1
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Carrothers E, Appleby M, Lai V, Kozbenko T, Alomar D, Smith BJ, Hamada N, Hinton P, Ainsbury EA, Hocking R, Yauk C, Wilkins RC, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to cataracts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:31-56. [PMID: 38644659 DOI: 10.1002/em.22594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.g., macromolecular, cell, tissue, organ, organism and population). AOPs identify a sequence of key events (KEs) causally connected by key event relationships (KERs) beginning with a molecular initiating event to an adverse outcome (AO) of relevance to regulatory decision-making. To construct the cataract AO and retrieve evidence to support it, a scoping review methodology was used to filter, screen, and review studies based on the modified Bradford Hill criteria. Eight KEs were identified that were moderately supported by empirical evidence (e.g., dose-, time-, incidence-concordance) across the adjacent (directly linked) relationships using well-established endpoints. Over half of the evidence to justify the KER linkages was derived from the evidence stream of biological plausibility. Early KEs of oxidative stress and protein modifications had strong linkages to downstream KEs and could be the focus of countermeasure development. Several identified knowledge gaps and inconsistencies related to the quantitative understanding of KERs which could be the basis of future research, most notably directed to experiments in the range of low or moderate doses and dose-rates, relevant to radiation workers and other occupational exposures.
Collapse
Affiliation(s)
- Emma Carrothers
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Meghan Appleby
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vita Lai
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Patricia Hinton
- Defense Research & Development Canada, Canadian Forces Environmental Medicine Establishment, Toronto, Ontario, Canada
| | - Elizabeth A Ainsbury
- Radiation, Chemical and Environmental Hazards Division, UK Health Security Agency, Birmingham, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Tang Y, Liang H, Su L, Xue X, Zhan J. Ferroptosis: a new perspective on the pathogenesis of radiation-induced cataracts. Front Public Health 2024; 12:1449216. [PMID: 39220446 PMCID: PMC11363423 DOI: 10.3389/fpubh.2024.1449216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ionizing radiation is a significant risk factor for cataracts, but the pathogenesis of radiation-induced cataracts remains incompletely understood. Ferroptosis, an iron-dependent form of programmed cell death discovered in recent years, has gained increasing attention for its role in various diseases. This article systematically reviews research progress on ionizing radiation, ferroptosis, age-related cataracts, and radiation-induced cataracts. It proposes the "ferroptosis hypothesis" for the pathogenesis of radiation-induced cataracts. Through ionization and oxidative stress effects, ionizing radiation leads to elevated free iron levels and exacerbated lipid peroxidation in lens cells, activating the ferroptosis pathway and resulting in lens opacity. The involvement of ferroptosis in the development of age-related cataracts suggests that it may also be an important pathogenic mechanism of radiation-induced cataracts. Targeting the ferroptosis pathway may be a novel strategy for preventing and treating radiation-induced cataracts. Furthermore, developing new ferroptosis-specific inhibitors with improved targeting and pharmacokinetic properties is also an essential direction for research on preventing and treating radiation-induced cataracts. The study of ferroptosis provides new insights into the mechanism and management of radiation-induced cataracts, potentially transforming radiation-induced cataracts from "inevitable" to "preventable and treatable."
Collapse
Affiliation(s)
| | | | | | - Xiangming Xue
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, China
| | - Jingming Zhan
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, China
| |
Collapse
|
4
|
Hamada N. Noncancer Effects of Ionizing Radiation Exposure on the Eye, the Circulatory System and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat Res 2023; 200:188-216. [PMID: 37410098 DOI: 10.1667/rade-23-00030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
For radiation protection purposes, noncancer effects with a threshold-type dose-response relationship have been classified as tissue reactions (formerly called nonstochastic or deterministic effects), and equivalent dose limits aim to prevent occurrence of such tissue reactions. Accumulating evidence demonstrates increased risks for several late occurring noncancer effects at doses and dose rates much lower than previously considered. In 2011, the International Commission on Radiological Protection (ICRP) issued a statement on tissue reactions to recommend a threshold of 0.5 Gy to the lens of the eye for cataracts and to the heart and brain for diseases of the circulatory system (DCS), independent of dose rate. Literature published thereafter continues to provide updated knowledge. Increased risks for cataracts below 0.5 Gy have been reported in several cohorts (e.g., including in those receiving protracted or chronic exposures). A dose threshold for cataracts is less evident with longer follow-up, with limited evidence available for risk of cataract removal surgery. There is emerging evidence for risk of normal-tension glaucoma and diabetic retinopathy, but the long-held tenet that the lens represents among the most radiosensitive tissues in the eye and in the body seems to remain unchanged. For DCS, increased risks have been reported in various cohorts, but the existence or otherwise of a dose threshold is unclear. The level of risk is less uncertain at lower dose and lower dose rate, with the possibility that risk per unit dose is greater at lower doses and dose rates. Target organs and tissues for DCS are also unknown, but may include heart, large blood vessels and kidneys. Identification of potential factors (e.g., sex, age, lifestyle factors, coexposures, comorbidities, genetics and epigenetics) that may modify radiation risk of cataracts and DCS would be important. Other noncancer effects on the radar include neurological effects (e.g., Parkinson's disease, Alzheimer's disease and dementia) of which elevated risk has increasingly been reported. These late occurring noncancer effects tend to deviate from the definition of tissue reactions, necessitating more scientific developments to reconsider the radiation effect classification system and risk management. This paper gives an overview of historical developments made in ICRP prior to the 2011 statement and an update on relevant developments made since the 2011 ICRP statement.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
5
|
Xie D, Huang Q, Zhou P. Drug Discovery Targeting Post-Translational Modifications in Response to DNA Damages Induced by Space Radiation. Int J Mol Sci 2023; 24:ijms24087656. [PMID: 37108815 PMCID: PMC10142602 DOI: 10.3390/ijms24087656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
DNA damage in astronauts induced by cosmic radiation poses a major barrier to human space exploration. Cellular responses and repair of the most lethal DNA double-strand breaks (DSBs) are crucial for genomic integrity and cell survival. Post-translational modifications (PTMs), including phosphorylation, ubiquitylation, and SUMOylation, are among the regulatory factors modulating a delicate balance and choice between predominant DSB repair pathways, such as non-homologous end joining (NHEJ) and homologous recombination (HR). In this review, we focused on the engagement of proteins in the DNA damage response (DDR) modulated by phosphorylation and ubiquitylation, including ATM, DNA-PKcs, CtIP, MDM2, and ubiquitin ligases. The involvement and function of acetylation, methylation, PARylation, and their essential proteins were also investigated, providing a repository of candidate targets for DDR regulators. However, there is a lack of radioprotectors in spite of their consideration in the discovery of radiosensitizers. We proposed new perspectives for the research and development of future agents against space radiation by the systematic integration and utilization of evolutionary strategies, including multi-omics analyses, rational computing methods, drug repositioning, and combinations of drugs and targets, which may facilitate the use of radioprotectors in practical applications in human space exploration to combat fatal radiation hazards.
Collapse
Affiliation(s)
- Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing 100850, China
| | - Qi Huang
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing 100850, China
- Department of Preventive Medicine, School of Public Health, University of South China, Changsheng West Road 28th, Zhengxiang District, Hengyang 421001, China
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Taiping Road 27th, Haidian District, Beijing 100850, China
- Department of Preventive Medicine, School of Public Health, University of South China, Changsheng West Road 28th, Zhengxiang District, Hengyang 421001, China
| |
Collapse
|
6
|
Abstract
PURPOSE Cataract (opacification of the ocular lens) is a typical tissue reaction (deterministic effect) following ionizing radiation exposure, for which prevention dose limits have been recommended in the radiation protection system. Manifestations of radiation cataracts can vary among individuals, but such potential individual responses remain uncharacterized. Here we review relevant literature and discuss implications for radiation protection. This review assesses evidence for significant modification of radiation-induced cataractogenesis by age at exposure, sex and genetic factors based on current scientific literature. CONCLUSIONS In addition to obvious physical factors (e.g. dose, dose rate, radiation quality, irradiation volume), potential factors modifying individual responses for radiation cataracts include sex, age and genetics, with comorbidity and coexposures also having important roles. There are indications and preliminary data identifying such potential modifiers of radiation cataract incidence or risk, although no firm conclusions can yet be drawn. Further studies and a consensus on the evidence are needed to gain deeper insights into factors determining individual responses regarding radiation cataracts and the implications for radiation protection.
Collapse
Affiliation(s)
- Stephen G R Barnard
- UK Health Security Agency (UKHSA), Radiation, Chemical and Environmental Hazards Division (RCEHD), Didcot, UK
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
7
|
Yokoyama S, Hamada N, Tsujimura N, Kunugita N, Nishida K, Ezaki I, Kato M, Okubo H. Regulatory implementation of the occupational equivalent dose limit for the lens of the eye and underlying relevant efforts in Japan. Int J Radiat Biol 2023; 99:604-619. [PMID: 35980737 DOI: 10.1080/09553002.2022.2115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In April 2011, the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens. Such a new occupational lens dose limit has thus far been implemented in many countries, and there are extensive discussions toward its regulatory implementation in other countries. In Japan, discussions in the Japan Health Physics Society (JHPS) began in April 2013 and in Radiation Council in July 2017, and the new occupational lens dose limit was implemented into regulation in April 2021. To share our experience, we have published a series of papers summarizing situations in Japan: the first paper based on information available by early 2017, and the second paper by early 2019. This paper (our third paper of this series) aims to review updated information available by mid-2022, such as regarding regulatory implementation of the new occupational lens dose limit, recent discussions by relevant ministries based on the opinion from the council, establishment process of safety and health management systems, the JHPS guidelines on lens dose monitoring and radiation safety, voluntary countermeasures of the licensees, development of lens dose calibration method, and recent studies on exposure of the lens in nuclear workers and biological effect on the lens.
Collapse
Affiliation(s)
- Sumi Yokoyama
- Research Promotion Headquarters, Fujita Health University, Aichi, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Norio Tsujimura
- Radiation Protection Department, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Naoki Kunugita
- School of Health Sciences, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Kazutaka Nishida
- Radiological Management Group, Kansai Electric Power Co., Inc, Fukui, Japan
| | - Iwao Ezaki
- Technical Group, Nuclear Power Plant Business Headquarters, Chiyoda Technol Corporation, Tokyo, Japan
| | - Masahiro Kato
- Ionizing Radiation Standards Group, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Hideki Okubo
- Radiological Health and Safety Center Nuclear Safe Management Department, Tokyo Electric Power Company Holdings, Inc, Tokyo, Japan
| |
Collapse
|
8
|
Strigari L, Strolin S, Morganti AG, Bartoloni A. Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships. Front Public Health 2021; 9:733337. [PMID: 34820349 PMCID: PMC8606590 DOI: 10.3389/fpubh.2021.733337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Space radiobiology is an interdisciplinary science that examines the biological effects of ionizing radiation on humans involved in aerospace missions. The dose-effect models are one of the relevant topics of space radiobiology. Their knowledge is crucial for optimizing radioprotection strategies (e.g., spaceship and lunar space station-shielding and lunar/Mars village design), the risk assessment of the health hazard related to human space exploration, and reducing damages induced to astronauts from galactic cosmic radiation. Dose-effect relationships describe the observed damages to normal tissues or cancer induction during and after space flights. They are developed for the various dose ranges and radiation qualities characterizing the actual and the forecast space missions [International Space Station (ISS) and solar system exploration]. Based on a Pubmed search including 53 papers reporting the collected dose-effect relationships after space missions or in ground simulations, 7 significant dose-effect relationships (e.g., eye flashes, cataract, central nervous systems, cardiovascular disease, cancer, chromosomal aberrations, and biomarkers) have been identified. For each considered effect, the absorbed dose thresholds and the uncertainties/limitations of the developed relationships are summarized and discussed. The current knowledge on this topic can benefit from further in vitro and in vivo radiobiological studies, an accurate characterization of the quality of space radiation, and the numerous experimental dose-effects data derived from the experience in the clinical use of ionizing radiation for diagnostic or treatments with doses similar to those foreseen for the future space missions. The growing number of pooled studies could improve the prediction ability of dose-effect relationships for space exposure and reduce their uncertainty level. Novel research in the field is of paramount importance to reduce damages to astronauts from cosmic radiation before Beyond Low Earth Orbit exploration in the next future. The study aims at providing an overview of the published dose-effect relationships and illustrates novel perspectives to inspire future research.
Collapse
Affiliation(s)
- Lidia Strigari
- Department of Medical Physics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology Center, School of Medicine, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | | |
Collapse
|
9
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
10
|
Chen Y, Cui J, Gong Y, Wei S, Wei Y, Yi L. MicroRNA: a novel implication for damage and protection against ionizing radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15584-15596. [PMID: 33533004 PMCID: PMC7854028 DOI: 10.1007/s11356-021-12509-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/12/2021] [Indexed: 04/16/2023]
Abstract
Ionizing radiation (IR) is a form of high energy. It poses a serious threat to organisms, but radiotherapy is a key therapeutic strategy for various cancers. It is significant to reduce radiation injury but maximize the effect of radiotherapy. MicroRNAs (miRNAs) are posttranscriptionally regulatory factors involved in cellular radioresponse. In this review, we show how miRNAs regulate important genes on cellular response to IR-induced damage and how miRNAs participate in IR-induced carcinogenesis. Additionally, we summarize the experimental and clinical evidence for miRNA involvement in radiotherapy and discuss their potential for improvement of radiotherapy. Finally, we highlight the role that miRNAs play in accident exposure to IR or radiotherapy as predictive biomarker. miRNA therapeutics have shown great perspective in radiobiology; miRNA may become a novel strategy for damage and protection against IR.
Collapse
Affiliation(s)
- Yonglin Chen
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jian Cui
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yaqi Gong
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Shuang Wei
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yuanyun Wei
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lan Yi
- Hengyang Medical College, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
11
|
Kunze S, Cecil A, Prehn C, Möller G, Ohlmann A, Wildner G, Thurau S, Unger K, Rößler U, Hölter SM, Tapio S, Wagner F, Beyerlein A, Theis F, Zitzelsberger H, Kulka U, Adamski J, Graw J, Dalke C. Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. Int J Radiat Biol 2021; 97:529-540. [PMID: 33464160 DOI: 10.1080/09553002.2021.1876951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE The long-term effect of low and moderate doses of ionizing radiation on the lens is still a matter of debate and needs to be evaluated in more detail. MATERIAL AND METHODS We conducted a detailed histological analysis of eyes from B6C3F1 mice cohorts after acute gamma irradiation (60Co source; 0.063 Gy/min) at young adult age of 10 weeks with doses of 0.063, 0.125, and 0.5 Gy. Sham irradiated (0 Gy) mice were used as controls. To test for genetic susceptibility heterozygous Ercc2 mutant mice were used and compared to wild-type mice of the same strain background. Mice of both sexes were included in all cohorts. Eyes were collected 4 h, 12, 18 and 24 months after irradiation. For a better understanding of the underlying mechanisms, metabolomics analyses were performed in lenses and plasma samples of the same mouse cohorts at 4 and 12 h as well as 12, 18 and 24 months after irradiation. For this purpose, a targeted analysis was chosen. RESULTS This analysis revealed histological changes particularly in the posterior part of the lens that rarely can be observed by using Scheimpflug imaging, as we reported previously. We detected a significant increase of posterior subcapsular cataracts (PSCs) 18 and 24 months after irradiation with 0.5 Gy (odds ratio 9.3; 95% confidence interval 2.1-41.3) independent of sex and genotype. Doses below 0.5 Gy (i.e. 0.063 and 0.125 Gy) did not significantly increase the frequency of PSCs at any time point. In lenses, we observed a clear effect of sex and aging but not of irradiation or genotype. While metabolomics analyses of plasma from the same mice showed only a sex effect. CONCLUSIONS This article demonstrates a significant radiation-induced increase in the incidence of PSCs, which could not be identified using Scheimpflug imaging as the only diagnostic tool.
Collapse
Affiliation(s)
- Sarah Kunze
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stephan Thurau
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ute Rößler
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian Wagner
- Institute of Radiation Medicine, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Fabian Theis
- Institute of Computational Biology, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrike Kulka
- Department Radiation Protection and Health, Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technical University of Munich, Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
12
|
Chen Y, Feng J, Liu J, Zhou H, Luo H, Xue C, Gao W. Effects of neutron radiation on Nrf2-regulated antioxidant defense systems in rat lens. Exp Ther Med 2021; 21:334. [PMID: 33732307 PMCID: PMC7903385 DOI: 10.3892/etm.2021.9765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that ionizing radiation (IR)-induced cataract may be associated with oxidative stress. Nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a master regulator of the antioxidant defense system against oxidative stress. The present study aimed to investigate the effects of different doses of neutron radiation on the Nrf2-reegulated antioxidant defense system in rat lens and assess the status of oxidative stress. A total of 24 SD rats were randomly divided into the following four groups: i) Control group; iis) 0.4 Sv group; iii) 1.2 Sv group; and iv) 3.6 Sv group. The rats were sacrificed 7 days after radiation and lenses were dissected for histological, biochemical (malondialdehyde, glutathione and superoxide dismutase) and western blot (Nrf2, glutamate-cysteine ligase catalytic subunit and heme oxygenase 1) analyses. The morphological features of the lenses remained intact in the 0.4 Sv, 1.2 Sv and control groups, whilst the lenses in the 3.6 Sv group exhibited injuries. Results from the TUNEL assay demonstrated apparent apoptosis in lens epithelial cells following 3.6 Sv neutron radiation whereas sparse apoptosis was observed following 0.4 Sv and 1.2 Sv radiation. Malondialdehyde levels were reduced in the 0.4 Sv and 1.2 Sv groups but increased in the 3.6 Sv group, compared with those in the control group. Conversely, glutathione expression and the activity of superoxide dismutase were higher in the 0.4 Sv and 1.2 Sv groups, but lower in the 3.6 Sv group, compared with those in the control group. In addition, the total and nuclear protein levels of Nrf2 were increased following neutron radiation compared with those in the control group, though the Nrf2 protein levels decreased in the 3.6 Sv group compared with those in the 1.2 Sv group. The levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase 1, downstream antioxidant enzymes of Nrf2, demonstrated the same profile as that in Nrf2. Taken together, the results of the present study suggest that neutron radiation affects Nrf2-regulated antioxidant systems in a two-stage process. Namely, the induction phase for low-dose radiation and regression phase for high-dose radiation. Therefore, it was hypothesized that activation and enhancement of the Nrf2-regulated antioxidant system may be useful in preventing or delaying IR-induced cataract, which may be extended even for other diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Yueqin Chen
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jundong Feng
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China
| | - Jingyu Liu
- Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hao Zhou
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China
| | - Huiyao Luo
- Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, P.R. China
| | - Chunyan Xue
- Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Weiping Gao
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
13
|
Harrison JD, Balonov M, Bochud F, Martin C, Menzel HG, Ortiz-Lopez P, Smith-Bindman R, Simmonds JR, Wakeford R. ICRP Publication 147: Use of Dose Quantities in Radiological Protection. Ann ICRP 2021; 50:9-82. [PMID: 33653178 DOI: 10.1177/0146645320911864] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
14
|
Pawliczek D, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Graw J, Dalke C. Ionising radiation causes vision impairment in neonatal B6C3F1 mice. Exp Eye Res 2021; 204:108432. [PMID: 33454312 DOI: 10.1016/j.exer.2020.108432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Ionising radiation interacts with lenses and retinae differently. In human lenses, posterior subcapsular cataracts are the predominant observation, whereas retinae of adults are comparably resistant to even relatively high doses. In this study, we demonstrate the effects of 2 Gy of low linear energy transfer ionising radiation on eyes of B6C3F1 mice aged postnatal day 2. Optical coherence tomography and Scheimpflug imaging were utilised for the first time to monitor murine lenses and retinae in vivo. The visual acuity of the mice was determined and histological analysis was conducted. Our results demonstrated that visual acuity was reduced by as much as 50 % approximately 9 months after irradiation in irradiated mice. Vision impairment was caused by retinal atrophy and inner cortical cataracts. These results help to further our understanding of the risk of ionising radiation for human foeti (∼ 8 mo), which follow the same eye development stages as neonatal mice.
Collapse
Affiliation(s)
- Daniel Pawliczek
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Helmut Fuchs
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany; German Center for Diabetes Research (DZB), Neuherberg, Germany
| | - Jochen Graw
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Claudia Dalke
- Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.
| |
Collapse
|
15
|
Ainsbury EA, Dalke C, Hamada N, Benadjaoud MA, Chumak V, Ginjaume M, Kok JL, Mancuso M, Sabatier L, Struelens L, Thariat J, Jourdain JR. Radiation-induced lens opacities: Epidemiological, clinical and experimental evidence, methodological issues, research gaps and strategy. ENVIRONMENT INTERNATIONAL 2021; 146:106213. [PMID: 33276315 DOI: 10.1016/j.envint.2020.106213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
In 2011, the International Commission on Radiological Protection (ICRP) recommended reducing the occupational equivalent dose limit for the lens of the eye from 150 mSv/year to 20 mSv/year, averaged over five years, with no single year exceeding 50 mSv. With this recommendation, several important assumptions were made, such as lack of dose rate effect, classification of cataracts as a tissue reaction with a dose threshold at 0.5 Gy, and progression of minor opacities into vision-impairing cataracts. However, although new dose thresholds and occupational dose limits have been set for radiation-induced cataract, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological and mechanistic evidence at doses under 2 Gy. Since the release of the 2011 ICRP statement, the Multidisciplinary European Low Dose Initiative (MELODI) supported in April 2019 a scientific workshop that aimed to review epidemiological, clinical and biological evidence for radiation-induced cataracts. The purpose of this article is to present and discuss recent related epidemiological and clinical studies, ophthalmic examination techniques, biological and mechanistic knowledge, and to identify research gaps, towards the implementation of a research strategy for future studies on radiation-induced lens opacities. The authors recommend particularly to study the effect of ionizing radiation on the lens in the context of the wider, systemic effects, including in the retina, brain and other organs, and as such cataract is recommended to be studied as part of larger scale programs focused on multiple radiation health effects.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England (PHE) Centre for Radiation, Chemical and Environmental Hazards, Oxon, United Kingdom.
| | - Claudia Dalke
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Germany.
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan.
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 31 avenue de la division Leclerc, Fontenay-aux-Roses, France.
| | - Vadim Chumak
- National Research Centre for Radiation Medicine, Ukraine.
| | | | - Judith L Kok
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, (ENEA), Rome, Italy.
| | - Laure Sabatier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Saclay, France.
| | | | - Juliette Thariat
- Laboratoire de physique corpusculaire IN2P3/ENSICAEN -UMR6534 - Unicaen - Normandie University, France
| | - Jean-René Jourdain
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 31 avenue de la division Leclerc, Fontenay-aux-Roses, France.
| |
Collapse
|
16
|
Potential application of γ-H2AX as a biodosimetry tool for radiation triage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108350. [PMID: 34083048 DOI: 10.1016/j.mrrev.2020.108350] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023]
Abstract
Radiation triage and biological dosimetry are two initial steps in the medical management of exposed individuals following radiological accidents. Well established biodosimetry methods such as the dicentric (DC) assay, micronucleus (MN) assay, and fluorescence in-situ hybridization (FISH) translocation assay (for residual damage) have been used for this purpose for several decades. Recent advances in scoring methodology and networking among established laboratories have increased triage capacity; however, these methods still have limitations in analysing large sample numbers, particularly because of the ∼ 48 h minimum culture time required prior to analysis. Hence, there is a need for simple, and high throughput markers to identify exposed individuals in case of radiological/nuclear emergencies. In recent years, a few markers were identified, one being phosphorylated histone 2AX (γ-H2AX), which measured a nuclear foci or nuclear staining intensity that was found to be suitable for triage. Measurement of γ-H2AX foci formed at and around the sites of DNA double-strand breaks is a rapid and sensitive biodosimetry method which does not require culturing and is thus promising for the analysis of a large number of samples. In this review, we have summarized the recent developments of γ-H2AX assay in radiation triage and biodosimetry, focusing chiefly on: i) the importance of baseline frequency and reported values among different laboratories, ii) the influence of known and unknown variables on dose estimation, iii) quality assurance such as inter-laboratory comparison between scorers and scoring methods, and iv) current limitations and potential for future development.
Collapse
|
17
|
Hamada N, Azizova TV, Little MP. An update on effects of ionizing radiation exposure on the eye. Br J Radiol 2020; 93:20190829. [PMID: 31670577 PMCID: PMC8519632 DOI: 10.1259/bjr.20190829] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
The International Commission on Radiological Protection (ICRP) has considered for over 60 years that the lens of the eye is among the most radiosensitive tissues, and has recommended dose limits for the lens to prevent occurrence of vision impairing cataracts (VICs). Epidemiological evidence that doses much lower than previously thought produce cataracts led ICRP to recommend reducing dose threshold for VICs and reducing an occupational equivalent dose limit for the lens in 2011, when only a single threshold of 0.5 Gy was recommended. On the basis of epidemiological evidence, ICRP assumed progression of minor opacities into VICs and no dose rate effect. This contrasts with previously recommended separate thresholds for minor opacities and VICs, and for different exposure scenarios. Progression was assumed based on similar risks of cataracts and cataract surgery in Japanese atomic bomb survivors. The absence of dose rate effect derived from the observed similar thresholds for protracted exposures in Chernobyl cleanup workers and in atomic bomb survivors. Since 2011, there has been an increasing body of epidemiological evidence relating to cataracts and other ocular diseases (i.e. glaucoma and macular degeneration), particularly at low doses and low dose rates. This review paper gives an overview of the scientific basis of the 2011 ICRP recommendation, discusses the plausibility of these two assumptions in the light of emerging scientific evidence, and considers the radiosensitivity of the lens among ocular structures.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Tamara V. Azizova
- Clinical Department, Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, 456780, Ozersk, Russia
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, MSC 9778, Bethesda, MD 20892-9778, USA
| |
Collapse
|
18
|
Richardson RB, Ainsbury EA, Prescott CR, Lovicu FJ. Etiology of posterior subcapsular cataracts based on a review of risk factors including aging, diabetes, and ionizing radiation. Int J Radiat Biol 2020; 96:1339-1361. [DOI: 10.1080/09553002.2020.1812759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health Branch, Canadian Nuclear Laboratories (CNL), Chalk River, Canada
- McGill University’s Medical Physics Unit, Cedars Cancer Centre, Montreal, Canada
| | - Elizabeth A. Ainsbury
- Public Health England’s Centre for Chemical, Radiological and Environmental Hazards, Oxford, UK
| | | | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Sakashita T, Sato T, Hamada N. A biologically based mathematical model for spontaneous and ionizing radiation cataractogenesis. PLoS One 2019; 14:e0221579. [PMID: 31442279 PMCID: PMC6707595 DOI: 10.1371/journal.pone.0221579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cataracts have long been known, but a biomathematical model is still unavailable for cataratogenesis. There has been a renewed interest in ionizing radiation cataracts because the recent international recommendation of the reduced lens dose limit stimulated the discussion toward its regulatory implementation in various countries. Nevertheless, a relationship between radiation (dose and dose rate) and response (e.g., incidence, onset and progression) remains incompletely understood, raising the need for a risk-predictive mathematical model. We here report for the first time an in silico model for cataractogenesis. First, a simplified cell proliferation model was developed for human lens growth based on stem and progenitor cell proliferation as well as epithelial-fiber cell differentiation. Then, a model for spontaneous cataractogenesis was developed to reproduce the human data on a relationship between age and cataract incidence. Finally, a model for radiation cataractogenesis was developed that can reproduce the human data on a relationship between dose and cataract onset at various ages, which was further applied to estimate cataract incidence following chronic lifetime exposure. The model can serve as the foundation for further development of the risk-predictive model for cataractogenesis along with additional considerations of various biological mechanisms and epidemiological datasets.
Collapse
Affiliation(s)
- Tetsuya Sakashita
- Department of Radiation-Applied Biology Research, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Watanuki, Takasaki, Gunma, Japan
| | - Tatsuhiko Sato
- Research Group for Radiation Transport Analysis, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Shirakata, Tokai, Ibaraki, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Iwado-kita, Komae, Tokyo, Japan
| |
Collapse
|
20
|
Rusin A, Hamada N. Exploring the legacy and impact of historical IJRB articles and contributions to ICRP publications and Radiation Research articles through graphical reference mapping. Int J Radiat Biol 2019; 95:802-815. [PMID: 30806134 DOI: 10.1080/09553002.2019.1587195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The International Journal of Radiation Biology (IJRB) celebrates its 60th birthday this year. Ahead of this very special issue, we wanted to produce strong representations of the journal's publication history in order to celebrate the current status of the journal and to look forward to its future. This was accomplished using 'reference maps'. Reference data were used from 1959 onward from the highest-cited paper in IJRB, for each respective year, to create a figure displaying when those articles were cited in IJRB since their publication. This was done to show the relative impact of historical IJRB papers to future research. Common themes of research were also examined by decade. Additionally, to show the historical impact of the journal outside of its immediate area of research and its practical applications, information on IJRB articles cited by the International Commission on Radiological Protection (ICRP) was collected. It was in 1959 when IJRB published the first issue, and when ICRP also issued Publication 1. Among all Publications (1-139), 43 publications have thus far cited 320 IJRB papers and each of which have been cited 1-7 times. Most notably, Publications 90, 99, 118, and 131 cited more than 40 IJRB papers. Further research was done into references for IJRB's contemporary journal: Radiation Research. The most highly cited IJRB articles for each year together since its inception were cited 16,760 times since they were published and cited 1385 times in Radiation Research. Together, these three datasets and their representations show the diversity of historical IJRB publications, the impact of historical IJRB articles in both future research in the journal and outside of it, and articles which new prospective authors contributing to IJRB might find useful in their own research.
Collapse
Affiliation(s)
- Andrej Rusin
- a Department of Biology , McMaster University , Hamilton , Canada
| | - Nobuyuki Hamada
- b Radiation Safety Research Center, Nuclear Technology Research Laboratory , Central Research Institute of Electric Power Industry (CRIEPI) , Tokyo , Japan
| |
Collapse
|
21
|
Hamada N, Azizova TV, Little MP. Glaucomagenesis following ionizing radiation exposure. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 779:36-44. [PMID: 31097150 PMCID: PMC10654893 DOI: 10.1016/j.mrrev.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Glaucoma is a group of optic neuropathies causing optic nerve damage and visual field defects, and is one of the leading causes of blindness. Nearly a century has passed since the first report of glaucoma manifested following ionizing radiation therapy of cancers. Nevertheless, associations between glaucoma and radiation exposures, a dose response relationship, and the mechanistic underpinnings remain incompletely understood. Here we review the current knowledge on manifestations and mechanisms of radiogenic glaucoma. There is some evidence that neovascular glaucoma is manifest relatively quickly, within a few years after high-dose and high dose-rate radiotherapeutic exposure, but little evidence of excess risks of glaucoma after exposure to much lower doses or dose rates. As such, glaucoma appears to have some of the characteristics of a tissue reaction effect, with a threshold of at least 5 Gy but possibly much higher.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, 201-8511, Japan.
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, 456780, Russia.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9778, Bethesda, MD, 20892-9778, USA.
| |
Collapse
|
22
|
Szabó ER, Reisz Z, Polanek R, Tőkés T, Czifrus S, Pesznyák C, Biró B, Fenyvesi A, Király B, Molnár J, Brunner S, Daroczi B, Varga Z, Hideghéty K. A novel vertebrate system for the examination and direct comparison of the relative biological effectiveness for different radiation qualities and sources. Int J Radiat Biol 2018; 94:985-995. [PMID: 30332320 DOI: 10.1080/09553002.2018.1511928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The recent rapid increase of hadron therapy applications requires the development of high performance, reliable in vivo models for preclinical research on the biological effects of high linear energy transfer (LET) particle radiation. AIM The aim of this paper was to test the relative biological effectiveness (RBE) of the zebrafish embryo system at two neutron facilities. MATERIAL AND METHODS Series of viable zebrafish embryos at 24-hour post-fertilization (hpf) were exposed to single fraction, whole-body, photon and neutron (reactor fission neutrons (<En = 1 MeV>) and (p (18 MeV)+Be, <En> = 3.5 MeV) fast neutron) irradiation. The survival and morphologic abnormalities of each embryo were assessed at 24-hour intervals from the point of fertilization up to 192 hpf and then compared to conventional 6 MV photon beam irradiation results. RESULTS The higher energy of the fast neutron beams represents lower RBE (ref. source LINAC 6 MV photon). The lethality rate in the zebrafish embryo model was 10 times higher for 1 MeV fission neutrons and 2.5 times greater for p (18 MeV)+Be cyclotron generated fast neutron beam when compared to photon irradiation results. Dose-dependent organ perturbations (shortening of the body length, spine curvature, microcephaly, micro-ophthalmia, pericardial edema and inhibition of yolk sac resorption) and microscopic (marked cellular changes in eyes, brain, liver, muscle and the gastrointestinal system) changes scale together with the dose response. CONCLUSION The zebrafish embryo system is a powerful and versatile model for assessing the effect of ionizing radiation with different LET values on viability, organ and tissue development.
Collapse
Affiliation(s)
- E R Szabó
- a Extreme Light Infrastructure - Attosecond Light Pulse Source, ELI-HU Non-Profit Ltd , Szeged , Hungary
| | - Z Reisz
- b Department of Pathology , University of Szeged , Szeged , Hungary
| | - R Polanek
- a Extreme Light Infrastructure - Attosecond Light Pulse Source, ELI-HU Non-Profit Ltd , Szeged , Hungary
| | - T Tőkés
- a Extreme Light Infrastructure - Attosecond Light Pulse Source, ELI-HU Non-Profit Ltd , Szeged , Hungary
| | - Sz Czifrus
- c Budapest University of Technology and Economics Institute of Nuclear Techniques , Budapest , Hungary
| | - Cs Pesznyák
- c Budapest University of Technology and Economics Institute of Nuclear Techniques , Budapest , Hungary
| | - B Biró
- d Hungarian Academy of Sciences Institute for Nuclear Research (MTA Atomki) , Debrecen , Hungary
| | - A Fenyvesi
- d Hungarian Academy of Sciences Institute for Nuclear Research (MTA Atomki) , Debrecen , Hungary
| | - B Király
- d Hungarian Academy of Sciences Institute for Nuclear Research (MTA Atomki) , Debrecen , Hungary
| | - J Molnár
- d Hungarian Academy of Sciences Institute for Nuclear Research (MTA Atomki) , Debrecen , Hungary
| | - Sz Brunner
- a Extreme Light Infrastructure - Attosecond Light Pulse Source, ELI-HU Non-Profit Ltd , Szeged , Hungary
| | - B Daroczi
- e Department of Internal Medicine, Division of Geriatrics , University of Debrecen , Debrecen , Hungary
| | - Z Varga
- f Department of Oncotherapy , University of Szeged , Szeged , Hungary
| | - K Hideghéty
- a Extreme Light Infrastructure - Attosecond Light Pulse Source, ELI-HU Non-Profit Ltd , Szeged , Hungary.,f Department of Oncotherapy , University of Szeged , Szeged , Hungary
| |
Collapse
|
23
|
Risk of various types of cataracts in a cohort of Mayak workers following chronic occupational exposure to ionizing radiation. Eur J Epidemiol 2018; 33:1193-1204. [DOI: 10.1007/s10654-018-0450-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/03/2018] [Indexed: 11/27/2022]
|
24
|
Ali F, Atanackovic J, Boyer C, Festarini A, Kildea J, Paterson LC, Rogge R, Stuart M, Richardson RB. Dosimetric and microdosimetric analyses for blood exposed to reactor-derived thermal neutrons. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:1037-1052. [PMID: 29871999 DOI: 10.1088/1361-6498/aaca9f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thermal neutrons are found in reactor, radiotherapy, aircraft, and space environments. The purpose of this study was to characterise the dosimetry and microdosimetry of thermal neutron exposures, using three simulation codes, as a precursor to quantitative radiobiological studies using blood samples. An irradiation line was designed employing a pyrolytic graphite crystal or-alternatively-a super mirror to expose blood samples to thermal neutrons from the National Research Universal reactor to determine radiobiological parameters. The crystal was used when assessing the relative biological effectiveness for dicentric chromosome aberrations, and other biomarkers, in lymphocytes over a low absorbed dose range of 1.2-14 mGy. Higher exposures using a super mirror will allow the additional quantification of mitochondrial responses. The physical size of the thermal neutron fields and their respective wavelength distribution was determined using the McStas Monte Carlo code. Spinning the blood samples produced a spatially uniform absorbed dose as determined from Monte Carlo N-Particle version 6 simulations. The major part (71%) of the total absorbed dose to blood was determined to be from the 14N(n,p)14C reaction and the remainder from the 1H(n,γ)2H reaction. Previous radiobiological experiments at Canadian Nuclear Laboratories involving thermal neutron irradiation of blood yielded a relative biological effectiveness of 26 ± 7. Using the Particle and Heavy Ion Transport Code System, a similar value of ∼19 for the quality factor of thermal neutrons initiating the 14N(n,p)14C reaction in soft tissue was determined by microdosimetric simulations. This calculated quality factor is of similar high value to the experimentally-derived relative biological effectiveness, and indicates the potential of thermal neutrons to induce deleterious health effects in superficial organs such as cataracts of the eye lens.
Collapse
Affiliation(s)
- F Ali
- Radiobiology and Health Branch, Canadian Nuclear Laboratories, Chalk River, ON, K0J 1J0, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
26
|
Hamada N. Ionizing radiation response of primary normal human lens epithelial cells. PLoS One 2017; 12:e0181530. [PMID: 28746371 PMCID: PMC5528879 DOI: 10.1371/journal.pone.0181530] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
Whilst the cataractogenic potential of ionizing radiation has been known for over the past 120 years, little is known about radiation responses of lens cells. Our previous work was the first to evaluate the radiosensitivity of lens cells with the clonogenic assay, documenting that the survival of HLEC1 human lens epithelial cells is comparable to that of WI-38 human lung fibroblasts. Moreover, HLEC1 cells were found to contain subsets where irradiation stimulates proliferation or facilitates formation of abortive colonies with fewer cells than human fibroblasts. This study aims to gain insights into these mechanisms. Irradiation of HLEC1 cells with 10% survival dose caused a growth delay but did not reduce viability. HLEC1 cells at high cumulative population doubling level were more susceptible to radiogenic premature senescence than WI-38 cells. Concerning p53 binding protein 1 (53BP1) foci, HLEC1 cells harbored less spontaneous foci but more radiogenic foci than in WI-38 cells, and the focus number returned to spontaneous levels within 48 h postirradiation both in HLEC1 and WI-38. The chemical inhibition of DNA repair kinases ataxia telangiectasia mutated, DNA-dependent protein kinase or both delayed and attenuated the appearance and disappearance of radiogenic 53BP1 foci, increased radiogenic premature senescence and enhanced clonogenic inactivation. The DNA microarray analysis suggested both radiogenic stimulation and inhibition of cell proliferation. Treatment with conditioned medium from irradiated cells did not change growth and the plating efficiency of nonirradiated cells. These results partially explain mechanisms of our previous observations, such that unrepaired or incompletely repaired DNA damage causes a growth delay in a subset of HLEC1 cells without changing viability through induction of premature senescence, thereby leading to clonogenic inactivation, but that growth is stimulated in another subset via as yet unidentified mechanisms, warranting further studies.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
27
|
Dauer LT, Ainsbury EA, Dynlacht J, Hoel D, Klein BEK, Mayer D, Prescott CR, Thornton RH, Vano E, Woloschak GE, Flannery CM, Goldstein LE, Hamada N, Tran PK, Grissom MP, Blakely EA. Guidance on radiation dose limits for the lens of the eye: overview of the recommendations in NCRP Commentary No. 26. Int J Radiat Biol 2017; 93:1015-1023. [DOI: 10.1080/09553002.2017.1304669] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lawrence T. Dauer
- Radiology & Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth A. Ainsbury
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Oxford, UK
| | - Joseph Dynlacht
- Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Hoel
- Public Health Services, Medical University of South Carolina, Charleston, SC, USA
| | - Barbara E. K. Klein
- Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Donald Mayer
- Special Projects, Indian Point Energy Center, Buchanan, NY, USA
| | | | - Raymond H. Thornton
- Radiology & Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eliseo Vano
- Radiology, Complutense University, Madrid, Spain
| | | | - Cynthia M. Flannery
- Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, Rockville, MD, USA
| | - Lee E. Goldstein
- Pathology & Laboratory Medicine, Boston University, Boston, MA, USA
| | - Nobuyuki Hamada
- Nuclear Technology Research Center, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Phung K. Tran
- Radiation Safety Program, Electric Power Research Institute, Palo Alto, CA, USA
| | - Michael P. Grissom
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
| | - Eleanor A. Blakely
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
28
|
Hamada N. Ionizing radiation sensitivity of the ocular lens and its dose rate dependence. Int J Radiat Biol 2016; 93:1024-1034. [DOI: 10.1080/09553002.2016.1266407] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
29
|
Azizova TV, Bragin EV, Hamada N, Bannikova MV. Risk of Cataract Incidence in a Cohort of Mayak PA Workers following Chronic Occupational Radiation Exposure. PLoS One 2016; 11:e0164357. [PMID: 27723789 PMCID: PMC5056693 DOI: 10.1371/journal.pone.0164357] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022] Open
Abstract
This is the first study of cataract incidence in a cohort of Mayak Production Association workers first employed at one of the main facilities in 1948-1982 and followed up till the end of 2008 (22,377 workers). Principal advantages of the study are the large size of the cohort, long-term follow-up and sufficient statistical power, available results of annual eye examinations over the entire follow-up period and detailed information on non-radiation confounders. Individual measured doses from external γ-rays and neutrons used in the analyses were provided by the Mayak Worker Dosimetry System 2008 (MWDS-2008). Relative risk (RR) and excess relative risk (ERR) per unit dose (Gy) were calculated based on maximum likelihood using the AMFIT module of the EPICURE software. The RR of cataract incidence was found to be the highest in workers exposed at doses above 2.0 Gy. A significant linear association of cataract incidence with cumulative dose from external γ-rays was found with ERR/Gy equal to 0.28 (95% confidence intervals: 0.20, 0.37). The results obtained varied slightly with inclusion of additional adjustments for non-radiation factors (smoking index, hypertension, glaucoma and body mass index). Adjusting for the dose from neutrons gave a considerable increase in ERR/Gy for cataract incidence.
Collapse
Affiliation(s)
- Tamara V. Azizova
- Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, Russia
| | - Evgeny V. Bragin
- Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo, Japan
| | - Maria V. Bannikova
- Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk Chelyabinsk Region, Russia
| |
Collapse
|
30
|
Ainsbury EA, Barnard S, Bright S, Dalke C, Jarrin M, Kunze S, Tanner R, Dynlacht JR, Quinlan RA, Graw J, Kadhim M, Hamada N. Ionizing radiation induced cataracts: Recent biological and mechanistic developments and perspectives for future research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:238-261. [DOI: 10.1016/j.mrrev.2016.07.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
|
31
|
Individual response to ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:369-386. [PMID: 27919342 DOI: 10.1016/j.mrrev.2016.09.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
The human response to ionizing radiation (IR) varies among individuals. The first evidence of the individual response to IR was reported in the beginning of the 20th century. Considering nearly one century of observations, we here propose three aspects of individual IR response: radiosensitivity for early or late adverse tissue events after radiotherapy on normal tissues (non-cancer effects attributable to cell death); radiosusceptibility for IR-induced cancers; and radiodegeneration for non-cancer effects that are often attributable to mechanisms other than cell death (e.g., cataracts and circulatory disease). All the molecular and cellular mechanisms behind IR-induced individual effects are not fully elucidated. However, some specific assays may help their quantification according to the dose and to the genetic status. Accumulated data on individual factors have suggested that the individual IR response cannot be ignored and raises some clinical and societal issues. The individual IR response therefore needs to be taken into account to better evaluate the risks related to IR exposure.
Collapse
|
32
|
Hamada N, Bouffler S, Woloschak GE. Special issue: Tissue reactions to ionizing radiation exposure. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:217-218. [PMID: 27919331 DOI: 10.1016/j.mrrev.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan.
| | - Simon Bouffler
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, United Kingdom
| | - Gayle E Woloschak
- Departments of Radiation Oncology, Radiology, and Cell and Molecular Biology, Robert E. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 300 E. Superior St., Tarry 4-760, Chicago, IL 60611, United States
| |
Collapse
|