA programmes, the United Nations' International Atomic Energy Agency (IAEA) has facilitated knowledge sharing, data gathering and model development on the effect of radiation on wildlife. We present a summary of the achievements of MODARIA I and II on wildlife dose effect modelling, extending to a new sensitivity analysis and model development to incorporate other stressors. We reviewed evidence on historical doses and transgenerational effects on wildlife from radioactively contaminated areas. We also evaluated chemical population modelling approaches, discussing similarities and differences between chemical and radiological impact assessment in wildlife. We developed population modelling methodologies by sourcing life history and radiosensitivity data and evaluating the available models, leading to the formulation of an ecosystem-based mathematical approach. This resulted in an ecologically relevant conceptual population model, which we used to produce advice on the evaluation of risk criteria used in the radiological protection of the environment and a proposed modelling extension for chemicals. This work seeks to inform stakeholder dialogue on factors influencing wildlife population responses to radiation, including discussions on the ecological relevance of current environmental protection criteria. The area of assessment of radiation effects in wildlife is still developing with underlying data and models continuing to be improved. IAEA's ongoing support to facilitate the sharing of new knowledge, models and approaches to Member States is highlighted, and we give suggestions for future developments in this regard.
Collapse
Affiliation(s)
- J Vives I Batlle
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, Mol, 2400, Belgium
| | - G Biermans
- Federal Agency for Nuclear Control, Rue Ravensteinstraat 36, Brussels, 1000, Belgium
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - A Kryshev
- Research and Production Association 'Typhoon', 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia
| | - A Melintescu
- Horia Hulubei National Institute of Physics & Nuclear Engineering, Bucharest - Magurele, Romania
| | - C Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - T Sazykina
- Research and Production Association 'Typhoon', 4 Pobedy Str., Obninsk, Kaluga Region 249038, Russia
| | - C Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - K Smith
- RadEcol Consulting Ltd, 5 The Chambers, Vineyard, Abingdon OX14 3PX, United Kingdom
| | - M D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, United Kingdom
| |
Collapse
|
20
|
Cucinotta FA. Flying without a Net: Space Radiation Cancer Risk Predictions without a Gamma-ray Basis. Int J Mol Sci 2022; 23:4324. [PMID: 35457139 PMCID: PMC9029417 DOI: 10.3390/ijms23084324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
The biological effects of high linear energy transfer (LET) radiation show both a qualitative and quantitative difference when compared to low-LET radiation. However, models used to estimate risks ignore qualitative differences and involve extensive use of gamma-ray data, including low-LET radiation epidemiology, quality factors (QF), and dose and dose-rate effectiveness factors (DDREF). We consider a risk prediction that avoids gamma-ray data by formulating a track structure model of excess relative risk (ERR) with parameters estimated from animal studies using high-LET radiation. The ERR model is applied with U.S. population cancer data to predict lifetime risks to astronauts. Results for male liver and female breast cancer risk show that the ERR model agrees fairly well with estimates of a QF model on non-targeted effects (NTE) and is about 2-fold higher than the QF model that ignores NTE. For male or female lung cancer risk, the ERR model predicts about a 3-fold and more than 7-fold lower risk compared to the QF models with or without NTE, respectively. We suggest a relative risk approach coupled with improved models of tissue-specific cancers should be pursued to reduce uncertainties in space radiation risk projections. This approach would avoid low-LET uncertainties, while including qualitive effects specific to high-LET radiation.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
21
|
Tian XL, Lu X, Lyu YM, Zhao H, Liu QJ, Tian M. Analysis of Red Blood Cells and their Components in Medical Workers with Occupational Exposure to Low-Dose Ionizing Radiation. Dose Response 2022; 20:15593258221081373. [PMID: 35237116 PMCID: PMC8882952 DOI: 10.1177/15593258221081373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Plenty of reports focus on the effects of low-dose radiation (LDR) on peripheral blood lymphocytes in radiation workers. However, studies on red blood cells (RBCs) in radiation workers are rarely reported. Many studies focused on investigate the hemogram of radiation staffs without detecting other components of RBCs. To explore the potential effect of LDR on RBCs, we detected the level of RBC count, hemoglobin, 2,3-disphosphoglycerate (2,3-DPG), and glutathione (GSH), and then analyzed the factors on these indices in 106 medical radiation workers. As a result, RBC count was affected by sex, age, type of work, length of service (only for females), and annual effective dose (only for males). Hemoglobin status was affected by sex, type of work, and annual effective dose (only for males). Sex, age, and type of work had no effects on the concentration of 2,3-DPG and GSH. Length of service affected 2,3-DPG concentration, and annual effective dose affected GSH level. In conclusion, chronic occupational LDR exposure may have an effect on RBC count, hemoglobin status, and the concentration of 2,3-DPG and GSH in radiation workers to some extent. However, it is still unknown how this kind of influence affects the health of radiation workers.
Collapse
Affiliation(s)
- Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Yu-Min Lyu
- Laboratory of Toxicology, Henan Institute of Occupational Medicine, Zheng Zhou, P.R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| |
Collapse
|
22
|
Non-Targeted Effects of Synchrotron Radiation: Lessons from Experiments at the Australian and European Synchrotrons. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Studies have been conducted at synchrotron facilities in Europe and Australia to explore a variety of applications of synchrotron X-rays in medicine and biology. We discuss the major technical aspects of the synchrotron irradiation setups, paying specific attention to the Australian Synchrotron (AS) and the European Synchrotron Radiation Facility (ESRF) as those best configured for a wide range of biomedical research involving animals and future cancer patients. Due to ultra-high dose rates, treatment doses can be delivered within milliseconds, abiding by FLASH radiotherapy principles. In addition, a homogeneous radiation field can be spatially fractionated into a geometric pattern called microbeam radiotherapy (MRT); a coplanar array of thin beams of microscopic dimensions. Both are clinically promising radiotherapy modalities because they trigger a cascade of biological effects that improve tumor control, while increasing normal tissue tolerance compared to conventional radiation. Synchrotrons can deliver high doses to a very small volume with low beam divergence, thus facilitating the study of non-targeted effects of these novel radiation modalities in both in-vitro and in-vivo models. Non-targeted radiation effects studied at the AS and ESRF include monitoring cell–cell communication after partial irradiation of a cell population (radiation-induced bystander effect, RIBE), the response of tissues outside the irradiated field (radiation-induced abscopal effect, RIAE), and the influence of irradiated animals on non-irradiated ones in close proximity (inter-animal RIBE). Here we provide a summary of these experiments and perspectives on their implications for non-targeted effects in biomedical fields.
Collapse
|
23
|
Race and ethnic group dependent space radiation cancer risk predictions. Sci Rep 2022; 12:2028. [PMID: 35132138 PMCID: PMC8821552 DOI: 10.1038/s41598-022-06105-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022] Open
Abstract
Future space missions by national space agencies and private industry, including space tourism, will include a diverse makeup of crewmembers with extensive variability in age, sex, and race or ethnic groups. The relative risk (RR) model is used to transfer epidemiology data between populations to estimate radiation risks. In the RR model cancer risk is assumed to be proportional to background cancer rates and limited by other causes of death, which are dependent on genetic, environmental and dietary factors that are population dependent. Here we apply the NSCR-2020 model to make the first predictions of age dependent space radiation cancer risks for several U.S. populations, which includes Asian-Pacific Islanders (API), Black, Hispanic (white and black), and White (non-Hispanic) populations. Results suggest that male API and Hispanic populations have the overall lowest cancer risks, while White females have the highest risk. Blacks have similar total cancer rates than Whites, however their reduced life expectancy leads to modestly lower lifetime radiation risks compared to Whites. There are diverse tissue specific cancer risk ranking across sex and race, which include sex specific organ risks, female’s having larger lung, stomach, and urinary-bladder radiation risks, and male’s having larger colon and brain risks.
Collapse
|
24
|
Mohammadzadeh M, Alizadeh Z, Khodabakhsh R, Pazhang Y, Mohammadi S. Monte Carlo simulation for assessing absorbed dose effects of low-dose β-radiation ( 90Sr/ 90Y) on cytotoxicity and apoptotic death in K562 cells. J Cancer Res Ther 2022; 18:200-208. [DOI: 10.4103/jcrt.jcrt_909_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Shuryak I, Sachs RK, Brenner DJ. Quantitative modeling of carcinogenesis induced by single beams or mixtures of space radiations using targeted and non-targeted effects. Sci Rep 2021; 11:23467. [PMID: 34873209 PMCID: PMC8648899 DOI: 10.1038/s41598-021-02883-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Ionizing radiations encountered by astronauts on deep space missions produce biological damage by two main mechanisms: (1) Targeted effects (TE) due to direct traversals of cells by ionizing tracks. (2) Non-targeted effects (NTE) caused by release of signals from directly hit cells. The combination of these mechanisms generates non-linear dose response shapes, which need to be modeled quantitatively to predict health risks from space exploration. Here we used a TE + NTE model to analyze data on APC(1638N/+) mouse tumorigenesis induced by space-relevant doses of protons, 4He, 12C, 16O, 28Si or 56Fe ions, or γ rays. A customized weighted Negative Binomial distribution was used to describe the radiation type- and dose-dependent data variability. This approach allowed detailed quantification of dose–response shapes, NTE- and TE-related model parameters, and radiation quality metrics (relative biological effectiveness, RBE, and radiation effects ratio, RER, relative to γ rays) for each radiation type. Based on the modeled responses for each radiation type, we predicted the tumor yield for a Mars-mission-relevant mixture of these radiations, using the recently-developed incremental effect additivity (IEA) synergy theory. The proposed modeling approach can enhance current knowledge about quantification of space radiation quality effects, dose response shapes, and ultimately the health risks for astronauts.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA.
| | - Rainer K Sachs
- Department of Mathematics, University of California, Berkeley, CA, 94720, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA
| |
Collapse
|
26
|
Guédon R, Maremonti E, Armant O, Galas S, Brede DA, Lecomte-Pradines C. A systems biology analysis of reproductive toxicity effects induced by multigenerational exposure to ionizing radiation in C. elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112793. [PMID: 34544019 DOI: 10.1016/j.ecoenv.2021.112793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Understanding the effects of chronic exposure to pollutants over generations is of primary importance for the protection of humans and the environment; however, to date, knowledge on the molecular mechanisms underlying multigenerational adverse effects is scarce. We employed a systems biology approach to analyze effects of chronic exposure to gamma radiation at molecular, tissue and individual levels in the nematode Caenorhabditis elegans. Our data show a decrease of 23% in the number of offspring on the first generation F0 and more than 40% in subsequent generations F1, F2 and F3. To unveil the impact on the germline, an in-depth analysis of reproductive processes involved in gametes formation was performed for all four generations. We measured a decrease in the number of mitotic germ cells accompanied by increased cell-cycle arrest in the distal part of the gonad. Further impact on the germline was manifested by decreased sperm quantity and quality. In order to obtain insight in the molecular mechanisms leading to decreased fecundity, gene expression was investigated via whole genome RNA sequencing. The transcriptomic analysis revealed modulation of transcription factors, as well as genes involved in stress response, unfolded protein response, lipid metabolism and reproduction. Furthermore, a drastic increase in the number of differentially expressed genes involved in defense response was measured in the last two generations, suggesting a cumulative stress effect of ionizing radiation exposure. Transcription factor binding site enrichment analysis and the use of transgenic strain identified daf-16/FOXO as a master regulator of genes differentially expressed in response to radiation. The presented data provide new knowledge with respect to the molecular mechanisms involved in reproductive toxic effects and accumulated stress resulting from multigenerational exposure to ionizing radiation.
Collapse
Affiliation(s)
- Rémi Guédon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Erica Maremonti
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Simon Galas
- Institut des biomolecules Max Mousseron (IBMM), University of Montpellier, Centre National de Recherche Scientifique (CNRS), ENSCM, Montpellier, France
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France.
| |
Collapse
|
27
|
Cucinotta FA, Schimmerling W, Blakely EA, Hei TK. A proposed change to astronaut exposures limits is a giant leap backwards for radiation protection. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:59-70. [PMID: 34689951 DOI: 10.1016/j.lssr.2021.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Addressing the uncertainties in assessing health risks from cosmic ray heavy ions is a major scientific challenge recognized by many previous reports by the National Academy of Sciences (NAS) and the National Council on Radiation Protection and Measurements (NCRP) advising the National Aeronautics and Space Administration (NASA). These reports suggested a series of steps to pursue the scientific basis for space radiation protection, including the implementation of age and sex dependent risk assessments and exposure limits appropriate for a small population of radiation workers, the evaluation of uncertainties in risk projections, and developing a vigorous research program in heavy ion radiobiology to reduce uncertainties and discover effective countermeasures. The assessment of uncertainties in assessing risk provides protection against changing assessments of risk, reveals limitations in information used in space mission operations, and provides the impetus to reduce uncertainties and discover the true level of risk and possible effectiveness of countermeasures through research. However, recommendations of a recent NAS report, in an effort to minimize differences in age and sex on flight opportunities, suggest a 600 mSv career effective dose limit based on a median estimate to reach 3% cancer fatality for 35-year old females. The NAS report does not call out examples where females would be excluded from space missions planned in the current decade using the current radiation limits at NASA. In addition, there are minimal considerations of the level of risk to be encountered at this exposure level with respect to the uncertainties of heavy ion radiobiology, and risks of cancer, as well as cognitive detriments and circulatory diseases. Furthermore, their recommendation to limit Sieverts and not risk in conjunction with a waiver process is essentially a recommendation to remove radiation limits for astronauts. We discuss issues with several of the NAS recommendations with the conclusion that the recommendations could have negative impacts on crew health and safety, and violate the three principles of radiation protection (to prevent clinically significant deterministic effects, limit stochastic effects, and practice ALARA), which would be a giant leap backwards for radiation protection.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | | | | | - Tom K Hei
- Center for Radiological Research, Columbia University, New York, NY, USA
| |
Collapse
|
28
|
Kadhim M, Tuncay Cagatay S, Elbakrawy EM. Non-targeted effects of radiation: a personal perspective on the role of exosomes in an evolving paradigm. Int J Radiat Biol 2021; 98:410-420. [PMID: 34662248 DOI: 10.1080/09553002.2021.1980630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Radiation-induced non-targeted effects (NTE) have implications in a variety of areas relevant to radiation biology. Here we evaluate the various cargo associated with exosomal signalling and how they work synergistically to initiate and propagate the non-targeted effects including Genomic Instability and Bystander Effects. CONCLUSIONS Extra cellular vesicles, in particular exosomes, have been shown to carry bystander signals. Exosome cargo may contain nucleic acids, both DNA and RNA, as well as proteins, lipids and metabolites. These cargo molecules have all been considered as potential mediators of NTE. A review of current literature shows mounting evidence of a role for ionizing radiation in modulating both the numbers of exosomes released from affected cells as well as the content of their cargo, and that these exosomes can instigate functional changes in recipient cells. However, there are significant gaps in our understanding, particularly regarding modified exosome cargo after radiation exposure and the functional changes induced in recipient cells.
Collapse
Affiliation(s)
- Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Seda Tuncay Cagatay
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| |
Collapse
|
29
|
Manisaligil YA, Gumustekin M, Micili SC, Ural C, Cavdar Z, Sisman G, Yurt A. The role of small GTPase Rac1 in ionizing radiation-induced testicular damage. Int J Radiat Biol 2021; 98:41-49. [PMID: 34597250 DOI: 10.1080/09553002.2021.1988752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The main acute and late effects of ionizing radiation on living organisms are the formation of reactive oxygen species (ROS), apoptosis and DNA damage. Since the Rac1 molecule is a subunit of the NADPH oxidase enzyme, it is known to participate in the generation of ROS. The aim of this study was to investigate the role of Rac1 molecule in testicular damage induced by low (0.02 Gy), medium (0.1 Gy) and high (5 Gy) dose irradiation. MATERIAL AND METHOD In this study, Wistar rats (except the control group) were received whole body X-ray irradiation. Testicular tissues were removed 2 hours, 24 hours and 7 days after radiation exposure. Testicular damage was examined by hematoxylin-eosin staining and Johnsen's score. Immunohistochemical staining and G-LISA method were used to determine Rac1 expression and activation. To evaluate the generation of ROS in the testicular tissues, intracellular ROS, superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured. RESULTS Increases in testicular damage were detected in all radiation exposed groups in a dose- and time-dependent manner. Compared to the control group, Rac1 expression decreased in all irradiated groups, while Rac1 activation increased. In addition, intracellular ROS and MDA levels were increased and SOD activity levels decreased in the irradiated groups compared to the control group. CONCLUSION Our findings suggest that Rac1 has a role in the increase of intracellular ROS and lipid peroxidation which led to an increase in radiation- induced testicular damage.
Collapse
Affiliation(s)
- Yasar Aysun Manisaligil
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Medical Imaging Techniques Program, Vocational School of Health Services, Dokuz Eylul University, Izmir, Turkey
| | - Mukaddes Gumustekin
- Department of Medical Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey.,Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Serap Cilaker Micili
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Cemre Ural
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Zahide Cavdar
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Gizem Sisman
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Aysegul Yurt
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.,Medical Imaging Techniques Program, Vocational School of Health Services, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
30
|
Ainsbury EA, Barnard SGR. Sensitivity and latency of ionising radiation-induced cataract. Exp Eye Res 2021; 212:108772. [PMID: 34562436 DOI: 10.1016/j.exer.2021.108772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 01/29/2023]
Abstract
When managed with appropriate radiation protection procedures, ionising radiation is of great benefit to society. Opacification of the lens, and vision impairing cataract, have recently been recognised at potential effects of relatively low dose radiation exposure, on the order of 1 Gy or below. Within the last 10 years, understanding of the effects of low dose ionising radiation on the lens has increased, particularly in terms of DNA damage and responses, and how multiple radiation or other events in the lens might contribute to the overall risk of cataract. However, gaps remain, not least in the understanding of how radiation interacts with other risk factors such as aging, as well as the relative radiosensitivity of the lens compared to tissues of the body. This paper reviews the current literature in the field of low dose radiation cataract, with a particular focus on sensitivity and latency.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| | - Stephen G R Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot Oxford, OX11 ORQ, UK.
| |
Collapse
|
31
|
Baverstock K. The gene: An appraisal. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:46-62. [PMID: 33979646 DOI: 10.1016/j.pbiomolbio.2021.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
The gene can be described as the foundational concept of modern biology. As such, it has spilled over into daily discourse, yet it is acknowledged among biologists to be ill-defined. Here, following a short history of the gene, I analyse critically its role in inheritance, evolution, development, and morphogenesis. Wilhelm Johannsen's genotype-conception, formulated in 1910, has been adopted as the foundation stone of genetics, giving the gene a higher degree of prominence than is justified by the evidence. An analysis of the results of the Long-Term Evolution Experiment (LTEE) with E. coli bacteria, grown over 60,000 generations, does not support spontaneous gene mutation as the source of variance for natural selection. From this it follows that the gene is not Mendel's unit of inheritance: that must be Johannsen's transmission-conception at the gamete phenotype level, a form of inheritance that Johannsen did not consider. Alternatively, I contend that biology viewed on the bases of thermodynamics, complex system dynamics and self-organisation, provides a new framework for the foundations of biology. In this framework, the gene plays a passive role as a vital information store: it is the phenotype that plays the active role in inheritance, evolution, development, and morphogenesis.
Collapse
Affiliation(s)
- Keith Baverstock
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland.
| |
Collapse
|
32
|
AMARAL CARLOSALEXANDREBOTELHODO, ANDRADE RICARDOALVES, LABRONICI PEDROJOSÉ. ESTIMATED EXPOSURE OF SPINE SURGEONS TO RADIATION. COLUNA/COLUMNA 2021. [DOI: 10.1590/s1808-185120212003235324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective To estimate the amount of radiation received and accumulated in the bodies of two surgeons, one being the responsible surgeon and the other the assistant, performing spine surgery procedures over a period of 25 years. Methods Seventy-two spinal surgeries were performed during a seven-month period and the radiation loads were measured in both surgeons. The measurement of radiation was captured in fluoroscopy in anteroposterior and lateral incidences. The surgeon and the assistant used two dosimeters, one in the cervical region protecting the thyroid and the other on the lead apron in the genital region. The radioactive loads were measured in millisieverts and the accumulated charges were recorded monthly in both regions of the body in the two surgeons for seven months and the means for the work periods (1, 5, 10, 15, 20 and 25 years) were estimated. Results It was observed that in the surgeon the average accumulated radiation loads were 131.9% and 176.92% higher than those of the assistant in the cervical and genital regions, respectively. Conclusion While the use of X-rays is indispensable in routine orthopedic surgery, we have to consider the development of techniques of protection, rigor and discipline in the use of safety materials for surgeons. Preventive exposure reduction measures such as using thyroid protection equipment and turning the head away from the patient during fluoroscopy, among others, should be mandatory to promote less radiation exposure. Level of evidence II; Comparative prospective study.
Collapse
|
33
|
Burraco P, Bonzom JM, Car C, Beaugelin-Seiller K, Gashchak S, Orizaola G. Lack of impact of radiation on blood physiology biomarkers of Chernobyl tree frogs. Front Zool 2021; 18:33. [PMID: 34187507 PMCID: PMC8240299 DOI: 10.1186/s12983-021-00416-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Human actions have altered natural ecosystems worldwide. Among the many pollutants released to the environment, ionizing radiation can cause severe damage at different molecular and functional levels. The accident in the Chernobyl Nuclear Power Plant (1986) caused the largest release of ionizing radiation to the environment in human history. Here, we examined the impact of the current exposure to ionizing radiation on blood physiology biomarkers of adult males of the Eastern tree frog (Hyla orientalis) inhabiting within and outside the Chernobyl Exclusion Zone. We measured the levels of eight blood parameters (sodium, potassium, chloride, ionized calcium, total carbon dioxide, glucose, urea nitrogen, and anion gap), physiological markers of homeostasis, as well as of liver and kidney function. RESULTS Levels of blood physiology biomarkers did not vary in function of the current exposure of tree frogs to ionizing radiation within the Chernobyl Exclusion Zone. Physiological blood levels were similar in frogs inhabiting Chernobyl (both in areas with medium-high or low radiation) than in tree frogs living outside Chernobyl exposed only to background radiation levels. CONCLUSIONS The observed lack of effects of current radiation levels on blood biomarkers can be a consequence of the low levels of radiation currently experienced by Chernobyl tree frogs, but also to the fact that our sampling was restricted to active breeding males, i.e. potentially healthy adult individuals. Despite the clear absence of effects of current radiation levels on physiological blood parameters in tree frogs, more research covering different life stages and ecological scenarios is still needed to clarify the impact of ionizing radiation on the physiology, ecology, and dynamics of wildlife inhabiting radioactive-contaminated areas.
Collapse
Affiliation(s)
- Pablo Burraco
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden.
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Clément Car
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Sergey Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, Slavutych, 07100, Ukraine
| | - Germán Orizaola
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Princip. Asturias), University of Oviedo, 33600, Mieres, Asturias, Spain
- Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo, Asturias, Spain
| |
Collapse
|
34
|
Bláha P, Feoli C, Agosteo S, Calvaruso M, Cammarata FP, Catalano R, Ciocca M, Cirrone GAP, Conte V, Cuttone G, Facoetti A, Forte GI, Giuffrida L, Magro G, Margarone D, Minafra L, Petringa G, Pucci G, Ricciardi V, Rosa E, Russo G, Manti L. The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives. Front Oncol 2021; 11:682647. [PMID: 34262867 PMCID: PMC8274279 DOI: 10.3389/fonc.2021.682647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and 11B atoms, i.e. p+11B→ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as 11B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index.
Collapse
Affiliation(s)
- Pavel Bláha
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy
| | - Chiara Feoli
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy
| | - Stefano Agosteo
- Energy Department, Politecnico di Milano, and INFN, Sezione di Milano, Milan, Italy
| | - Marco Calvaruso
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | - Francesco Paolo Cammarata
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | | | - Mario Ciocca
- Medical Physics Unit & Research Department, Centro Nazionale di Adroterapia Oncologica (CNAO) & INFN, Sezione di Pavia, Pavia, Italy
| | | | - Valeria Conte
- Laboratori Nazionali di Legnaro (LNL), INFN, Legnaro, Italy
| | | | - Angelica Facoetti
- Medical Physics Unit & Research Department, Centro Nazionale di Adroterapia Oncologica (CNAO) & INFN, Sezione di Pavia, Pavia, Italy
| | - Giusi Irma Forte
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | - Lorenzo Giuffrida
- Extreme Light Infrastructure (ELI)-Beamlines Center, Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czechia
| | - Giuseppe Magro
- Medical Physics Unit & Research Department, Centro Nazionale di Adroterapia Oncologica (CNAO) & INFN, Sezione di Pavia, Pavia, Italy
| | - Daniele Margarone
- Extreme Light Infrastructure (ELI)-Beamlines Center, Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czechia
| | - Luigi Minafra
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | - Giada Petringa
- Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy.,Extreme Light Infrastructure (ELI)-Beamlines Center, Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czechia
| | - Gaia Pucci
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), Università di Palermo, Palermo, Italy
| | - Valerio Ricciardi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy.,Department of Mathematics & Physics, Università L. Vanvitelli, Caserta, Italy
| | - Enrico Rosa
- Radiation Biophysics Laboratory, Department of Physics "E. Pancini", Università di Napoli Federico II, Naples, Italy
| | - Giorgio Russo
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy.,The Sicilian Center of Nuclear Physics and the Structure of Matter (CSFNSM), Catania, Italy
| | - Lorenzo Manti
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy.,Radiation Biophysics Laboratory, Department of Physics "E. Pancini", Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
35
|
Feghhi M, Rezaie J, Mostafanezhad K, Jabbari N. Bystander effects induced by electron beam-irradiated MCF-7 cells: a potential mechanism of therapy resistance. Breast Cancer Res Treat 2021; 187:657-671. [PMID: 34043123 DOI: 10.1007/s10549-021-06250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/04/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE The distinct direct and non-targeting effects of electron beam radiation on MCF-7 cells remain obscure. We aimed to investigate the effect of electron beam irradiation (EBI) and conditioned media (CM) of the irradiated MCF-7 cells on MCF-7 cells. The cytotoxic effects of CM from irradiated MCF-7 cells on the mesenchymal stem cells and human umbilical vein endothelial cells (HUVECs) were also examined. METHODS Cell viability and apoptosis were assayed via MTT and flow cytometry analysis, respectively. The production of ROS (reactive oxygen species) was evaluated by the chemical fluorometric method, while the amount of extracellular vesicles was detected via acetylcholinesterase activity assay. Expression of genes involved in apoptosis, including caspase-3, -8, -9, and stemness such as Sox-2 and Oct-4, were calculated through qPCR. The wound healing rate of cells was monitored via in vitro scratch assay. RESULTS Compared to the control group, EBI groups showed decreased cell viability but increased apoptosis and ROS as well as acetylcholinesterase activity dose-dependently (P < 0.05). Concurrently with increasing the dose of the electron beam, the transcript levels of apoptotic genes (caspase-3, -8, -9) and stemness-related genes (Sox-2 and Oct-4) were up-regulated following EBI. The wound healing rate of irradiated MCF-7 cells increased dose-dependently (P < 0.05). Similar results were observed after treatment with CM from irradiated MCF-7 cells. Additionally, CM from irradiated MCF-7 cells decreased the viability of MCF-7 cells, mesenchymal stem cells, and HUVECs (P < 0.05). CONCLUSION MCF-7 cells treated with an electron beam and CMs from irradiated MCF-7 cells exhibit an up-regulation in both genes involved in the apoptosis pathway and stemness. As a result, EBI can affect apoptosis and stemness in MCF-7 cells in direct and bystander manners. However, specific signaling pathways require careful evaluation to provide an understanding of the mechanisms involved in the EBI-induced alternation in tumor cell dynamics.
Collapse
Affiliation(s)
- Maryam Feghhi
- Department of Medical Physics, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Nasrollah Jabbari
- Department of Medical Physics and Imaging, Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
36
|
Kim DS, Weber T, Straube U, Hellweg CE, Nasser M, Green DA, Fogtman A. The Potential of Physical Exercise to Mitigate Radiation Damage-A Systematic Review. Front Med (Lausanne) 2021; 8:585483. [PMID: 33996841 PMCID: PMC8117229 DOI: 10.3389/fmed.2021.585483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
There is a need to investigate new countermeasures against the detrimental effects of ionizing radiation as deep space exploration missions are on the horizon. Objective: In this systematic review, the effects of physical exercise upon ionizing radiation-induced damage were evaluated. Methods: Systematic searches were performed in Medline, Embase, Cochrane library, and the databases from space agencies. Of 2,798 publications that were screened, 22 studies contained relevant data that were further extracted and analyzed. Risk of bias of included studies was assessed. Due to the high level of heterogeneity, meta-analysis was not performed. Five outcome groups were assessed by calculating Hedges' g effect sizes and visualized using effect size plots. Results: Exercise decreased radiation-induced DNA damage, oxidative stress, and inflammation, while increasing antioxidant activity. Although the results were highly heterogeneous, there was evidence for a beneficial effect of exercise in cellular, clinical, and functional outcomes. Conclusions: Out of 72 outcomes, 68 showed a beneficial effect of physical training when exposed to ionizing radiation. As the first study to investigate a potential protective mechanism of physical exercise against radiation effects in a systematic review, the current findings may help inform medical capabilities of human spaceflight and may also be relevant for terrestrial clinical care such as radiation oncology.
Collapse
Affiliation(s)
- David S. Kim
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Ulrich Straube
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| | - Christine E. Hellweg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Mona Nasser
- Peninsula Dental School, Plymouth University, Plymouth, United Kingdom
| | - David A. Green
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
- Centre of Human & Applied Physiological Sciences (CHAPS), King's College London, London, United Kingdom
| | - Anna Fogtman
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| |
Collapse
|
37
|
Out-of-Field Hippocampus from Partial-Body Irradiated Mice Displays Changes in Multi-Omics Profile and Defects in Neurogenesis. Int J Mol Sci 2021; 22:ijms22084290. [PMID: 33924260 PMCID: PMC8074756 DOI: 10.3390/ijms22084290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
The brain undergoes ionizing radiation exposure in many clinical situations, particularly during radiotherapy for brain tumors. The critical role of the hippocampus in the pathogenesis of radiation-induced neurocognitive dysfunction is well recognized. The goal of this study is to test the potential contribution of non-targeted effects in the detrimental response of the hippocampus to irradiation and to elucidate the mechanisms involved. C57Bl/6 mice were whole body (WBI) or partial body (PBI) irradiated with 0.1 or 2.0 Gy of X-rays or sham irradiated. PBI consisted of the exposure of the lower third of the mouse body, whilst the upper two thirds were shielded. Hippocampi were collected 15 days or 6 months post-irradiation and a multi-omics approach was adopted to assess the molecular changes in non-coding RNAs, proteins and metabolic levels, as well as histological changes in the rate of hippocampal neurogenesis. Notably, at 2.0 Gy the pattern of early molecular and histopathological changes induced in the hippocampus at 15 days following PBI were similar in quality and quantity to the effects induced by WBI, thus providing a proof of principle of the existence of out-of-target radiation response in the hippocampus of conventional mice. We detected major alterations in DAG/IP3 and TGF-β signaling pathways as well as in the expression of proteins involved in the regulation of long-term neuronal synaptic plasticity and synapse organization, coupled with defects in neural stem cells self-renewal in the hippocampal dentate gyrus. However, compared to the persistence of the WBI effects, most of the PBI effects were only transient and tended to decrease at 6 months post-irradiation, indicating important mechanistic difference. On the contrary, at low dose we identified a progressive accumulation of molecular defects that tended to manifest at later post-irradiation times. These data, indicating that both targeted and non-targeted radiation effects might contribute to the pathogenesis of hippocampal radiation-damage, have general implications for human health.
Collapse
|
38
|
Shuryak I, Brenner DJ. Quantitative modeling of multigenerational effects of chronic ionizing radiation using targeted and nontargeted effects. Sci Rep 2021; 11:4776. [PMID: 33637848 PMCID: PMC7910614 DOI: 10.1038/s41598-021-84156-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
Stress response signals can propagate between cells damaged by targeted effects (TE) of ionizing radiation (e.g. energy depositions and ionizations in the nucleus) and undamaged "bystander" cells, sometimes over long distances. Their consequences, called non-targeted effects (NTE), can substantially contribute to radiation-induced damage (e.g. cell death, genomic instability, carcinogenesis), particularly at low doses/dose rates (e.g. space exploration, some occupational and accidental exposures). In addition to controlled laboratory experiments, analysis of observational data on wild animal and plant populations from areas contaminated by radionuclides can enhance our understanding of radiation responses because such data span wide ranges of dose rates applied over many generations. Here we used a mechanistically-motivated mathematical model of TE and NTE to analyze published embryonic mortality data for plants (Arabidopsis thaliana) and rodents (Clethrionomys glareolus) from the Chernobyl nuclear power plant accident region. Although these species differed strongly in intrinsic radiosensitivities and post-accident radiation exposure magnitudes, model-based analysis suggested that NTE rather than TE dominated the responses of both organisms to protracted low-dose-rate irradiation. TE were predicted to become dominant only above the highest dose rates in the data. These results support the concept of NTE involvement in radiation-induced health risks from chronic radiation exposures.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA.
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
39
|
Tortolici F, Vumbaca S, Incocciati B, Dayal R, Aquilano K, Giovanetti A, Rufini S. Ionizing Radiation-Induced Extracellular Vesicle Release Promotes AKT-Associated Survival Response in SH-SY5Y Neuroblastoma Cells. Cells 2021; 10:cells10010107. [PMID: 33430027 PMCID: PMC7827279 DOI: 10.3390/cells10010107] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is one of the most effective methods of tumor eradication; however, in some forms of neuroblastoma, radiation can increase the risk of secondary neoplasms, due to the ability of irradiated cells to transmit pro-survival signals to non-irradiated cells through vesicle secretion. The aims of this study were to characterize the vesicles released by the human neuroblastoma cell line SH-SY5Y following X-ray radiations and their ability to increase invasiveness in non-irradiated SH-SY5Y cells. We first purified the extracellular vesicles released by the SH-SY5Y cells following X-rays, and then determined their total amount, dimensions, membrane protein composition, and cellular uptake. We also examined the effects of these extracellular vesicles on viability, migration, and DNA damage in recipient SH-SY5Y cells. We found that exposure to X-rays increased the release of extracellular vesicles and altered their protein composition. These vesicles were readily uptaken by non-irradiated cells, inducing an increase in viability, migration, and radio-resistance. The same results were obtained in an MYCN-amplified SK-N-BE cell line. Our study demonstrates that vesicles released from irradiated neuroblastoma cells stimulate proliferation and invasiveness that correlate with the epithelial to mesenchymal transition in non-irradiated cells. Moreover, our results suggest that, at least in neuroblastomas, targeting the extracellular vesicles may represent a novel therapeutic approach to counteract the side effects associated with radiotherapy.
Collapse
Affiliation(s)
- Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
| | - Simone Vumbaca
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
| | - Bernadette Incocciati
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
| | - Renu Dayal
- Sanorva Biotech Private Limited, Mysuru 570008, India;
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
| | - Anna Giovanetti
- ENEA, Department of Energy and Sustainable Economic, 00123 Rome, Italy;
| | - Stefano Rufini
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (S.V.); (B.I.); (K.A.)
- Correspondence:
| |
Collapse
|
40
|
Shuryak I, Brenner DJ. REVIEW OF QUANTITATIVE MECHANISTIC MODELS OF RADIATION-INDUCED NON-TARGETED EFFECTS (NTE). RADIATION PROTECTION DOSIMETRY 2020; 192:236-252. [PMID: 33395702 PMCID: PMC7840098 DOI: 10.1093/rpd/ncaa207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Quantitative mechanistic modeling of the biological effects of ionizing radiation has a long rich history. Initially, it was dominated by target theory, which quantifies damage caused by traversal of cellular targets like DNA by ionizing tracks. The discovery that mutagenesis, death and/or altered behavior sometimes occur in cells that were not themselves traversed by any radiation tracks but merely interacted with traversed cells was initially seen as surprising. As more evidence of such 'non-targeted' or 'bystander' effects accumulated, the importance of their contribution to radiation-induced damage became more recognized. Understanding and modeling these processes is important for quantifying and predicting radiation-induced health risks. Here we review the variety of mechanistic mathematical models of nontargeted effects that emerged over the past 2-3 decades. This review is not intended to be exhaustive, but focuses on the main assumptions and approaches shared or distinct between models, and on identifying areas for future research.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630W 168th street, New York, NY 10032, USA
| | | |
Collapse
|
41
|
Elbakrawy EM, Mayah A, Hill MA, Kadhim M. Induction of Genomic Instability in a Primary Human Fibroblast Cell Line Following Low-Dose Alpha-Particle Exposure and the Potential Role of Exosomes. BIOLOGY 2020; 10:biology10010011. [PMID: 33379152 PMCID: PMC7824692 DOI: 10.3390/biology10010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To study the induction of genomic instability (GI) in the progeny of cell populations irradiated with low doses of alpha-particles and the potential role of exosome-encapsulated bystander signalling. METHODS The induction of GI in HF19 normal fibroblast cells was assessed by determining the formation of micronuclei (MN) in binucleate cells along with using the alkaline comet assay to assess DNA damage. RESULTS Low dose alpha-particle exposure (0.0001-1 Gy) was observed to produce a significant induction of micronuclei and DNA damage shortly after irradiation (assays performed at 5 and 1 h post exposure, respectively). This damage was not only still evident and statistically significant in all irradiated groups after 10 population doublings, but similar trends were observed after 20 population doublings. Exosomes from irradiated cells were also observed to enhance the level of DNA damage in non-irradiated bystander cells at early times. CONCLUSION very low doses of alpha-particles are capable of inducing GI in the progeny of irradiated cells even at doses where <1% of the cells are traversed, where the level of response was similar to that observed at doses where 100% of the cells were traversed. This may have important implications with respect to the evaluation of cancer risk associated with very low-dose alpha-particle exposure and deviation from a linear dose response.
Collapse
Affiliation(s)
- Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.M.E.); (A.M.)
- Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| | - Ammar Mayah
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.M.E.); (A.M.)
| | - Mark A. Hill
- Gray Laboratories, MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.M.E.); (A.M.)
- Correspondence: ; Tel.: +44-0-1865-483954
| |
Collapse
|
42
|
Pavlatovská B, Machálková M, Brisudová P, Pruška A, Štěpka K, Michálek J, Nečasová T, Beneš P, Šmarda J, Preisler J, Kozubek M, Navrátilová J. Lactic Acidosis Interferes With Toxicity of Perifosine to Colorectal Cancer Spheroids: Multimodal Imaging Analysis. Front Oncol 2020; 10:581365. [PMID: 33344237 PMCID: PMC7746961 DOI: 10.3389/fonc.2020.581365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a disease with constantly increasing incidence and high mortality. The treatment efficacy could be curtailed by drug resistance resulting from poor drug penetration into tumor tissue and the tumor-specific microenvironment, such as hypoxia and acidosis. Furthermore, CRC tumors can be exposed to different pH depending on the position in the intestinal tract. CRC tumors often share upregulation of the Akt signaling pathway. In this study, we investigated the role of external pH in control of cytotoxicity of perifosine, the Akt signaling pathway inhibitor, to CRC cells using 2D and 3D tumor models. In 3D settings, we employed an innovative strategy for simultaneous detection of spatial drug distribution and biological markers of proliferation/apoptosis using a combination of mass spectrometry imaging and immunohistochemistry. In 3D conditions, low and heterogeneous penetration of perifosine into the inner parts of the spheroids was observed. The depth of penetration depended on the treatment duration but not on the external pH. However, pH alteration in the tumor microenvironment affected the distribution of proliferation- and apoptosis-specific markers in the perifosine-treated spheroid. Accurate co-registration of perifosine distribution and biological response in the same spheroid section revealed dynamic changes in apoptotic and proliferative markers occurring not only in the perifosine-exposed cells, but also in the perifosine-free regions. Cytotoxicity of perifosine to both 2D and 3D cultures decreased in an acidic environment below pH 6.7. External pH affects cytotoxicity of the other Akt inhibitor, MK-2206, in a similar way. Our innovative approach for accurate determination of drug efficiency in 3D tumor tissue revealed that cytotoxicity of Akt inhibitors to CRC cells is strongly dependent on pH of the tumor microenvironment. Therefore, the effect of pH should be considered during the design and pre-clinical/clinical testing of the Akt-targeted cancer therapy.
Collapse
Affiliation(s)
- Barbora Pavlatovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Markéta Machálková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Brisudová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Karel Štěpka
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Jan Michálek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Tereza Nečasová
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Michal Kozubek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Center for Biological and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| |
Collapse
|
43
|
Belli M, Indovina L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front Public Health 2020; 8:601711. [PMID: 33384980 PMCID: PMC7770185 DOI: 10.3389/fpubh.2020.601711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Life has evolved on Earth for about 4 billion years in the presence of the natural background of ionizing radiation. It is extremely likely that it contributed, and still contributes, to shaping present form of life. Today the natural background radiation is extremely small (few mSv/y), however it may be significant enough for living organisms to respond to it, perhaps keeping memory of this exposure. A better understanding of this response is relevant not only for improving our knowledge on life evolution, but also for assessing the robustness of the present radiation protection system at low doses, such as those typically encountered in everyday life. Given the large uncertainties in epidemiological data below 100 mSv, quantitative evaluation of these health risk is currently obtained with the aid of radiobiological models. These predict a health detriment, caused by radiation-induced genetic mutations, linearly related to the dose. However a number of studies challenged this paradigm by demonstrating the occurrence of non-linear responses at low doses, and of radioinduced epigenetic effects, i.e., heritable changes in genes expression not related to changes in DNA sequence. This review is focused on the role that epigenetic mechanisms, besides the genetic ones, can have in the responses to low dose and protracted exposures, particularly to natural background radiation. Many lines of evidence show that epigenetic modifications are involved in non-linear responses relevant to low doses, such as non-targeted effects and adaptive response, and that genetic and epigenetic effects share, in part, a common origin: the reactive oxygen species generated by ionizing radiation. Cell response to low doses of ionizing radiation appears more complex than that assumed for radiation protection purposes and that it is not always detrimental. Experiments conducted in underground laboratories with very low background radiation have even suggested positive effects of this background. Studying the changes occurring in various living organisms at reduced radiation background, besides giving information on the life evolution, have opened a new avenue to answer whether low doses are detrimental or beneficial, and to understand the relevance of radiobiological results to radiation protection.
Collapse
Affiliation(s)
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
44
|
Li Z, Yu DS, Doetsch PW, Werner E. Replication stress and FOXM1 drive radiation induced genomic instability and cell transformation. PLoS One 2020; 15:e0235998. [PMID: 33253193 PMCID: PMC7703902 DOI: 10.1371/journal.pone.0235998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022] Open
Abstract
In contrast to the vast majority of research that has focused on the immediate effects of ionizing radiation, this work concentrates on the molecular mechanism driving delayed effects that emerge in the progeny of the exposed cells. We employed functional protein arrays to identify molecular changes induced in a human bronchial epithelial cell line (HBEC3-KT) and osteosarcoma cell line (U2OS) and evaluated their impact on outcomes associated with radiation induced genomic instability (RIGI) at day 5 and 7 post-exposure to a 2Gy X-ray dose, which revealed replication stress in the context of increased FOXM1b expression. Irradiated cells had reduced DNA replication rate detected by the DNA fiber assay and increased DNA resection detected by RPA foci and phosphorylation. Irradiated cells increased utilization of homologous recombination-dependent repair detected by a gene conversion assay and DNA damage at mitosis reflected by RPA positive chromosomal bridges, micronuclei formation and 53BP1 positive bodies in G1, all known outcomes of replication stress. Interference with the function of FOXM1, a transcription factor widely expressed in cancer, employing an aptamer, decreased radiation-induced micronuclei formation and cell transformation while plasmid-driven overexpression of FOXM1b was sufficient to induce replication stress, micronuclei formation and cell transformation.
Collapse
Affiliation(s)
- Zhentian Li
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David S. Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Paul W. Doetsch
- Laboratory of Genomic Integrity and Structural Biology, NIH, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Erica Werner
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
45
|
Phenotypic and Functional Characteristics of Exosomes Derived from Irradiated Mouse Organs and Their Role in the Mechanisms Driving Non-Targeted Effects. Int J Mol Sci 2020; 21:ijms21218389. [PMID: 33182277 PMCID: PMC7664902 DOI: 10.3390/ijms21218389] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022] Open
Abstract
Molecular communication between irradiated and unirradiated neighbouring cells initiates radiation-induced bystander effects (RIBE) and out-of-field (abscopal) effects which are both an example of the non-targeted effects (NTE) of ionising radiation (IR). Exosomes are small membrane vesicles of endosomal origin and newly identified mediators of NTE. Although exosome-mediated changes are well documented in radiation therapy and oncology, there is a lack of knowledge regarding the role of exosomes derived from inside and outside the radiation field in the early and delayed induction of NTE following IR. Therefore, here we investigated the changes in exosome profile and the role of exosomes as possible molecular signalling mediators of radiation damage. Exosomes derived from organs of whole body irradiated (WBI) or partial body irradiated (PBI) mice after 24 h and 15 days post-irradiation were transferred to recipient mouse embryonic fibroblast (MEF) cells and changes in cellular viability, DNA damage and calcium, reactive oxygen species and nitric oxide signalling were evaluated compared to that of MEF cells treated with exosomes derived from unirradiated mice. Taken together, our results show that whole and partial-body irradiation increases the number of exosomes, instigating changes in exosome-treated MEF cells, depending on the source organ and time after exposure.
Collapse
|
46
|
Cucinotta FA, Cacao E, Kim MHY, Saganti PB. Benchmarking risk predictions and uncertainties in the NSCR model of GCR cancer risks with revised low let risk coefficients. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:64-73. [PMID: 34756232 DOI: 10.1016/j.lssr.2020.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 06/13/2023]
Abstract
We report on the contributions of model factors that appear in projection models to the overall uncertainty in cancer risks predictions for exposures to galactic cosmic ray (GCR) in deep space, including comparisons with revised low LET risks coefficients. Annual GCR exposures to astronauts at solar minimum are considered. Uncertainties in low LET risk coefficients, dose and dose-rate modifiers, quality factors (QFs), space radiation organ doses, non-targeted effects (NTE) and increased tumor lethality at high LET compared to low LET radiation are considered. For the low LET reference radiation parameters we use a revised assessment of excess relative risk (ERR) and excess additive risk (EAR) for radiation induced cancers in the Life-Span Study (LSS) of the Atomic bomb survivors that was recently reported, and also consider ERR estimates for males from the International Study of Nuclear Workers (INWORKS). For 45-y old females at mission age the risk of exposure induced death (REID) per year and 95% confidence intervals is predicted as 1.6% [0.71, 1.63] without QF uncertainties and 1.64% [0.69, 4.06] with QF uncertainties. However, fatal risk predictions increase to 5.83% [2.56, 9.7] based on a sensitivity study of the inclusion of non-targeted effects on risk predictions. For males a comparison using LSS or INWORKS lead to predictions of 1.24% [0.58, 3.14] and 2.45% [1.23, 5.9], respectively without NTEs. The major conclusion of our report is that high LET risk prediction uncertainties due to QFs parameters, NTEs, and possible increase lethality at high LET are dominant contributions to GCR uncertainties and should be the focus of space radiation research.
Collapse
Affiliation(s)
- Francis A Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, USA.
| | - Eliedonna Cacao
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, USA
| | - Myung-Hee Y Kim
- Physics Department, Prairie View A&M University, Prairie View TX, USA
| | | |
Collapse
|
47
|
The long-term effects of exposure to ionising radiation on gene expression in mice. Mutat Res 2020; 821:111723. [PMID: 33096319 DOI: 10.1016/j.mrfmmm.2020.111723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
Despite great advancement in our understanding of the biological response to ionising radiation in mammals, a number of pertinent questions remain unanswered. For instance, the mechanisms underlying the long-term effects of acute radiation in vivo still eludes us. Here we report that acute exposure to X-rays in male mice significantly affects their transcriptome. Using microarrays and miRNA-sequencing, we profiled the gene expression pattern in the brain, the kidney, the liver and the sperm of irradiated and control from CBA/Ca and BALB/c in the timeline of 4 h, 24 h, 1 week and 10 weeks post-exposure. Acute exposure to 1 Gy of X-rays resulted in profound tissue- and strain-specific changes in gene expression pattern. There was profound change in the gene expression in the kidney of BALB/c irradiated mice over the period of 10 weeks after irradiation, whereas in the CBA/Ca strain the significant transcriptomic changes manifest over a shorter period of time up to 1 week post exposure. In the brain of irradiated CBA/Ca, significant changes in transcriptome were seen up to 10 weeks post-irradiation, while only short-term changes up to 4 h post-exposure was detected in the brain of irradiation BALB/c. Similarly, alteration in gene expression pattern was observed in the liver of irradiated BALB/c up to 10 weeks post-radiation, whereas only immediate but significant changes were observed in the CBA/Ca at 4 h post-irradiation. Furthermore, the analysis of miRNA in irradiated and control male mice also revealed highly tissue- and strain-specific changes in expression level, with no overlap between the differentially regulated miRNA genes across the three somatic tissues and the two inbred strains. We also analysed the pattern of miRNA expression in sperm of irradiated males, sacrificed at 24 h, 1 week and 10 weeks after irradiation. Only one miRNA (mmu-miR-217-5p) was significantly down-regulated in the CBA/Ca males. The results of our study may provide a plausible explanation for the delayed in vivo effects of irradiation.
Collapse
|
48
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
49
|
Elbakrawy E, Kaur Bains S, Bright S, AL-Abedi R, Mayah A, Goodwin E, Kadhim M. Radiation-Induced Senescence Bystander Effect: The Role of Exosomes. BIOLOGY 2020; 9:biology9080191. [PMID: 32726907 PMCID: PMC7465498 DOI: 10.3390/biology9080191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Ionizing Radiation (IR), especially at high doses, induces cellular senescence in exposed cultures. IR also induces “bystander effects” through signals released from irradiated cells, and these effects include many of the same outcomes observed following direct exposure. Here, we investigate if radiation can cause senescence through a bystander mechanism. Control cultures were exposed directly to 0, 0.1, 2, and 10 Gy. Unirradiated cells were treated with medium from irradiated cultures or with exosomes extracted from irradiated medium. The level of senescence was determined post-treatment (24 h, 15 days, 30 days, and 45 days) by β-galactosidase staining. Media from cultures exposed to all four doses, and exosomes from these cultures, induced significant senescence in recipient cultures. Senescence levels were initially low at the earliest timepoint, and peaked at 15 days, and then decreased with further passaging. These results demonstrate that senescence is inducible through a bystander mechanism. As with other bystander effects, bystander senescence was induced by a low radiation dose. However, unlike other bystander effects, cultures recovered from bystander senescence after repeated passaging. Bystander senescence may be a potentially significant effect of exposure to IR, and may have both beneficial and harmful effects in the context of radiotherapy.
Collapse
Affiliation(s)
- Eman Elbakrawy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK; (E.E.); (S.K.B.); (R.A.-A.); (A.M.)
- Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| | - Savneet Kaur Bains
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK; (E.E.); (S.K.B.); (R.A.-A.); (A.M.)
| | - Scott Bright
- Department of Radiation Physics, University of Texas MD Anderson Cancer Centre, 1515 Holcombe Blvd, Houston, TX 77030, USA;
| | - Raheem AL-Abedi
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK; (E.E.); (S.K.B.); (R.A.-A.); (A.M.)
| | - Ammar Mayah
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK; (E.E.); (S.K.B.); (R.A.-A.); (A.M.)
| | - Edwin Goodwin
- Angelina Biomedical Laboratories, 2110 Deer Valley Lane, Laporte, CO 80535-9750, USA;
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK; (E.E.); (S.K.B.); (R.A.-A.); (A.M.)
- Correspondence:
| |
Collapse
|
50
|
Shemetun OV, Pilinska MA. RADIATION-INDUCED BYSTANDER EFFECT - MODELING, MANIFESTATION, MECHANISMS, PERSISTENCE, CANCER RISKS (literature review). PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 24:65-92. [PMID: 31841459 DOI: 10.33145/2304-8336-2019-24-65-92] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/02/2023]
Abstract
The review summarizes and analyzes the data of world scientific literature and the results of the own research con- cerning one of the main non-targeted effects of ionizing radiation - the radiation induced bystander effect (RIBE) - the ability of irradiated target cells to induce secondary biological changes in non-irradiated receptor cells. The his- tory of studies of this phenomenon is presented - it described under various names since 1905, began to study from the end of the twentieth century when named as RIBE and caused particular interest in the scientific community during recent decades. It is shown that the development of biological science and the improvement of research methods allowed to get new in-depth data on the development of RIBE not only at the level of the whole organism, but even at the genome level. The review highlights the key points of numerous RIBE investigations including mod- eling; methodological approaches to studying; classification; features of interaction between irradiated and intact cells; the role of the immune system, oxidative stress, cytogenetic disorders, changes in gene expression in the mechanism of development of RIBE; rescue effect, abscopal effect, persistence, modification, medical effects. It is emphasized that despite the considerable amount of research concerning the bystander response as the universal phenomenon and RIBE as one of its manifestations, there are still enough «white spots» in determining the mech- anisms of the RIBE formation and assessing the possible consequences of its development for human health.
Collapse
Affiliation(s)
- O V Shemetun
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - M A Pilinska
- State Institution «National Research Center for Radiation Medicine of the National Academy of MedicalSciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| |
Collapse
|