1
|
Kraus F, He Y, Swarup S, Overmyer KA, Jiang Y, Brenner J, Capitanio C, Bieber A, Jen A, Nightingale NM, Anderson BJ, Lee C, Paulo JA, Smith IR, Plitzko JM, Gygi SP, Schulman BA, Wilfling F, Coon JJ, Harper JW. Global cellular proteo-lipidomic profiling of diverse lysosomal storage disease mutants using nMOST. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586828. [PMID: 38585873 PMCID: PMC10996675 DOI: 10.1101/2024.03.26.586828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multi-omic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in NPC1 -/- and NPC2 -/- mutants, where lysosomes accumulate cholesterol. Autophagic and endocytic cargo delivery failures correlated with elevated lyso-phosphatidylcholine species and multi-lamellar structures visualized by cryo-electron tomography. Loss of mitochondrial cristae, MICOS-complex components, and OXPHOS components rich in iron-sulfur cluster proteins in NPC2 -/- cells was largely alleviated when iron was provided through the transferrin system. This study reveals how lysosomal dysfunction affects mitochondrial homeostasis and underscores nMOST as a valuable discovery tool for identifying molecular phenotypes across LSDs.
Collapse
Affiliation(s)
- Felix Kraus
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- equal contribution
| | - Yuchen He
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- equal contribution
| | - Sharan Swarup
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yizhi Jiang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Johann Brenner
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Cristina Capitanio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anna Bieber
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicole M Nightingale
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benton J Anderson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chan Lee
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ian R Smith
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jürgen M Plitzko
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brenda A Schulman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Wilfling
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Zheng G, Zeng G, Wei D. The role of NPC2 gene in glioma was investigated based on bioinformatics analysis. Sci Rep 2024; 14:19134. [PMID: 39160329 PMCID: PMC11333723 DOI: 10.1038/s41598-024-70221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
Glioblastoma (GBM) is one of the most malignant primary brain tumors in adults. The NPC2 gene (Niemann-Pick type C intracellular cholesterol transporter 2) is a protein-coding gene with a lipid recognition domain. The NPC2 gene was found to be significantly increased in gliomas (LGG and GBM), and it is now thought to be a risk factor. COX analysis demonstrated that NPC2 was a significant risk factor for glioma. Functional enrichment analysis of genes that were differentially expressed between high and low expression groups revealed that genes were primarily enriched in the regulation of trans-synaptic signaling, Retrograde endocannabinoid signaling and other pathways. According to the findings of the immunoinfiltration investigation, the NPC2 gene and macrophage, DC, etc. have a strong positive association. In addition, patients with high NPC2 expression had higher levels of immune cell expression. Medication sensitivity research revealed that NPC2's differential expression had some bearing on patients' medication sensitivity. There was a strong correlation between the prognosis of glioma patients and the gene sets NUDT19 and NUME. In brief, the NPC2 gene was identified to be a possible biomarker of glioma, and preliminary analysis was done on the role of the NPC2 gene in immunological microenvironment of glioma.
Collapse
Affiliation(s)
- Guangwei Zheng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guangming Zeng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - De Wei
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Neurosurgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Stern S, Crisamore K, Schuck R, Pacanowski M. Evaluation of the landscape of pharmacodynamic biomarkers in Niemann-Pick Disease Type C (NPC). Orphanet J Rare Dis 2024; 19:280. [PMID: 39061081 PMCID: PMC11282650 DOI: 10.1186/s13023-024-03233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive, progressive disorder resulting from variants in NPC1 or NPC2 that leads to the accumulation of cholesterol and other lipids in late endosomes and lysosomes. The clinical manifestations of the disease vary by age of onset, and severity is often characterized by neurological involvement. To date, no disease-modifying therapy has been approved by the United States Food and Drug Administration (FDA) and treatment is typically supportive. The lack of robust biomarkers contributes to challenges associated with disease monitoring and quantifying treatment response. In recent years, advancements in detection methods have facilitated the identification of biomarkers in plasma and cerebral spinal fluid from patients with NPC, namely calbindin D, neurofilament light chain, 24(S)hydroxycholesterol, cholestane-triol, trihydroxycholanic acid glycinate, amyloid-β, total and phosphorylated tau, and N-palmitoyl-O-phosphocholine-serine. These biomarkers have been used to support several clinical trials as pharmacodynamic endpoints. Despite the significant advancements in laboratory techniques, translation of those advancements has lagged, and it remains unclear which biomarkers correlate with disease severity and progression, or which biomarkers could inform treatment response. In this review, we assess the landscape of biomarkers currently proposed to guide disease monitoring or indicate treatment response in patients with NPC.
Collapse
Affiliation(s)
- Sydney Stern
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Karryn Crisamore
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Robert Schuck
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
4
|
Barreda D, Grinstein S, Freeman SA. Target lysis by cholesterol extraction is a rate limiting step in the resolution of phagolysosomes. Eur J Cell Biol 2024; 103:151382. [PMID: 38171214 DOI: 10.1016/j.ejcb.2023.151382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
The ongoing phagocytic activity of macrophages necessitates an extraordinary capacity to digest and resolve incoming material. While the initial steps leading to the formation of a terminal phagolysosome are well studied, much less is known about the later stages of this process, namely the degradation and resolution of the phagolysosomal contents. We report that the degradation of targets such as splenocytes and erythrocytes by phagolysosomes occurs in a stepwise fashion, requiring lysis of their plasmalemmal bilayer as an essential initial step. This is achieved by the direct extraction of cholesterol facilitated by Niemann-Pick protein type C2 (NPC2), which in turn hands off cholesterol to NPC1 for export from the phagolysosome. The removal of cholesterol ulimately destabilizes and permeabilizes the membrane of the phagocytic target, allowing access of hydrolases to its internal compartments. In contrast, we found that saposins, which activate the hydrolysis of sphingolipids, are required for lysosomal tubulation, yet are dispensable for the resolution of targets by macrophages. The extraction of cholesterol by NPC2 is therefore envisaged as rate-limiting in the clearance of membrane-bound targets such as apoptotic cells. Selective cholesterol removal appears to be a primary mechanism that enables professional phagocytes to distinguish the target membrane from the phagolysosomal membrane and may be conserved in the resolution of autolysosomes.
Collapse
Affiliation(s)
- Dante Barreda
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry and the University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry and the University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
5
|
Chen K, Zhang X, Sun G, Fang Z, Liao L, Zhong Y, Huang F, Dong M, Luo S. Focusing on the Abnormal Events of NPC1, NPC2, and NPC1L1 in Pan-Cancer and Further Constructing LUAD and KICH Prediction Models. J Proteome Res 2024; 23:449-464. [PMID: 38109854 DOI: 10.1021/acs.jproteome.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Cancer's high incidence and death rate jeopardize human health and life, and it has become a global public health issue. Some members of NPCs have been studied in a few cancers, but comprehensive and prognostic analysis is lacking in most cancers. In this study, we used the Cancer Genome Atlas (TCGA) data genomics and transcriptome technology to examine the differential expression and prognosis of NPCs in 33 cancer samples, as well as to investigate NPCs mutations and their effect on patient prognosis and to evaluate the methylation level of NPCs in cancer. The linked mechanisms and medication resistance were subsequently investigated in order to investigate prospective tumor therapy approaches. The relationships between NPCs and immune infiltration, immune cells, immunological regulatory substances, and immune pathways were also investigated. Finally, the LUAD and KICH prognostic prediction models were built using univariate and multivariate COX regression analysis. Additionally, the mRNA and protein levels of NPCs were also identified.
Collapse
Affiliation(s)
- Keheng Chen
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Xin Zhang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Guangyu Sun
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou 515041, China
| | - Zhichao Fang
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou 515041, China
| | - Lusheng Liao
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yanping Zhong
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Fengdie Huang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Mingyou Dong
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China
| |
Collapse
|
6
|
Zhao N, Deng G, Yuan PX, Zhang YF, Jiang LY, Zhao X, Song BL. TMEM241 is a UDP-N-acetylglucosamine transporter required for M6P modification of NPC2 and cholesterol transport. J Lipid Res 2023; 64:100465. [PMID: 37890669 PMCID: PMC10689955 DOI: 10.1016/j.jlr.2023.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Accurate intracellular cholesterol traffic plays crucial roles. Niemann Pick type C (NPC) proteins NPC1 and NPC2, are two lysosomal cholesterol transporters that mediate the cholesterol exit from lysosomes. However, other proteins involved in this process remain poorly defined. Here, we find that the previously unannotated protein TMEM241 is required for cholesterol egressing from lysosomes through amphotericin B-based genome-wide CRISPR-Cas9 KO screening. Ablation of TMEM241 caused impaired sorting of NPC2, a protein utilizes the mannose-6-phosphate (M6P) modification for lysosomal targeting, resulting in cholesterol accumulation in the lysosomes. TMEM241 is a member of solute transporters 35 nucleotide sugar transporters family and localizes on the cis-Golgi network. Our data indicate that TMEM241 transports UDP-N-acetylglucosamine (UDP-GlcNAc) into Golgi lumen and UDP-GlcNAc is used for the M6P modification of proteins including NPC2. Furthermore, Tmem241-deficient mice display cholesterol accumulation in pulmonary cells and behave pulmonary injury and hypokinesia. Taken together, we demonstrate that TMEM241 is a Golgi-localized UDP-GlcNAc transporter and loss of TMEM241 causes cholesterol accumulation in lysosomes because of the impaired M6P-dependent lysosomal targeting of NPC2.
Collapse
Affiliation(s)
- Nan Zhao
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Gang Deng
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Pei-Xin Yuan
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Ya-Fen Zhang
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Lu-Yi Jiang
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China
| | - Xiaolu Zhao
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China.
| | - Bao-Liang Song
- The Institute for Advanced Studies, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Yao Y, Ren J, Lu J, Sui Y, Gong J, Chen X. Prognostic significance of high NPC2 expression in gastric cancer. Sci Rep 2023; 13:20710. [PMID: 38001127 PMCID: PMC10673825 DOI: 10.1038/s41598-023-47882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide, and the third leading cause of cancer-related death. The identification of novel biomarkers and therapeutic targets is critical to improve the prognosis. A total of 380 patients with primary gastric cancer from the TCGA database were analyzed. The receiver operating characteristic curves were plotted. We further evaluated the independent prognostic ability of NPC2 expression for overall survival (OS) and relapse-free survival (RFS) through the Kaplan-Meier curve and Cox analysis. The NPC2 expression was significantly higher (P < 0.001) in gastric cancer. High NPC2 expression was significantly (P < 0.0001) associated with poor OS and poor RFS. The age, stage, radiation therapy, residual tumor, and NPC2 expression showed independent prognostic value for OS. The gender and NPC2 expression showed independent prognostic value for RFS. The higher NPC2 expression was observed in gastric cancer, compared with adjacent normal tissue (P < 0.001), confirmed by the IHC staining. The CCK-8 assay showed that NPC2 knockdown inhibits cell proliferation while NPC2 overexpression promotes cell proliferation (P < 0.05). NPC2 expression may serve as a promising prognostic biomarker for patients with gastric cancer.
Collapse
Affiliation(s)
- Yunzhuang Yao
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jinnan Ren
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Junhui Lu
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Yue Sui
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Jingwen Gong
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Xing Chen
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
8
|
Khatri K, O'Malley A, Linn C, Kowal K, Chruszcz M. Role of Small Molecule Ligands in IgE-Mediated Allergy. Curr Allergy Asthma Rep 2023; 23:497-508. [PMID: 37351723 PMCID: PMC11490272 DOI: 10.1007/s11882-023-01100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE OF REVIEW A significant fraction of allergens bind small molecular ligands, and many of these compounds are classified as lipids. However, in most cases, we do not know the role that is played by the ligands in the allergic sensitization or allergic effector phases. RECENT FINDINGS More effort is dedicated toward identification of allergens' ligands. This resulted in identification of some lipidic compounds that can play active immunomodulatory roles or impact allergens' molecular and allergic properties. Four allergen families (lipocalins, NPC2, nsLTP, and PR-10) are among the best characterized in terms of their ligand-binding properties. Allergens from these four families are able to bind many chemically diverse molecules. These molecules can directly interact with human immune system and/or affect conformation and stability of allergens. While there is more data on the allergens and their small molecular ligands, we are just starting to understand their role in allergy.
Collapse
Affiliation(s)
- Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrea O'Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Christina Linn
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Chen K, Zhang X, Peng H, Huang F, Sun G, Xu Q, Liao L, Xing Z, Zhong Y, Fang Z, Liao M, Luo S, Chen W, Dong M. Exploring the diagnostic value, prognostic value, and biological functions of NPC gene family members in hepatocellular carcinoma based on a multi-omics analysis. Funct Integr Genomics 2023; 23:264. [PMID: 37541978 DOI: 10.1007/s10142-023-01195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Liver cancer is a cunning malignancy with a high incidence and mortality rate among cancers worldwide. The NPC gene family members (NPCs: NPC1, NPC2, and NPC1L1) are closely linked to the development of multiple cancers, but their role in liver cancer remains unclear. As a result, we must investigate their functions in liver hepatocellular carcinoma (LIHC). NPCs were significantly differentially expressed between normal and LIHC tissues, with a high mutation frequency in LIHC. The ROC curve analysis revealed that NPC1/NPC2 had high diagnostic and prognostic values in LIHC. NPC1 expression was also found to be negatively correlated with its methylation level. The differentially expressed genes between high and low NPC1 expression groups in LIHC were mainly related to channel activity, transporter complexes, and plasma membrane adhesion molecules. Additionally, NPC1 expression was significantly associated with multiple immune cells and immunization checkpoints. It was hypothesized that a TUG1/SNHG4-miR-148a-3p-NPC1 regulatory axis is associated with hepatocarcinogenesis. Finally, the protein expression of NPC1 in LIHC tissues and paraneoplastic tissues was detected, and NPC1-knockdown HepG2 cells (NPC1KO) inhibited the proliferation, migration, and invasion. This study helped to identify new prognostic markers and potential immunotherapeutic targets for LIHC and revealed the molecular mechanisms underlying NPC1 regulation in LIHC. The NPCs play a key role in the prognosis and diagnosis of LIHC and may be an important indicator for LIHC prognosis and diagnosis; NPC1 might be a potential therapeutic target in LIHC.
Collapse
Affiliation(s)
- Keheng Chen
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Xin Zhang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Huixin Peng
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, PR China
| | - Fengdie Huang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Guangyu Sun
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Qijiang Xu
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Lusheng Liao
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Zhiyong Xing
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Yanping Zhong
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Zhichao Fang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China
| | - Meihua Liao
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, PR China.
| | - Wencheng Chen
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Center for Clinical Laboratory Diagnosis and Research, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, PR China.
| | - Mingyou Dong
- Department of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
10
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Yoon HJ, Jeong J, Kim G, Lee HH, Jang S. The point mutation of the cholesterol trafficking membrane protein NPC1 may affect its proper function in more than a single step: Molecular dynamics simulation study. Comput Biol Chem 2022; 99:107725. [PMID: 35850050 DOI: 10.1016/j.compbiolchem.2022.107725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein is one of the key players of cholesterol trafficking from the lysosome and its function is closely coupled with the Niemann-Pick type C2 (NPC2) protein. The dysfunction of one of these proteins can cause problems in the overall cholesterol homeostasis and leads to a disease, which is called the Niemann-Pick type C (NPC) disease. The parts of the cholesterol transport mechanism by NPC1 have begun to recently emerge, especially after the full-length NPC1 structure was determined from a cryo-EM study. However, many details about the overall cholesterol trafficking process by NPC1 still remain to be elucidated. Notably, the NPC1 could act as one of the target proteins for the control of infectious diseases due to its role as the virus entry point into the cells as well as for cancer treatment due to the inhibitory effect of tumor growth. A mutation of NPC1 can leads to dysfunctions and understanding this process can provide valuable insights into the mechanisms of the corresponding protein and the therapeutic strategies against the disease that are caused by the mutation. It has been found that patients with the point mutation R518W (or R518Q) on the NPC1 show the accumulation of lipids within the lysosomal lumen. In this paper, we report how the corresponding mutation can affect the cholesterol transport process by NPC1 in the different stages by the molecular dynamics simulations. The simulation results show that the point mutation intervenes at least at two different steps during the cholesterol transport by NPC1 and NPC2 in combination, which includes the association step of NPC2 with the NPC1, the cholesterol transfer step from NPC2 to NPC1-NTD while the cholesterol passage within the NPC1 via a channel is relatively unaffected by R518W mutation. The detailed analysis of the resulting simulation trajectories reveals the important structural features that are essential for the proper functioning of the NPC1 for the cholesterol transport, and it shows how the overall structure, which thereby includes the function, can be affected by a single mutation.
Collapse
Affiliation(s)
- Hye-Jin Yoon
- Department of Chemistry, Seoul National University, Seoul, the Republic of Korea
| | - Jian Jeong
- Department of Chemistry, Sejong University, Seoul, the Republic of Korea
| | - Guun Kim
- Department of Physics, Sejong University, Seoul, the Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, Seoul National University, Seoul, the Republic of Korea.
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, the Republic of Korea.
| |
Collapse
|
12
|
Li X, Zhang Y, Wu Y, Li B, Sun J, Gu S, Pang X. Lipid metabolism regulated by superoxide scavenger trypsin in
Hylocereus undatus
through multi‐omics analyses. J Food Biochem 2022; 46:e14144. [DOI: 10.1111/jfbc.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Xin Li
- College of Food and Bioengineering Henan University of Science and Technology Luoyang China
- Key Laboratory of Microbial Resources Exploitation and Utilization Luoyang China
- National Demonstration Center for Experimental Food Processing and Safety Education Luoyang China
| | - Yinyin Zhang
- College of Food and Bioengineering Henan University of Science and Technology Luoyang China
| | - Ying Wu
- College of Food and Bioengineering Henan University of Science and Technology Luoyang China
| | - Bairu Li
- College of Food and Bioengineering Henan University of Science and Technology Luoyang China
| | - Jiaju Sun
- College of Food and Bioengineering Henan University of Science and Technology Luoyang China
| | - Shaobin Gu
- College of Food and Bioengineering Henan University of Science and Technology Luoyang China
| | - Xinyue Pang
- College of Medical Technology and Engineering Henan University of Science and Technology Luoyang China
| |
Collapse
|
13
|
Curtis D. Weighted burden analysis in 200,000 exome-sequenced subjects characterises rare variant effects on BMI. Int J Obes (Lond) 2022; 46:782-792. [PMID: 35067685 DOI: 10.1038/s41366-021-01053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION A number of genes have been identified in which rare variants can cause obesity. Here we analyse a sample of exome sequenced subjects from UK Biobank using BMI as a phenotype with the aims of identifying genes in which rare, functional variants influence BMI and characterising the effects of different categories of variant. METHODS There were 199,807 exome sequenced subjects for whom BMI was recorded. Weighted burden analysis of rare, functional variants was carried out, incorporating population principal components and sex as covariates. For selected genes, additional analyses were carried out to clarify the contribution of different categories of variant. Statistical significance was summarised as the signed log 10 of the p value (SLP), given a positive sign if the weighted burden score was positively correlated with BMI. RESULTS Two genes were exome-wide significant, MC4R (SLP = 15.79) and PCSK1 (SLP = 6.61). In MC4R, disruptive variants were associated with an increase in BMI of 2.72 units and probably damaging nonsynonymous variants with an increase of 2.02 units. In PCSK1, disruptive variants were associated with a BMI increase of 2.29 and protein-altering variants with an increase of 0.34. Results for other genes were not formally significant after correction for multiple testing, although SIRT1, ZBED6 and NPC2 were noted to be of potential interest. CONCLUSION Because the UK Biobank consists of a self-selected sample of relatively healthy volunteers, the effect sizes noted may be underestimates. The results demonstrate the effects of very rare variants on BMI and suggest that other genes and variants will be definitively implicated when the sequence data for additional subjects becomes available.
Collapse
Affiliation(s)
- David Curtis
- UCL Genetics Institute, UCL, Darwin Building, Gower Street, London, WC1E 6BT, UK.
- Centre for Psychiatry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
14
|
Song Y, Zhou K, Nan X, Qin Y, Zhao K, Li W, Wang Q. A novel ML protein functions as a pattern recognition protein in antibacterial responses in Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104310. [PMID: 34762938 DOI: 10.1016/j.dci.2021.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The myeloid differentiation factor 2 (MD-2)-related lipid recognition (ML) domain is present in MD-2, MD-1, GM2-activator protein (GM2A) and Niemann-Pick disease type C2 (NPC2). ML proteins function in antibacterial signal transduction and lipid metabolism in vertebrates, but the mechanism in invertebrates is unknown. In this study, we found that ML proteins were involved in bacterial resistance in Chinese mitten crab (Eriocheir sinensis). One member, EsML3, a soluble, bacterial-induced pattern recognition protein was upregulated in hemocytes following bacterial challenge. Recombinant EsML3 bound to Gram-negative bacteria (Vibrio parahaemolyticus) and Gram-positive bacteria (Staphylococcus aureus) by interaction with peptidoglycan, lipopolysaccharide. EsML3 showed no direct bacteriostatic or bacteriocidal activity. Pre-incubating bacteria with rEsML3 significantly promoted in vivo bacterial clearance. EsML3 also promoted phagocytic activity and plays a role against bacterial infection. In summary, EsML3 mediates cellular immune responses by recognising invasive microorganisms, promoting bacterial clearance and phagocytosis against bacterial infection in crab.
Collapse
Affiliation(s)
- Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
15
|
Mengel E, Patterson MC, Da Riol RM, Del Toro M, Deodato F, Gautschi M, Grunewald S, Grønborg S, Harmatz P, Héron B, Maier EM, Roubertie A, Santra S, Tylki‐Szymanska A, Day S, Andreasen AK, Geist MA, Havnsøe Torp Petersen N, Ingemann L, Hansen T, Blaettler T, Kirkegaard T, í Dali C. Efficacy and safety of arimoclomol in Niemann-Pick disease type C: Results from a double-blind, randomised, placebo-controlled, multinational phase 2/3 trial of a novel treatment. J Inherit Metab Dis 2021; 44:1463-1480. [PMID: 34418116 PMCID: PMC9293014 DOI: 10.1002/jimd.12428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Niemann-Pick disease type C (NPC) is a rare, genetic, progressive neurodegenerative disorder with high unmet medical need. We investigated the safety and efficacy of arimoclomol, which amplifies the heat shock response to target NPC protein misfolding and improve lysosomal function, in patients with NPC. In a 12-month, prospective, randomised, double-blind, placebo-controlled, phase 2/3 trial (ClinicalTrials.gov identifier: NCT02612129), patients (2-18 years) were randomised 2:1 to arimoclomol:placebo, stratified by miglustat use. Routine clinical care was maintained. Arimoclomol was administered orally three times daily. The primary endpoint was change in 5-domain NPC Clinical Severity Scale (NPCCSS) score from baseline to 12 months. Fifty patients enrolled; 42 completed. At month 12, the mean progression from baseline in the 5-domain NPCCSS was 0.76 with arimoclomol vs 2.15 with placebo. A statistically significant treatment difference in favour of arimoclomol of -1.40 (95% confidence interval: -2.76, -0.03; P = .046) was observed, corresponding to a 65% reduction in annual disease progression. In the prespecified subgroup of patients receiving miglustat as routine care, arimoclomol resulted in stabilisation of disease severity over 12 months with a treatment difference of -2.06 in favour of arimoclomol (P = .006). Adverse events occurred in 30/34 patients (88.2%) receiving arimoclomol and 12/16 (75.0%) receiving placebo. Fewer patients had serious adverse events with arimoclomol (5/34, 14.7%) vs placebo (5/16, 31.3%). Treatment-related serious adverse events (n = 2) included urticaria and angioedema. Arimoclomol provided a significant and clinically meaningful treatment effect in NPC and was well tolerated.
Collapse
Affiliation(s)
- Eugen Mengel
- SphinCS GmbHInstitute of Clinical Science for LSDHochheimGermany
| | - Marc C. Patterson
- Departments of Neurology, Pediatrics and Medical GeneticsMayo ClinicRochesterMinnesotaUSA
| | - Rosalia M. Da Riol
- Regional Coordination Center for Rare DiseasesAcademic Hospital ‘Santa Maria della Misericordia’UdineItaly
| | - Mireia Del Toro
- Pediatric Neurology DepartmentVall d'Hebron University HospitalBarcelonaSpain
| | - Federica Deodato
- Division of MetabolismOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - Matthias Gautschi
- Department of Paediatrics, Division of Endocrinology, Diabetology and Metabolism, and Institute of Clinical Chemistry, InselspitalUniversity Hospital Bern, University of BernBernSwitzerland
| | - Stephanie Grunewald
- Department of Metabolic MedicineGreat Ormond Street Hospital, Institute of Child Health, UCL, NIHR Biomedical Research CenterLondonUK
| | - Sabine Grønborg
- Centre for Inherited Metabolic DiseasesCopenhagen University Hospital (Rigshospitalet)CopenhagenDenmark
| | - Paul Harmatz
- Gastroenterology and HepatologyUCSF Benioff Children's Hospital OaklandOaklandCaliforniaUSA
| | - Bénédicte Héron
- Department of Pediatric Neurology, Reference Centre for Lysosomal DiseasesUniversity Hospital Armand TrousseauParisFrance
| | - Esther M. Maier
- Department of Inborn Errors of MetabolismUniversity of Munich Children's HospitalMunichGermany
| | - Agathe Roubertie
- Department of NeuropediatricsCentre Hospitalier Universitaire de MontpellierMontpellierFrance
| | - Saikat Santra
- Department of Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
| | - Anna Tylki‐Szymanska
- Department of Paediatrics, Nutrition and Metabolic DiseasesThe Children's Memorial InstituteWarsawPoland
| | - Simon Day
- BiostatisticsClinical Trials Consulting & Training LimitedBuckinghamUK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Niemann-Pick disease type C (NP-C) is a severe neurovisceral lipid storage disease that results in the accumulation of unesterified cholesterol in lysosomes or endosomes. The clinical presentations of NP-C are variable which include visceral symptoms, neurologic symptoms and psychiatric symptoms. Psychosis is the most common psychiatric manifestation of NP-C and is indistinguishable from a typical psychosis presentation of schizophrenia. The common psychotic presentations in NP-C include visual hallucinations, delusions, auditory hallucinations and thought disorders. Psychosis symptoms are more common in adult or adolescent-onset forms compared with pediatric-onset forms. The underlying pathophysiology of psychosis in NP-C is most probably due to dysconnectivity particularly between frontotemporal connectivity and subcortical structures. NP-C sometimes is mistaken for schizophrenia which causes delay in treatment due to lack of awareness and literature review. This review aims to summarize the relevant case reports on psychosis symptoms in NP-C and discuss the genetics and pathophysiology underlying the condition.
Collapse
Affiliation(s)
- Leong Tung Ong
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Liedtke M, Völkner C, Jürs AV, Peter F, Rabenstein M, Hermann A, Frech MJ. Pathophysiological In Vitro Profile of Neuronal Differentiated Cells Derived from Niemann-Pick Disease Type C2 Patient-Specific iPSCs Carrying the NPC2 Mutations c.58G>T/c.140G>T. Int J Mol Sci 2021; 22:ijms22084009. [PMID: 33924575 PMCID: PMC8069078 DOI: 10.3390/ijms22084009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Niemann-Pick type C2 (NP-C2) disease is a rare hereditary disease caused by mutations in the NPC2 gene. NPC2 is a small, soluble protein consisting of 151 amino acids, primarily expressed in late endosomes and lysosomes (LE/LY). Together with NPC1, a transmembrane protein found in these organelles, NPC2 accomplishes the exclusion of cholesterol; thus, both proteins are essential to maintain cellular cholesterol homeostasis. Consequently, mutations in the NPC2 or NPC1 gene result in pathophysiological accumulation of cholesterol and sphingolipids in LE/LY. The vast majority of Niemann-Pick type C disease patients, 95%, suffer from a mutation of NPC1, and only 5% display a mutation of NPC2. The biochemical phenotype of NP-C1 and NP-C2 appears to be indistinguishable, and both diseases share several commonalities in the clinical manifestation. Studies of the pathological mechanisms underlying NP-C2 are mostly based on NP-C2 animal models and NP-C2 patient-derived fibroblasts. Recently, we established induced pluripotent stem cells (iPSCs), derived from a donor carrying the NPC2 mutations c.58G>T/c.140G>T. Here, we present a profile of pathophysiological in vitro features, shared by NP-C1 and NP-C2, of neural differentiated cells obtained from the patient specific iPSCs. Profiling comprised a determination of the NPC2 protein level, detection of cholesterol accumulation by filipin staining, analysis of oxidative stress, and determination of autophagy. As expected, the NPC2-deficient cells displayed a significantly reduced amount of NPC2 protein, and, accordingly, we observed a significantly increased amount of cholesterol. Most notably, NPC2-deficient cells displayed only a slight increase of reactive oxygen species (ROS), suggesting that they do not suffer from oxidative stress and express catalase at a high level. As a site note, comparable NPC1-deficient cells suffer from a lack of catalase and display an increased level of ROS. In summary, this cell line provides a valuable tool to gain deeper understanding, not only of the pathogenic mechanism of NP-C2, but also of NP-C1.
Collapse
Affiliation(s)
- Maik Liedtke
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Christin Völkner
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Alexandra V. Jürs
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Franziska Peter
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Michael Rabenstein
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Moritz J. Frech
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.V.J.); (F.P.); (M.R.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
- Correspondence:
| |
Collapse
|
18
|
Complex dystonias: an update on diagnosis and care. J Neural Transm (Vienna) 2020; 128:431-445. [PMID: 33185802 PMCID: PMC8099829 DOI: 10.1007/s00702-020-02275-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Complex dystonias are defined as dystonias that are accompanied by neurologic or systemic manifestations beyond movement disorders. Many syndromes or diseases can present with complex dystonia, either as the cardinal sign or as part of a multi-systemic manifestation. Complex dystonia often gradually develops in the disease course, but can also be present from the outset. If available, the diagnostic workup, disease-specific treatment, and management of patients with complex dystonias require a multi-disciplinary approach. This article summarizes current knowledge on complex dystonias with a particular view of recent developments with respect to advances in diagnosis and management, including causative treatments.
Collapse
|
19
|
Sukhorukov VN, Khotina VA, Chegodaev YS, Ivanova E, Sobenin IA, Orekhov AN. Lipid Metabolism in Macrophages: Focus on Atherosclerosis. Biomedicines 2020; 8:biomedicines8080262. [PMID: 32752275 PMCID: PMC7459513 DOI: 10.3390/biomedicines8080262] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanisms of lipid homeostasis and its impairment are of crucial importance for atherogenesis, and their understanding is necessary for successful development of new therapeutic approaches. In the arterial wall, macrophages play a prominent role in intracellular lipid accumulation, giving rise to foam cells that populate growing atherosclerotic plaques. Under normal conditions, macrophages are able to process substantial amounts of lipids and cholesterol without critical overload of the catabolic processes. However, in atherosclerosis, these pathways become inefficient, leading to imbalance in cholesterol and lipid metabolism and disruption of cellular functions. In this review, we summarize the existing knowledge on the involvement of macrophage lipid metabolism in atherosclerosis development, including both the results of recent studies and classical concepts, and provide a detailed description of these processes from the moment of lipid uptake with lipoproteins to cholesterol efflux.
Collapse
Affiliation(s)
- Vasily N. Sukhorukov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (I.A.S.); (A.N.O.)
- Russian Medical Research Center of Cardiology, Institute of Experimental Cardiology, Laboratory of Medical Genetics, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
- Correspondence: ; Tel.: +7-915-393-3263
| | - Victoria A. Khotina
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (I.A.S.); (A.N.O.)
- Institute of General Pathology and Pathophysiology, Laboratory of Angiopathology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | | | - Ekaterina Ivanova
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia;
| | - Igor A. Sobenin
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (I.A.S.); (A.N.O.)
- Russian Medical Research Center of Cardiology, Institute of Experimental Cardiology, Laboratory of Medical Genetics, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (I.A.S.); (A.N.O.)
- Institute of General Pathology and Pathophysiology, Laboratory of Angiopathology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| |
Collapse
|