1
|
Hoveidaei AH, Mosalamiaghili S, Sabaghian A, Hajiaghajani S, Farsani AS, Sahebi M, Poursalehian M, Nwankwo BO, Conway JD. Local antibiotic delivery: Recent basic and translational science insights in orthopedics. Bone 2025; 193:117416. [PMID: 39914596 DOI: 10.1016/j.bone.2025.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Infections remain a significant challenge in orthopedic settings despite advancements in preventive measures. Antibiotics are the primary defense against infections, but optimal delivery methods to the infection site are still being investigated. This review aims to examine existing approaches for local drug delivery from a basic science perspective. RECENT FINDINGS Achieving adequate antibiotic concentration at the infection site is challenging due to compromised vasculature in ischemic conditions. Local administration methods, including antibiotic-loaded carriers such as impregnated bone grafts and various bone substitutes, are being explored as alternatives to systemic antibiotic use. SUMMARY Various materials, including polymethyl methacrylate (PMMA), hydroxyapatite, calcium phosphate/sulfate, bone glass, and hydrogel, are being investigated for local antibiotic delivery. Some of these materials possess inherent antibacterial properties due to their chemical interactions. The selection of appropriate antibiotics, their dosage, release kinetics from the carrier material, physical behavior of the material/graft, and biocompatibility are key areas for further investigation in basic science research.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | | | | | - Sina Hajiaghajani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Sahebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Poursalehian
- Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Basilia Onyinyechukwu Nwankwo
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA; Howard University Hospital, Department of Orthopaedic Surgery and Rehabilitation, Washington, DC, USA
| | - Janet D Conway
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| |
Collapse
|
2
|
Fan M, Ren Y, Zhu Y, Zhang H, Li S, Liu C, Lv H, Chu L, Hou Z, Zhang Y, Pan H, Cui X, Chen W. Borosilicate bioactive glass synergizing low-dose antibiotic loaded implants to combat bacteria through ATP disruption and oxidative stress to sequentially achieve osseointegration. Bioact Mater 2025; 44:184-204. [PMID: 39502840 PMCID: PMC11535878 DOI: 10.1016/j.bioactmat.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Bone infection is a catastrophe in clinical orthopedics. Despite being the standard therapy for osteomyelitis, antibiotic-loaded polymethyl methacrylate (PMMA) cement has low efficiency against bacteria in biofilms. Furthermore, high-dose antibiotic-loaded implants carry risks of bacterial resistance, tissue toxicity, and impairment of local tissue healing. By incorporating borosilicate bioactive glass (BSG) into low-dose gentamicin sulfate (GS)-loaded PMMA cement, an intelligent strategy that synergistically eradicates bacteria and sequentially promotes osseointegration, was devised. Results showed that BSG did not compromises the handling properties of the cement, but actually endowed it with an ionic and alkaline microenvironment, thereby damaging the integrity of bacterial cell walls and membranes, inhibiting ATP synthesis by disrupting the respiratory chain in cell membranes and glycogen metabolism, and elevating reactive oxygen species (ROS) levels by weakening antioxidant components (peroxisomes and carotenoids). These antibacterial characteristics of BSG synergistically reinforced the effectiveness of GS, which was far below the actual clinical dosage, achieving efficient bacterial killing and biofilm clearance by binding to the 30S subunit of ribosomes. Furthermore, the released GS and the ionic and alkaline microenvironment from the implants fostered the osteogenic activity of hBMSCs in vitro and coordinately enhanced osseointegration in vivo. Collectively, this study underscores that BSG incorporation offers a promising strategy for reducing antibiotic dosage while simultaneously enhancing the antibacterial activity and osteogenesis of implants. This approach holds potential for resolving the conflict between bacterial resistance and bone infection.
Collapse
Affiliation(s)
- Mengke Fan
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Youliang Ren
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550000, PR China
| | - Yanbin Zhu
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Hao Zhang
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, PR China
| | - Shuaijie Li
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Chunyu Liu
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, PR China
| | - Hongzhi Lv
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Lei Chu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Yingze Zhang
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, PR China
| | - Xu Cui
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery the Hebei Medical University Third Hospital, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Engineering Research Center of Orthopedic Minimally Invasive Intelligent Equipment of Ministry of Education, Key Laboratory of Biomechanics of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| |
Collapse
|
3
|
Jin Y, Liu H, Chu L, Yang J, Li X, Zhou H, Jiang H, Shi L, Weeks J, Rainbolt J, Yang C, Xue T, Pan H, Deng Z, Xie C, Cui X, Ren Y. Initial therapeutic evidence of a borosilicate bioactive glass (BSG) and Fe 3O 4 magnetic nanoparticle scaffold on implant-associated Staphylococcal aureus bone infection. Bioact Mater 2024; 40:148-167. [PMID: 38962659 PMCID: PMC11220464 DOI: 10.1016/j.bioactmat.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Implant-associated Staphylococcus aureus (S. aureus) osteomyelitis is a severe challenge in orthopedics. While antibiotic-loaded bone cement is a standardized therapeutic approach for S. aureus osteomyelitis, it falls short in eradicating Staphylococcus abscess communities (SACs) and bacteria within osteocyte-lacuna canalicular network (OLCN) and repairing bone defects. To address limitations, we developed a borosilicate bioactive glass (BSG) combined with ferroferric oxide (Fe3O4) magnetic scaffold to enhance antibacterial efficacy and bone repair capabilities. We conducted comprehensive assessments of the osteoinductive, immunomodulatory, antibacterial properties, and thermal response of this scaffold, with or without an alternating magnetic field (AMF). Utilizing a well-established implant-related S. aureus tibial infection rabbit model, we evaluated its antibacterial performance in vivo. RNA transcriptome sequencing demonstrated that BSG + 5%Fe3O4 enhanced the immune response to bacteria and promoted osteogenic differentiation and mineralization of MSCs. Notably, BSG + 5%Fe3O4 upregulated gene expression of NOD-like receptor and TNF pathway in MSCs, alongside increased the expression of osteogenic factors (RUNX2, ALP and OCN) in vitro. Flow cytometry on macrophage exhibited a polarization effect towards M2, accompanied by upregulation of anti-inflammatory genes (TGF-β1 and IL-1Ra) and downregulation of pro-inflammatory genes (IL-6 and IL-1β) among macrophages. In vivo CT imaging revealed the absence of osteolysis and periosteal response in rabbits treated with BSG + 5%Fe3O4 + AMF at 42 days. Histological analysis indicated complete controls of SACs and bacteria within OLCN by day 42, along with new bone formation, signifying effective control of S. aureus osteomyelitis. Further investigations will focus on the in vivo biosafety and biological mechanism of this scaffold within infectious microenvironment.
Collapse
Affiliation(s)
- Ying Jin
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Hang Liu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Lei Chu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Jin Yang
- Department of Orthopaedics, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Xiuyang Li
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
- Department of Orthopedics, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, 400054, PR China
| | - Hang Zhou
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Haitao Jiang
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Lei Shi
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Jason Weeks
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Changjiang Yang
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Thomas Xue
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Zhongliang Deng
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Chao Xie
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xu Cui
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Youliang Ren
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| |
Collapse
|
4
|
Gour S, Mukherjee A, Balani K, Dhami NK. Quantitative study of early-stage transient bacterial adhesion to bioactive glass and glass ceramics: atomic force microscopic observations. Sci Rep 2024; 14:20336. [PMID: 39223136 PMCID: PMC11369109 DOI: 10.1038/s41598-024-67716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial potential of bioactive glass (BAG) makes it promising for implant applications, specifically overcoming the toxicity concerns associated with traditional antibacterial nanoparticles. The 58S composition of BAG (with high Ca and absence of Na) has been known to exhibit excellent bioactivity and antibacterial behaviour, but the mechanisms behind have not been investigated in detail. In this pioneering study, we are using Atomic Force Microscopy (AFM) to gain insights into 58S BAG's adhesive interactions with planktonic cells of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria; along with the impact of crystallinity on antibacterial properties. We have recorded greater bacterial inhibition by amorphous BAG compared to semi-crystalline glass-ceramics and stronger effect against gram-negative bacteria via conventional long-term antibacterial tests. AFM force distance curves has illustrated substantial bonding between bacteria and BAG within the initial one second (observed at a gap of 250 ms) of contact, with multiple binding events. Further, stronger adhesion of BAG with E.coli (~ 6 nN) compared to S. aureus (~ 3 nN) has been found which can be attributed to more adhesive nano-domains (size effect) distributed uniformly on E.coli surface. This study has revealed direct evidence of impact of contact time and 58S BAG's crystalline phase on bacterial adhesion and antimicrobial behaviour. Current study has successfully demonstrated the mode and mechanisms of initial bacterial adhesion with 58S BAG. The outcome can pave the way towards improving the designing of implant surfaces for a range of biomedical applications.
Collapse
Affiliation(s)
- Shivani Gour
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, 6102, Australia
- Department of Material Science and Engineering, Indian Institute of Technology, Kanpur, UP, 208016, India
| | - Abhijit Mukherjee
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, 6102, Australia
| | - Kantesh Balani
- Department of Material Science and Engineering, Indian Institute of Technology, Kanpur, UP, 208016, India.
| | - Navdeep K Dhami
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, 6102, Australia.
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
5
|
Almasri D, Dahman Y. Prosthetic Joint Infections: Biofilm Formation, Management, and the Potential of Mesoporous Bioactive Glass as a New Treatment Option. Pharmaceutics 2023; 15:pharmaceutics15051401. [PMID: 37242643 DOI: 10.3390/pharmaceutics15051401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Infection of prosthetic joints is one of the biggest challenges to a successful replacement of the joint after a total joint arthroplasty. Such infections are caused by bacterial colonies that are difficult to treat by systemic delivery of antibiotics. Local delivery of antibiotics can prove to be the solution to such a devastating outcome that impacts patients' health and ability to regain function in their joints as well as costs the healthcare system millions of dollars every year. This review will discuss prosthetic joint infections in detail with a focus on the development, management, and diagnosis of the infections. Surgeons often opt to use polymethacrylate cement locally to deliver antibiotics; however, due to the rapid release of antibiotics, non-biodegradability, and high chance of reinfection, the search for alternatives is in high demand. One of the most researched alternatives to current treatments is the use of biodegradable and highly compatible bioactive glass. The novelty of this review lies in its focus on mesoporous bioactive glass as a potential alternative to current treatments for prosthetic joint infection. Mesoporous bioactive glass is the focus of this review because it has a higher capacity to deliver biomolecules, stimulate bone growth, and treat infections after prosthetic joint replacement surgeries. The review also examines different synthesis methods, compositions, and properties of mesoporous bioactive glass, highlighting its potential as a biomaterial for the treatment of joint infections.
Collapse
Affiliation(s)
- Dana Almasri
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Yaser Dahman
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
6
|
Steadman W, Chapman PR, Schuetz M, Schmutz B, Trampuz A, Tetsworth K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics (Basel) 2023; 12:752. [PMID: 37107114 PMCID: PMC10134995 DOI: 10.3390/antibiotics12040752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Prosthetic Joint Infection (PJI) causes significant morbidity and mortality for patients globally. Delivery of antibiotics to the site of infection has potential to improve the treatment outcomes and enhance biofilm eradication. These antibiotics can be delivered using an intra-articular catheter or combined with a carrier substance to enhance pharmacokinetic properties. Carrier options include non-resorbable polymethylmethacrylate (PMMA) bone cement and resorbable calcium sulphate, hydroxyapatite, bioactive glass, and hydrogels. PMMA allows for creation of structural spacers used in multi-stage revision procedures, however it requires subsequent removal and antibiotic compatibility and the levels delivered are variable. Calcium sulphate is the most researched resorbable carrier in PJI, but is associated with wound leakage and hypercalcaemia, and clinical evidence for its effectiveness remains at the early stage. Hydrogels provide a versatile combability with antibiotics and adjustable elution profiles, but clinical usage is currently limited. Novel anti-biofilm therapies include bacteriophages which have been used successfully in small case series.
Collapse
Affiliation(s)
- William Steadman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Paul R. Chapman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Herston Infectious Disease Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Infectious Diseases, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Michael Schuetz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Beat Schmutz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane 4059, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane 4059, Australia
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Septic Unit Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Kevin Tetsworth
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Medicine, University of Queensland, Brisbane 4029, Australia
| |
Collapse
|
7
|
Xie H, Liu Y, An H, Yi J, Li C, Wang X, Chai W. Recent advances in prevention, detection and treatment in prosthetic joint infections of bioactive materials. Front Bioeng Biotechnol 2022; 10:1053399. [PMID: 36440438 PMCID: PMC9685530 DOI: 10.3389/fbioe.2022.1053399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2023] Open
Abstract
Prosthetic joint infection (PJI) is often considered as one of the most common but catastrophic complications after artificial joint replacement, which can lead to surgical failure, revision, amputation and even death. It has become a worldwide problem and brings great challenges to public health systems. A small amount of microbe attaches to the graft and forms a biofilm on its surface, which lead to the PJI. The current standard methods of treating PJI have limitations, but according to recent reports, bioactive materials have potential research value as a bioactive substance that can have a wide range of applications in the field of PJI. These include the addition of bioactive materials to bone cement, the use of antibacterial and anti-fouling materials for prosthetic coatings, the use of active materials such as bioactive glasses, protamine, hydrogels for prophylaxis and detection with PH sensors and fluorescent-labelled nanoparticles, and the use of antibiotic hydrogels and targeting delivery vehicles for therapeutic purposes. This review focus on prevention, detection and treatment in joint infections with bioactive materials and provide thoughts and ideas for their future applications.
Collapse
Affiliation(s)
- Hongbin Xie
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yubo Liu
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Haoming An
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Jiafeng Yi
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Chao Li
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chai
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
8
|
Coskun HS, Kehribar L, Surucu S, Aydin M, Mahirogullari M. Antibacterial Effects of Sodium Borate and Calcium Borate Based Polymeric Coatings for Orthopedic Implants. Cureus 2022; 14:e22173. [PMID: 35308678 PMCID: PMC8923249 DOI: 10.7759/cureus.22173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Implants used in orthopedic surgery can be colonized by bacteria that form biofilm layers complicating treatment. We aimed to determine titanium implants' antibacterial and biofilm-degrading properties when coated with sodium borate (NaB) and calcium borate (CaB) minerals. Methods We analyzed twenty-four different implants. Three implants were not coated, three were coated with only a carrier polymer (alginate), and eighteen were coated with either CaB or NaB at different concentrations. The implants were incubated with Staphylococcus aureus, and then the bacterial colonies were enumerated. Results The highest microbial load was observed on the implant coated with alginate (1000 colony-forming units [CFU]/mL). The implant without coating contained a microbial load of 420 CFU/mL. The microbial loads of the implants coated with 0.75 mg/mL CaB or 0.25, 0.5, and 0.75 mg/mL NaB (100, 200, 0, and 0 CFU/mL, respectively) were lower than that of the implant without coating. No biofilm formation was observed on implant surfaces coated with 0.5 mg/mL NaB, 0.75 mg/mL NaB, or 0.75 mg/mL CaB; biofilm formation was observed on the implant without coating and alginate-coated implants surfaces. Conclusion At high concentrations, borate minerals (NaB and CaB) have a potent antibacterial effect on colonization and biofilm formation on the implant surface. These elements may be used in implant coating in the future because of their potential antibacterial effects.
Collapse
|
9
|
Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv 2021; 28:2392-2414. [PMID: 34755579 PMCID: PMC8583938 DOI: 10.1080/10717544.2021.1998246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic osteomyelitis is a challenging disease due to its serious rates of mortality and morbidity while the currently available treatment strategies are suboptimal. In contrast to the adopted systemic treatment approaches after surgical debridement in chronic osteomyelitis, local drug delivery systems are receiving great attention in the recent decades. Local drug delivery systems using special carriers have the pros of enhancing the feasibility of penetration of antimicrobial agents to bone tissues, providing sustained release and localized concentrations of the antimicrobial agents in the infected area while avoiding the systemic side effects and toxicity. Most important, the incorporation of osteoinductive and osteoconductive materials in these systems assists bones proliferation and differentiation, hence the generation of new bone materials is enhanced. Some of these systems can also provide mechanical support for the long bones during the healing process. Most important, if the local systems are designed to be injectable to the affected site and biodegradable, they will reduce the level of invasion required for implantation and can win the patients’ compliance and reduce the healing period. They will also allow multiple injections during the course of therapy to guard against the side effect of the long-term systemic therapy. The current review presents different available approaches for delivering antimicrobial agents for the treatment of osteomyelitis focusing on the recent advances in researches for local delivery of antibiotics.HIGHLIGHTS Chronic osteomyelitis is a challenging disease due to its serious mortality and morbidity rates and limited effective treatment options. Local drug delivery systems are receiving great attention in the recent decades. Osteoinductive and osteoconductive materials in the local systems assists bones proliferation and differentiation Local systems can be designed to provide mechanical support for the long bones during the healing process. Designing the local system to be injectable to the affected site and biodegradable will reduces the level of invasion and win the patients’ compliance.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Maha Elkayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Hasan R, Schaner K, Mulinti P, Brooks A. A Bioglass-Based Antibiotic (Vancomycin) Releasing Bone Void Filling Putty to Treat Osteomyelitis and Aid Bone Healing. Int J Mol Sci 2021; 22:7736. [PMID: 34299362 PMCID: PMC8304857 DOI: 10.3390/ijms22147736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
While the infection rate after primary total joint replacements (TJR) sits at 1-2%, for trauma-related surgery, it can be as high as 3.6 to 21.2% based on the type of trauma; the risk of reinfection after revision surgery is even higher. Current treatments with antibiotic-releasing PMMA-based bone cement/ beads and/or systemic antibiotic after surgical debridement do not provide effective treatment due to fluctuating antibiotic levels at the site of infection, leading to insufficient local antibiotic concentration. In addition, non-biodegradable PMMA does not support bone regrowth in the debrided void spaces and often must be removed in an additional surgery. Here, we report a bioactive glass or bioglass (BG) substrate-based biodegradable, easy to fabricate "press fitting" antibiotic-releasing bone void filling (ABVF-BG) putty to provide effective local antibiotic release at the site of infection along with support for bone regeneration. The ABVF-BG putty formulation had homogenously distributed BG particles, a porous structure, and showed putty-like ease of handling. Furthermore, the ABVF-BG putty demonstrated in vitro antibacterial activity for up to 6 weeks. Finally, the ABVF-BG putty was biodegradable in vivo and showed 100% bacterial eradication (as shown by bacterial cell counts) in the treatment group, which received ABVF-BG putty, compared to the infection control group, where all the rats had a high bacterial load (4.63 × 106 ± 7.9 × 105 CFU/gram bone) and sustained osteomyelitis. The ABVF-BG putty also supported bone growth in the void space as indicated by a combination of histology, µCT, and X-ray imaging. The potential for simultaneous infection treatment and bone healing using the developed BG-based ABVF-BG putty is promising as an alternative treatment option for osteomyelitis.
Collapse
Affiliation(s)
- Raquib Hasan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Kambri Schaner
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Pranothi Mulinti
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA;
| | - Amanda Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA;
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84734, USA
| |
Collapse
|
11
|
Bioactive glass S53P4 to fill-up large cavitary bone defect after acute and chronic osteomyelitis treated with antibiotic-loaded cement beads: A prospective case series with a minimum 2-year follow-up. Injury 2021; 52 Suppl 3:S23-S28. [PMID: 34116851 DOI: 10.1016/j.injury.2021.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Bioactive glass S53P4 (BAG-S53P4) has been used in the treatment of osteomyelitis with excellent results. The aim of this study was to evaluate the clinical and radiographic results of patients treated with use of antibiotic-loaded cement beads, followed by bone defects filling using bioglass. METHODS We treated a prospective series of patients presenting with acute or chronic osteomyelitis of a long bone of the upper or lower limb. The first-stage procedure involved debridement and filling of cavitary defects with antibiotic-loaded polymethylmethacrylate (PMMA) beads. When signs of infection subsided, the defects were filled with BAG-S53P4. The main outcomes assessed were the reinfection rate, need for reoperation, radiographic and functional evaluations (DASH and Lysholm scores). RESULTS Ten patients were included, aged between 4 and 66 years (mean 25.4 years). The source of infection was hematogenic in five cases and post-traumatic in the other five. Hematogenic infections required two debridements before filling with bioglass, whereas post-traumatic cases required only one. The time between the first debridement and the application of bioglass varied from 1 to 63 weeks (average of 17 weeks). All patients showed a favorable evolution after bioglass procedure, with no need for reoperation or relevant wound problems. The radiographic evaluation showed partial incorporation of the material and adequate bone formation, and functional scores were satisfactory in all cases. CONCLUSION The treatment of osteomyelitis with surgical debridement and PMMA beads, followed by filling of bone defect with BAG-S53P4, was effective in all patients evaluated, with adequate infectious control and bone regeneration. No cases required reoperation after bioglass implantation. Patients with hematogenous osteomyelitis required a greater number of debridements before filling with bioglass.
Collapse
|
12
|
Ene R, Nica M, Ene D, Cursaru A, Cirstoiu C. Review of calcium-sulphate-based ceramics and synthetic bone substitutes used for antibiotic delivery in PJI and osteomyelitis treatment. EFORT Open Rev 2021; 6:297-304. [PMID: 34150324 PMCID: PMC8183146 DOI: 10.1302/2058-5241.6.200083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection in orthopaedic and trauma surgery remains a destructive complication with particularly challenging diagnosis and treatment due to bacterial antibiotic resistance and biofilm formation. Along with surgical debridement and systemic antibiotics, an important type of adjuvant therapy is local antibiotic delivery, with the purpose of eliminating bacterial colonization and biofilm development. Calcium sulphate, as a synthetic absorbable biomaterial used for local antibiotic delivery, has experienced an increasing popularity during the last decade, with multiple promoted advantages such as predictable antibiotic elution kinetics, complete and quick biodegradation, good biocompatibility, and limited associated complications. A series of commercially available antibiotic-delivery systems based on calcium sulphate are under investigation and in clinical use, with different presentations, compositions, and application techniques. The current article presents the main available calcium-sulphate-based products and the existing data about the clinical and preclinical research results, stemming from their implementation as local antibiotic carriers for surgical site and implant-associated infections treatment and prevention.
Cite this article: EFORT Open Rev 2021;6:297-304. DOI: 10.1302/2058-5241.6.200083
Collapse
Affiliation(s)
- Razvan Ene
- Carol Davila University of Medicine and Pharmacy, Orthopedics and Traumatology Department, Bucharest, Romania.,Bucharest Emergency Clinical Hospital, Romania
| | - Mihai Nica
- Carol Davila University of Medicine and Pharmacy, Orthopedics and Traumatology Department, Bucharest, Romania.,University Emergency Hospital Bucharest, Romania
| | - Dragos Ene
- Carol Davila University of Medicine and Pharmacy, Orthopedics and Traumatology Department, Bucharest, Romania.,Bucharest Emergency Clinical Hospital, Romania
| | - Adrian Cursaru
- Carol Davila University of Medicine and Pharmacy, Orthopedics and Traumatology Department, Bucharest, Romania.,University Emergency Hospital Bucharest, Romania
| | - Catalin Cirstoiu
- Carol Davila University of Medicine and Pharmacy, Orthopedics and Traumatology Department, Bucharest, Romania.,University Emergency Hospital Bucharest, Romania
| |
Collapse
|
13
|
Steinhausen E, Lefering R, Glombitza M, Brinkmann N, Vogel C, Mester B, Dudda M. Bioactive glass S53P4 vs. autologous bone graft for filling defects in patients with chronic osteomyelitis and infected non-unions - a single center experience. J Bone Jt Infect 2021; 6:73-83. [PMID: 34084694 PMCID: PMC8132459 DOI: 10.5194/jbji-6-73-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction:
The goals of osteomyelitis therapy are successful control of infection and
reconstruction of the bone. The gold standard for filling defects is the
autologous bone graft. Bioactive glass S53P4 is an inorganic bone
substitute. We compared the outcome of using bioactive glass (BAG) versus
autologous bone graft (AB) in patients with infected non-union.
Methods:
Patients with chronic osteomyelitis and infected non-union who received
either bioactive glass or autologous bone grafts between 2013 and 2017 were
analyzed retrospectively. The primary endpoint was successful control of
infection during follow-up. Secondary endpoints were bone healing,
functional outcome, and occurrence of complications.
Results:
Eighty-three patients were analyzed (BAG n=51, AB n=32). Twenty-one
patients experienced reinfection (BAG n=15, 29 %; AB n=6, 19 %).
Seventy-eight patients achieved full weight bearing (BAG n=47, 92 %; AB
n=31, 97 %). Sixty-four patients had complete bone healing at the end of
the follow-up period (BAG n=39, 77 %; AB n=25, 78 %). There were no
significant differences between the groups with respect to the primary or
secondary endpoints. Patients with multidrug-resistant pathogens had a
significantly higher rate of incomplete bone healing (p=0.033) and a 3-fold
higher risk of complications in both groups.
Conclusions:
Bioactive glass appears to be a suitable bone substitute not only for
successful control of infection and defect filling but also for bone healing
in cases of infected non-union. In our study, bioactive glass was neither
superior nor inferior to autologous bone graft with regard to the primary
and secondary endpoints. Further studies with larger numbers of patients are
required.
Collapse
Affiliation(s)
- Eva Steinhausen
- Department of Orthopedic and Trauma Surgery, BG Klinikum Duisburg, University of Duisburg-Essen, 47249 Duisburg, Germany.,Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rolf Lefering
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Cologne, Germany
| | - Martin Glombitza
- Department of Orthopedic and Trauma Surgery, BG Klinikum Duisburg, University of Duisburg-Essen, 47249 Duisburg, Germany
| | - Nikolaus Brinkmann
- Department of Orthopedic and Trauma Surgery, BG Klinikum Duisburg, University of Duisburg-Essen, 47249 Duisburg, Germany
| | - Carsten Vogel
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastian Mester
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Orthopedic and Trauma Surgery, BG Klinikum Duisburg, University of Duisburg-Essen, 47249 Duisburg, Germany.,Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
14
|
Filipović U, Dahmane RG, Ghannouchi S, Zore A, Bohinc K. Bacterial adhesion on orthopedic implants. Adv Colloid Interface Sci 2020; 283:102228. [PMID: 32858407 DOI: 10.1016/j.cis.2020.102228] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/19/2023]
Abstract
Orthopedic implants are routinely used for fixation of fractures, correction of deformities, joint replacements, and soft tissue anchorage. Different biomaterials have been engineered for orthopedic implants. Previously, they were designed merely as mechanical devices, now new strategies to enhance bone healing and implant osteointegration via local delivery of molecules and via implant coatings are being developed. These biological coatings should enhance osteointegration and reduce foreign body response or infection. This article reviews current and future orthopedic implants, materials and surface characteristics, biocompatibility, and mechanisms of bacterial adhesion. Additionally, the review is addressing implant-related infection, the main strategies to prevent it and suggest possible future research that may control implant related-infection.
Collapse
Affiliation(s)
- Urška Filipović
- University Clinical Center of Ljubljana, Department of Traumatology, Zaloska 7, 1000 Ljubljana, Slovenia
| | - Raja Gošnak Dahmane
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Institute of Anatomy, Korytkova 2, 1000 Ljubljana, Slovenia
| | | | - Anamarija Zore
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Klemen Bohinc
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Zheng H, Dai Z, Wei J, Li L, Peng H, Yang A, Li H, Lv G. Degradability and biocompatibility of bioglass/poly(amino acid) composites with different surface bioactivity as bone repair materials. J Appl Polym Sci 2020. [DOI: 10.1002/app.49751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Heng Zheng
- College of Physics Sichuan University Chengdu Sichuan China
| | - Zhenyu Dai
- Department of Orthopaedics Chongqing Traditional Chinese Medicine Hospital Chongqing China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai China
| | - Lin Li
- College of Physics Sichuan University Chengdu Sichuan China
| | - Haitao Peng
- College of Physics Sichuan University Chengdu Sichuan China
| | - Aiping Yang
- College of Physics Sichuan University Chengdu Sichuan China
| | - Hong Li
- College of Physics Sichuan University Chengdu Sichuan China
| | - Guoyu Lv
- College of Physics Sichuan University Chengdu Sichuan China
| |
Collapse
|
16
|
Cole KA, Funk GA, Rahaman MN, McIff TE. Mechanical and degradation properties of poly(methyl methacrylate) cement/borate bioactive glass composites. J Biomed Mater Res B Appl Biomater 2020; 108:2765-2775. [PMID: 32170915 DOI: 10.1002/jbm.b.34606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 11/09/2022]
Abstract
Bone cement is used extensively in orthopedics to anchor prostheses to bone and fill voids. Incorporating bioactive glass into poly(methyl methacrylate) (PMMA)-based bone cement could potentially improve its effectiveness for these tasks. This study characterizes the mechanical and degradation properties of composites containing PMMA-based bone cement and particles of borate bioactive glass designated as 13-93B3. Glass particles of size 5, 33, and 100 μm were mixed with PMMA bone cement to create composites containing 20, 30, and 40 wt % glass. Composites and a bone cement control were soaked in phosphate-buffered saline. Compressive strength, Young's modulus, weight loss, water uptake, solution pH, and ionic concentrations were measured over 21 days. The compressive strengths of composites decreased over 21 days. Average Young's moduli of the composites remained below 3 GPa. Weight loss and water uptake of specimens did not exceed 2 and 6%, respectively. Boron concentrations and pH of all solutions increased over time, with higher glass weight fractions leading to higher pH values. Results demonstrated that the composite can sustain glass degradation and ionic release without compromising short-term mechanical strength.
Collapse
Affiliation(s)
- Kimberly A Cole
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Grahmm A Funk
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Mohamed N Rahaman
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - Terence E McIff
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
17
|
Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive Glass Applications in Dentistry. Int J Mol Sci 2019; 20:E5960. [PMID: 31783484 PMCID: PMC6928922 DOI: 10.3390/ijms20235960] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
At present, researchers in the field of biomaterials are focusing on the oral hard and soft tissue engineering with bioactive ingredients by activating body immune cells or different proteins of the body. By doing this natural ground substance, tissue component and long-lasting tissues grow. One of the current biomaterials is known as bioactive glass (BAG). The bioactive properties make BAG applicable to several clinical applications involving the regeneration of hard tissues in medicine and dentistry. In dentistry, its uses include dental restorative materials, mineralizing agents, as a coating material for dental implants, pulp capping, root canal treatment, and air-abrasion, and in medicine it has its applications from orthopedics to soft-tissue restoration. This review aims to provide an overview of promising and current uses of bioactive glasses in dentistry.
Collapse
Affiliation(s)
| | - Dinesh Rokaya
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
| | - Zohaib Khurshid
- Prosthodontic and Dental Implantology Department, College of Dentistry, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Islamic International Dental College, Riphah International University Islamabad 44000, Pakistan
| |
Collapse
|
18
|
Bioactive Glass Granules Inhibit Mature Bacterial Biofilms on the Surfaces of Cochlear Implants. Otol Neurotol 2019; 39:e985-e991. [PMID: 30334871 DOI: 10.1097/mao.0000000000002021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
HYPOTHESIS Biofilm formation on cochlear implant (CI) surfaces differs between bacterial species and can be reduced by the application of S53P4 bioactive glass. BACKGROUND The formation of bacterial biofilms on medical devices, such as cochlear implants, can lead to chronic infections resulting in the need for implant removal. In this study, various surfaces of three CI implant kits from different manufacturers were examined for bacterial biofilm formation and reduction of a pre-existing biofilm by the application of bioactive glass. METHODS Biofilm formations of 4 bacterial species causing implant-related infections were tested on 17 different surfaces: Pseudomonas aeruginosa (ATCC9027), Staphylococcus aureus (ATCC6538), Staphylococcus epidermidis (ATCC12228), and Streptococcus pyogenes (ATCC19615). For P. aeruginosa and S. aureus biofilm reduction after application of S53P4 bioactive glass was evaluated. RESULTS All tested microbial species formed biofilms on the examined CI surfaces in a strain-dependent manner. For S. aureus, a significantly higher biofilm formation on metal components compared with silicone was found whereas the other strains did not show a material specific biofilm formation. Application of S53P4 bioactive glass resulted in a significant reduction of P. aeruginosa and S. aureus mature biofilm. CONCLUSION The four bacteria species displayed biofilm formation on the CI surfaces in a species- and material-specific manner. The results show that bioactive glass can reduce biofilm formation on CI materials in vitro. Future studies are necessary to confirm the results in vivo.
Collapse
|
19
|
Beserra A, Pichardo S, Kisselgoff D, Peeva V, Curiel L. Targeting feasibility evaluation of magnetic resonance-guided focused ultrasound in the management of osteomyelitis: a virtual treatment planning study in 75 patients. Int J Hyperthermia 2019; 36:1012-1023. [DOI: 10.1080/02656736.2019.1663944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
| | - Samuel Pichardo
- University of Calgary, Calgary, AB, Canada
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| | - David Kisselgoff
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| | - Valentina Peeva
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| | - Laura Curiel
- University of Calgary, Calgary, AB, Canada
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| |
Collapse
|
20
|
Morakul S, Otsuka Y, Ohnuma K, Tagaya M, Motozuka S, Miyashita Y, Mutoh Y. Enhancement effect on antibacterial property of gray titania coating by plasma-sprayed hydroxyapatite-amino acid complexes during irradiation with visible light. Heliyon 2019; 5:e02207. [PMID: 31517079 PMCID: PMC6728275 DOI: 10.1016/j.heliyon.2019.e02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to reveal the mechanism of enhancement of antibacterial properties of gray titania by plasma-sprayed hydroxyapatite (HAp)-amino acid fluorescent complexes under irradiation with visible light. Although visible-light-sensitive photocatalysts are applied safely to oral cavities, their efficacy is not high because of the low energy of irradiating light. This study proposed a composite coating containing HAp and gray titania. HAp itself functioned as bacteria catchers and gray titania released antibacterial radicals by visible-light irradiation. HAp-amino acid fluorescent complexes were formed on the surface of the composite coating in order to increase light intensity to gray titania by fluorescence, based on an idea bioinspired by deep-sea fluorescent coral reefs. A cytotoxicity assay on murine osteoblastlike cells revealed that biocompatibility of the HAp-amino acid fluorescent complexes was identical with the that of HAp. Antibacterial assays involving Escherichia coli showed that the three types of HAp-amino acid fluorescent complexes and irradiation with three types of light-emitting diodes (blue, green, and red) significantly decreased colony-forming units. Furthermore, kelvin probe force microscopy revealed that the HAp-amino acid fluorescent complexes preserved the surface potentials even after irradiation with visible light, whereas those of HAp were significantly decreased by the irradiation. Such a preservative effect of the HAp-amino acid fluorescent complexes maintained the bacterial-adhesion performance of HAp and consequently enhanced the antibacterial action of gray titania.
Collapse
Affiliation(s)
- Sarita Morakul
- Graduate School of Materials Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Yuichi Otsuka
- Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Satoshi Motozuka
- Department of Mechanical Engineering, Gihu National College of Technology, 2236-2 Kamimakuwa, Motosu, Gifu, Japan
| | - Yukio Miyashita
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| | - Yoshiharu Mutoh
- Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940-2188, Japan
| |
Collapse
|
21
|
Qiao Z, Yuan Z, Zhang W, Wei D, Hu N. Preparation, in vitro release and antibacterial activity evaluation of rifampicin and moxifloxacin-loaded poly(D,L-lactide-co-glycolide) microspheres. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:790-798. [PMID: 30892092 DOI: 10.1080/21691401.2019.1581792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteomyelitis is difficult to treat because infective bone is poorly accessible for intravenously administering antibiotics and biofilm formation increases bacterial resistance. In this study, microspheres prepared using poly(lactide-co-glycolide) (PLGA) and embedded with moxifloxacin (MOX-PLGA microspheres) and rifampicin/moxifloxacin (RIF/MOX-PLGA microspheres) using the water-in-oil-in-water double emulsion solvent evaporation technique were used for local delivery. Shape of MOX-PLGA microspheres and RIF/MOX-PLGA microspheres were spherical, mean particle size of them were 20.52 μm and 16.62 μm, respectively. Encapsulation efficiency of the MOX-PLGA microspheres was 17.35% ± 2.42%. However, the encapsulation efficiency for MOX and RIF in RIF/MOX-PLGA microspheres was 33.25% ± 7.51% and 49.0% ± 11.25%, respectively. Moxifloxacin and rifampicin were released slowly from microspheres. Both microspheres can efficiently release antibiotics in vitro. Antibacterial and bacterial biofilm-inhibition properties of the released solution were investigated from RIF/MOX-PLGA, MOX-PLGA, and blank PLGA microspheres at varying time points in vitro. RIF/MOX-PLGA microspheres demonstrated the strongest antibacterial activity and bacterial biofilm-inhibition property than the other two microspheres (p < .05). This study suggests that the novel RIF/MOX-PLGA microspheres can be used as a promising carrier for osteomyelitis treatment.
Collapse
Affiliation(s)
- ZeWen Qiao
- a Department of Orthopedics, Xijing Hospital , Fourth Military Medical University , Xi'an , China.,b Department of Orthopedics , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Zhi Yuan
- a Department of Orthopedics, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | - Wenping Zhang
- c Department of Pharmacy, Institute of Clinical Pharmacology , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Daihao Wei
- d General Hospital of Ningxia Medical University , Yinchuan , China
| | - Ningmin Hu
- e Affiliated General Hospital , Ningxia Medical University , Yinchuan , China
| |
Collapse
|
22
|
Funk GA, Burkes JC, Cole KA, Rahaman MN, McIff TE. Antibiotic Elution and Mechanical Strength of PMMA Bone Cement Loaded With Borate Bioactive Glass. J Bone Jt Infect 2018; 3:187-196. [PMID: 30416942 PMCID: PMC6215993 DOI: 10.7150/jbji.27348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction: Local delivery of antibiotics using bone cement as the delivery vehicle is an established method of managing implant-associated orthopedic infections. Various fillers have been added to cement to increase antibiotic elution, but they often do so at the expense of strength. This study evaluated the effect of adding a borate bioactive glass, previously shown to promote bone formation, on vancomycin elution from PMMA bone cement. Methods: Five cement composites were made: three loaded with borate bioactive glass along with 0, 1, and 5 grams of vancomycin and two without any glass but with 1 and 5 grams vancomycin to serve as controls. The specimens were soaked in PBS. Eluate of vancomycin was collected every 24 hours and analyzed by HPLC. Orthopedic-relevant mechanical properties of each composite were tested over time. Results: The addition of borate bioactive glass provided an increase in vancomycin release at Day 1 and an increase in sustained vancomycin release throughout the treatment period. An 87.6% and 21.1% increase in cumulative vancomycin release was seen for both 1g and 5g loading groups, respectively. Compressive strength of all composites remained above the weight-bearing threshold of 70 MPa throughout the duration of the study with the glass-containing composites showing comparable strength to their respective controls. Conclusion: The incorporation of borate bioactive glass into commercial PMMA bone cement can significantly increase the elution of vancomycin. The mechanical strength of the cement-glass composites remained above 70 MPa even after soaking for 8 weeks, suggesting their suitability for orthopedic weight-bearing applications.
Collapse
Affiliation(s)
- Grahmm A Funk
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jonathan C Burkes
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kimberly A Cole
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mohamed N Rahaman
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO, United States
| | - Terence E McIff
- Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
23
|
Recent Evidence on Bioactive Glass Antimicrobial and Antibiofilm Activity: A Mini-Review. MATERIALS 2018; 11:ma11020326. [PMID: 29495292 PMCID: PMC5849023 DOI: 10.3390/ma11020326] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 12/19/2022]
Abstract
Bone defects caused by trauma or pathological events are major clinical and socioeconomic burdens. Thus, the efforts of regenerative medicine have been focused on the development of non-biodegradable materials resembling bone features. Consequently, the use of bioactive glass as a promising alternative to inert graft materials has been proposed. Bioactive glass is a synthetic silica-based material with excellent mechanical properties able to bond to the host bone tissue. Indeed, when immersed in physiological fluids, bioactive glass reacts, developing an apatite layer on the granule’s surface, playing a key role in the osteogenesis process. Moreover, the contact of bioactive glass with biological fluids results in the increase of osmotic pressure and pH due to the leaching of ions from granules’ surface, thus making the surrounding environment hostile to microbial growth. The bioactive glass antimicrobial activity is effective against a wide selection of aerobic and anaerobic bacteria, either in planktonic or sessile forms. Furthermore, bioglass is able to reduce pathogens’ biofilm production. For the aforementioned reasons, the use of bioactive glass might be a promising solution for the reconstruction of bone defects, as well as for the treatment and eradication of bone infections, characterized by bone necrosis and destruction of the bone structure.
Collapse
|
24
|
Jiang D, Jia W, Zhang C. [Research and application progress of bioactive glass in bone repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1512-1516. [PMID: 29806397 DOI: 10.7507/1002-1892.201705093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research and application progress of bioactive glass in bone repair. Methods The recently published literature concerning bioactive glass in bone repair was reviewed and summarized. Results Bioactive glass can classified different types, such as bioactive glass particulate, bioactive glass scaffold, bioactive glass coating, injectable bioactive glass cement, and bioactive glass delivery system. Bioactive glass has been well studied in the field of bone repair due to its excellent biological properties. Also, the remarkable progress has been made in various aspects. Conclusion Bioactive glass is a reliable material of bone repair and will play an even more important role in the future.
Collapse
Affiliation(s)
- Dajun Jiang
- School of Medicine, Shanghai Jiaotong University, Shanghai, 200233, P.R.China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233,
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R.China
| |
Collapse
|
25
|
Pinchuk N, Parkhomey O, Sych O. In Vitro Investigation of Bioactive Glass-Ceramic Composites Based on Biogenic Hydroxyapatite or Synthetic Calcium Phosphates. NANOSCALE RESEARCH LETTERS 2017; 12:111. [PMID: 28209033 PMCID: PMC5307409 DOI: 10.1186/s11671-017-1895-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
This in vitro investigation of the behavior of two types of calcium phosphate glass ceramics on the basis of phosphates of biogenic or synthetic origin prepared from initial mixtures with different particle size has revealed that some different factors affect the behavior, namely the phase composition of composite, fraction of open porosity, and average diameter of pore channels. It was established that the solubility of the composites on the basis of synthetic calcium phosphates and glass after 2 and 7 days contact with saline composites is the highest among the materials under study. First of all, this fact is related to the peculiarities of their phase composition, high fraction of open porosity, and high permeability. As for biogenic hydroxyapatite/glass materials, their solubility is several times lower in spite of close total porosity. The particle size of initial mixture practically does not affect the material solubility; the latter is only slightly lower for smaller particles.
Collapse
Affiliation(s)
- Nataliia Pinchuk
- Frantsevich Institute for Problems of Materials Science of NAS of Ukraine, 3, Krzhyzhanovsky Str, Kyiv, 03680 Ukraine
| | - Oleksandr Parkhomey
- Frantsevich Institute for Problems of Materials Science of NAS of Ukraine, 3, Krzhyzhanovsky Str, Kyiv, 03680 Ukraine
| | - Olena Sych
- Frantsevich Institute for Problems of Materials Science of NAS of Ukraine, 3, Krzhyzhanovsky Str, Kyiv, 03680 Ukraine
| |
Collapse
|
26
|
Shi P, Abbah SA, Chuah YJ, Li J, Zhang Y, He P, Wong HK, Goh JCH. Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers. NANOSCALE 2017; 9:14520-14532. [PMID: 28930342 DOI: 10.1039/c7nr03093b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The efficient delivery of bioactive molecules via rationally designed nanoparticles is an important focus in regenerative medicine. The yolk shell nanocomposite particles described herein are composed of silk fibroin movable cores formed within voided calcium carbonate shells to load and control the release of labile cytokines. These particles are excellent carrier vehicles of potent molecules as they sustained the release of bioactive Bone Morphogenetic Protein 2 (BMP-2) for more than 28 days in vitro. Implantation into bone defects in rabbits corroborates the in vitro results and also reveals that upon contact with phosphate containing body fluids, implanted yolk shell particles agglomerate and transform into a filler that adapts to defect contour to further act as an absorbable hemostatic agent. Taken together, the fabrication of these yolk shell particle-based "bone fillers" could expand the horizon for the development of newer generations of advanced bioactive materials in tissue regeneration applications.
Collapse
Affiliation(s)
- Pujiang Shi
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater 2017; 59:2-11. [PMID: 28676434 DOI: 10.1016/j.actbio.2017.06.046] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023]
Abstract
Bioactive glasses (BGs) and related glass-ceramic biomaterials have been used in bone tissue repair for over 30years. Previous work in this field was comprehensively reviewed including by their inventor Larry Hench, and the key features and properties of BGs are well understood. More recently, attention has focused on their modification to further enhance the osteogenic behaviour, or further compositional changes that may introduce additional properties, such as antimicrobial activity. Evidence is emerging that BGs and related glass-ceramics may be modified in such a way as to simultaneously introduce more than one desirable property. The aim of this review is therefore to consider the evidence that these more recent inorganic modifications to glass and glass-ceramic biomaterials are effective, and whether or not these new compositions represent sufficiently versatile systems to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic and dental surgery. Indeed, a number of classical glass compositions exhibited antimicrobial activity, however the structural design and the addition of specific ions, i.e. Ag+, Cu+, and Sr2+, are able to impart a multifunctional character to these systems, through the combination of, for example, bioactivity with bactericidal activity. STATEMENT OF SIGNIFICANCE In this review we demonstrate the multifunctional potential of bioactive glasses and related glass-ceramics as biomaterials for orthopaedic and craniofacial/dental applications. Therefore, it considers the evidence that the more recent inorganic modifications to glass and glass-ceramic biomaterials are able to impart antimicrobial properties alongside the more classical bone bonding and osteoconduction. These properties are attracting a special attention nowadays that bacterial infections are an increasing challenge in orthopaedics. We also focus the manuscript on the versatility of these systems as a basis to underpin the development of a new generation of truly multifunctional biomaterials to address pressing clinical needs in orthopaedic, craniofacial and dental surgery.
Collapse
|
28
|
Hiltunen AK, Vuorela PM, Fallarero A. Bisphosphonates offer protection against prosthetic joint infections caused by Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Cui X, Huang C, Zhang M, Ruan C, Peng S, Li L, Liu W, Wang T, Li B, Huang W, Rahaman MN, Lu WW, Pan H. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass. J R Soc Interface 2017; 14:20161057. [PMID: 28615491 PMCID: PMC5493788 DOI: 10.1098/rsif.2016.1057] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2017] [Indexed: 11/12/2022] Open
Abstract
Although poly(methylmethacrylate) (PMMA) cements are widely used in orthopaedics, they have numerous drawbacks. This study aimed to improve their bioactivity and osseointegration by incorporating strontium-containing borate bioactive glass (SrBG) as the reinforcement phase and bioactive filler of PMMA cement. The prepared SrBG/PMMA composite cements showed significantly decreased polymerization temperature when compared with PMMA and retained properties of appropriate setting time and high mechanical strength. The bioactivity of SrBG/PMMA composite cements was confirmed in vitro, evidenced by ion release (Ca, P, B and Sr) from SrBG particles. The cellular responses of MC3T3-E1 cells in vitro demonstrated that SrBG incorporation could promote adhesion, migration, proliferation and collagen secretion of cells. Furthermore, our in vivo investigation revealed that SrBG/PMMA composite cements presented better osseointegration than PMMA bone cement. SrBG in the composite cement could stimulate new-bone formation around the interface between the composite cement and host bone at eight and 12 weeks post-implantation, whereas PMMA bone cement only stimulated development of an intervening connective tissue layer. Consequently, the SrBG/PMMA composite cement may be a better alternative to PMMA cement in clinical applications and has promising orthopaedic applications by minimal invasive surgery.
Collapse
Affiliation(s)
- Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Chengcheng Huang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Meng Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Changshun Ruan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen 518020, People's Republic of China
| | - Li Li
- The Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker's Hospital, Liuzhou 545005, People's Republic of China
| | - Wenlong Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ting Wang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics, The University of Hong Kong-Shenzhen Hospital, University of Hong Kong, Shenzhen, People's Republic of China
| | - Bing Li
- The Fourth Affiliated Hospital of Guangxi Medical University/Liu Zhou Worker's Hospital, Liuzhou 545005, People's Republic of China
| | - Wenhai Huang
- Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092, People's Republic of China
| | - Mohamed N Rahaman
- Department of Materials Science and Engineering, Center for Biomedical Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409-0340, USA
| | - William W Lu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Room 907, Lab Block, 21 Sassoon Road, Hong Kong SAR, People's Republic of China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
30
|
Rivadeneira J, Gorustovich A. Bioactive glasses as delivery systems for antimicrobial agents. J Appl Microbiol 2017; 122:1424-1437. [PMID: 28035706 DOI: 10.1111/jam.13393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/28/2023]
Abstract
Most biomaterial-associated infections are caused by opportunistic pathogens and bacteria that are regularly found within the microflora of the implant site. In addition, a biomaterial implant or device remains at risk of infection by hematogenous spread of bacteria disseminated from infections elsewhere in the body or from infected peri-implant tissue in revision surgery. The resulting infections are frequently accompanied by patient morbidity and discomfort and can lead to surgical replacement of the implant after lengthy, unsuccessful attempts to mitigate infections with antibiotic treatments. Therefore, extensive study is aiming to find new infection-resistant antimicrobial biomaterials and coatings for implants and devices to effectively reduce the incidence of biomaterial-associated infections. An overview of the in vitro and in vivo antimicrobial efficacies of the numerous biomaterials currently available is beyond the scope of this review. Herein, we provide a comprehensive review of bioactive glasses as biomaterial delivery systems for antimicrobial agents.
Collapse
Affiliation(s)
- J Rivadeneira
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD, Salta, Argentina
| | - A Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD, Salta, Argentina
| |
Collapse
|
31
|
Galarraga-Vinueza ME, Passoni B, Benfatti CAM, Mesquita-Guimarães J, Henriques B, Magini RS, Fredel MC, Meerbeek BV, Teughels W, Souza JCM. Inhibition of multi-species oral biofilm by bromide doped bioactive glass. J Biomed Mater Res A 2017; 105:1994-2003. [DOI: 10.1002/jbm.a.36056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/10/2017] [Accepted: 03/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- M. E. Galarraga-Vinueza
- Center for Education and Research on Dental Implants (CEPID); Post-Graduate Program in Dentistry (PPGO), Department of Dentistry (ODT), Federal University of Santa Catarina (UFSC); Florianópolis/SC 88040-900 Brazil
| | - B. Passoni
- Center for Education and Research on Dental Implants (CEPID); Post-Graduate Program in Dentistry (PPGO), Department of Dentistry (ODT), Federal University of Santa Catarina (UFSC); Florianópolis/SC 88040-900 Brazil
| | - C. A. M. Benfatti
- Center for Education and Research on Dental Implants (CEPID); Post-Graduate Program in Dentistry (PPGO), Department of Dentistry (ODT), Federal University of Santa Catarina (UFSC); Florianópolis/SC 88040-900 Brazil
| | - J. Mesquita-Guimarães
- Ceramic and Composite Materials Research Group (CERMAT), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| | - B. Henriques
- Ceramic and Composite Materials Research Group (CERMAT), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| | - R. S. Magini
- Center for Education and Research on Dental Implants (CEPID); Post-Graduate Program in Dentistry (PPGO), Department of Dentistry (ODT), Federal University of Santa Catarina (UFSC); Florianópolis/SC 88040-900 Brazil
| | - M. C. Fredel
- Ceramic and Composite Materials Research Group (CERMAT), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| | - B. V. Meerbeek
- KU Leuven BIOMAT; Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven; Kapucijnenvoer 7 3000 Leuven Belgium
| | - W. Teughels
- Department of Oral Health Sciences; KU Leuven & Dentistry, University Hospitals Leuven; Kapucijnenvoer 33 Leuven B-3000 Belgium
| | - J. C. M. Souza
- Center for Education and Research on Dental Implants (CEPID); Post-Graduate Program in Dentistry (PPGO), Department of Dentistry (ODT), Federal University of Santa Catarina (UFSC); Florianópolis/SC 88040-900 Brazil
- Ceramic and Composite Materials Research Group (CERMAT), Department of Mechanical Engineering (EMC), Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| |
Collapse
|
32
|
Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:585-595. [DOI: 10.1016/j.msec.2016.12.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
|
33
|
Birt MC, Anderson DW, Toby EB, Wang J. Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies. J Orthop 2017; 14:45-52. [PMID: 27822001 PMCID: PMC5090239 DOI: 10.1016/j.jor.2016.10.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 01/29/2023] Open
Abstract
This review article summarizes the recent advances in pathogenic mechanisms and novel therapeutic strategies for osteomyelitis, covering both periprosthetic joint infections and fracture-associated bone infections. A better understanding of the pathophysiology including the mechanisms for biofilm formation has led to new therapeutic strategies for this devastating disease. Research on novel local delivery materials with appropriate mechanical properties, lower exothermicity, controlled release of antibiotics, and absorbable scaffolding for bone regeneration is progressing rapidly. Emerging strategies for prevention, early diagnosis of low-grade infections, and innovative treatments of osteomyelitis such as biofilm disruptors and immunotherapy are highlighted in this review.
Collapse
Affiliation(s)
| | | | | | - Jinxi Wang
- Department of Orthopedic Surgery, University of Kansas Medical Center,
Kansas City, KS 66160, USA
| |
Collapse
|
34
|
Croissant JG, Fatieiev Y, Khashab NM. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604634. [PMID: 28084658 DOI: 10.1002/adma.201604634] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 05/27/2023]
Abstract
The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.
Collapse
Affiliation(s)
- Jonas G Croissant
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
35
|
Varadarajan VV, Dirain CO, Antonelli PJ. Microflora of Retained Intracochlear Electrodes from Infected Cochlear Implants. Otolaryngol Head Neck Surg 2017; 157:85-91. [PMID: 28195822 DOI: 10.1177/0194599817693228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives Cochlear implant infections may be refractory to medical management and require device removal with subsequent reimplantation. During device removal, the intracochlear electrode array is commonly left in place to prevent obliteration of the cochlear lumen. If the electrode is colonized with pathogens, this risks contaminating the replacement implant. In this study, we compare the microorganisms detected on infected cochlear implants against those on the retained electrode using culture and microbial gene-sequencing techniques. Study Design Prospective single-cohort study. Setting Tertiary medical center. Subjects and Methods Six patients with refractory cochlear implant infections had the receiver-stimulator and extracochlear electrode removed to facilitate treatment of the infection. The intracochlear electrode was removed at (delayed) reimplantation. Implant specimens were analyzed by microbial culture and 16S DNA gene sequencing. Results Staphylococcus aureus was the organism most commonly identified. None of the 6 patients' intracochlear electrodes yielded microbes by culture. Two intracochlear electrodes revealed bacterial species, and 1 revealed fungal species by gene sequencing. There was no correlation between the microbes on the infected extracochlear implants and the retained intracochlear electrodes. All subjects underwent reimplantation after resolution of their infections. One of 6 subjects developed a second infection after reimplantation, with S aureus in the primary and secondary infections. Conclusions The intracochlear electrodes of infected cochlear implants carry a low microbial burden. Preserving intracochlear electrodes upon removal of infected cochlear implants appears to carry a low risk of contaminating a replacement cochlear implant.
Collapse
Affiliation(s)
- Varun V Varadarajan
- 1 Department of Otolaryngology, University of Florida, Gainesville, Florida, USA
| | - Carolyn O Dirain
- 1 Department of Otolaryngology, University of Florida, Gainesville, Florida, USA
| | - Patrick J Antonelli
- 1 Department of Otolaryngology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure. Eur J Pharm Sci 2017; 100:219-229. [PMID: 28132822 DOI: 10.1016/j.ejps.2017.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 11/23/2022]
Abstract
The aim of this study was to develop an osteo-inductive resorbable layer allowing the controlled elution of antibiotics to be used as a bone/implant bioactive interface particularly in the case of prosthetic joint infections, or as a preventative procedure with respect to primary joint replacement at a potentially infected site. An evaluation was performed of the vancomycin release kinetics, antimicrobial efficiency and cytocompatibility of collagen/hydroxyapatite layers containing vancomycin prepared employing different hydroxyapatite concentrations. Collagen layers with various levels of porosity and structure were prepared using three different methods: by means of the lyophilisation and electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite and 10wt% of vancomycin, and by means of the electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite followed by impregnation with 10wt% of vancomycin. The maximum concentration of the released active form of vancomycin characterised by means of HPLC was achieved via the vancomycin impregnation of the electrospun layers, whereas the lowest concentration was determined for those layers electrospun directly from a collagen solution containing vancomycin. Agar diffusion testing revealed that the electrospun impregnated layers exhibited the highest level of activity. It was determined that modification using hydroxyapatite exerts no strong effect on vancomycin evolution. All the tested samples exhibited sufficient cytocompatibility with no indication of cytotoxic effects using human osteoblastic cells in direct contact with the layers or in 24-hour infusions thereof. The results herein suggest that nano-structured collagen-hydroxyapatite layers impregnated with vancomycin following cross-linking provide suitable candidates for use as local drug delivery carriers.
Collapse
|
37
|
Characterization of fabricated cobalt-based alloy/nano bioactive glass composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:692-9. [DOI: 10.1016/j.msec.2016.07.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/10/2016] [Accepted: 07/19/2016] [Indexed: 11/23/2022]
|
38
|
Galarraga-Vinueza ME, Mesquita-Guimarães J, Magini RS, Souza JCM, Fredel MC, Boccaccini AR. Anti-biofilm properties of bioactive glasses embedding organic active compounds. J Biomed Mater Res A 2016; 105:672-679. [DOI: 10.1002/jbm.a.35934] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/06/2022]
Affiliation(s)
- M. E. Galarraga-Vinueza
- Department of Dentistry (ODT), Center for Education and Research on Dental Implants (CEPID), Post-Graduate Program in Dentistry (PPGO); Federal University of Santa Catarina(UFSC); Florianópolis/SC 88040-900 Brazil
| | - J. Mesquita-Guimarães
- Department of Mechanical Engineering (EMC), Ceramic and Composite Materials Research Group (CERMAT); Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| | - R. S. Magini
- Department of Dentistry (ODT), Center for Education and Research on Dental Implants (CEPID), Post-Graduate Program in Dentistry (PPGO); Federal University of Santa Catarina(UFSC); Florianópolis/SC 88040-900 Brazil
| | - J. C. M. Souza
- Department of Dentistry (ODT), Center for Education and Research on Dental Implants (CEPID), Post-Graduate Program in Dentistry (PPGO); Federal University of Santa Catarina(UFSC); Florianópolis/SC 88040-900 Brazil
- Department of Mechanical Engineering (EMC), Ceramic and Composite Materials Research Group (CERMAT); Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| | - M. C. Fredel
- Department of Mechanical Engineering (EMC), Ceramic and Composite Materials Research Group (CERMAT); Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| | - A. R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials; University of Erlangen-Nuremberg; 91058 Erlangen Germany
| |
Collapse
|
39
|
Shrestha A, Kishen A. Antibacterial Nanoparticles in Endodontics: A Review. J Endod 2016; 42:1417-26. [DOI: 10.1016/j.joen.2016.05.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 11/16/2022]
|
40
|
Parikh MS, Antony S. A comprehensive review of the diagnosis and management of prosthetic joint infections in the absence of positive cultures. J Infect Public Health 2016; 9:545-56. [DOI: 10.1016/j.jiph.2015.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/22/2015] [Accepted: 12/11/2015] [Indexed: 12/19/2022] Open
|
41
|
Moya JS, Martínez A, López-Píriz R, Guitián F, Díaz LA, Esteban-Tejeda L, Cabal B, Sket F, Fernández-García E, Tomsia AP, Torrecillas R. Histological response of soda-lime glass-ceramic bactericidal rods implanted in the jaws of beagle dogs. Sci Rep 2016; 6:31478. [PMID: 27515388 PMCID: PMC4981854 DOI: 10.1038/srep31478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2016] [Indexed: 12/27/2022] Open
Abstract
Bacterial and fungal infections remain a major clinical challenge. Implant infections very often require complicated revision procedures that are troublesome to patients and costly to the healthcare system. Innovative approaches to tackle infections are urgently needed. We investigated the histological response of novel free P2O5 glass-ceramic rods implanted in the jaws of beagle dogs. Due to the particular percolated morphology of this glass-ceramic, the dissolution of the rods in the animal body environment and the immature bone formation during the fourth months of implantation maintained the integrity of the glass-ceramic rod. No clinical signs of inflammation took place in any of the beagle dogs during the four months of implantation. This new glass-ceramic biomaterial with inherent bactericidal and fungicidal properties can be considered as an appealing candidate for bone tissue engineering.
Collapse
Affiliation(s)
- José S Moya
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC - University of Oviedo (UO), Avda de la Vega 4-6, El Entrego 33940, San Martín del Rey Aurelio, Spain.,Institute of Materials Science of Madrid (ICMM-CSIC), Cantoblanco, 28049, Madrid, Spain
| | - Arturo Martínez
- Galician Institute of Ceramics, University of Santiago de Compostela, Avda Maestro Mateo, 15782 Santiago de Compostela, Spain
| | - Roberto López-Píriz
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC - University of Oviedo (UO), Avda de la Vega 4-6, El Entrego 33940, San Martín del Rey Aurelio, Spain
| | - Francisco Guitián
- Galician Institute of Ceramics, University of Santiago de Compostela, Avda Maestro Mateo, 15782 Santiago de Compostela, Spain
| | - Luis A Díaz
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC - University of Oviedo (UO), Avda de la Vega 4-6, El Entrego 33940, San Martín del Rey Aurelio, Spain
| | | | - Belén Cabal
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC - University of Oviedo (UO), Avda de la Vega 4-6, El Entrego 33940, San Martín del Rey Aurelio, Spain
| | - Federico Sket
- IMDEA Materials Institute, C/ Eric Kandel 2, Getafe, 28906, Madrid, Spain
| | - Elisa Fernández-García
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC - University of Oviedo (UO), Avda de la Vega 4-6, El Entrego 33940, San Martín del Rey Aurelio, Spain
| | - Antoni P Tomsia
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ramón Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC - University of Oviedo (UO), Avda de la Vega 4-6, El Entrego 33940, San Martín del Rey Aurelio, Spain
| |
Collapse
|
42
|
Qu H, Bhattacharyya S, Ducheyne P. Silicon oxide based materials for controlled release in orthopedic procedures. Adv Drug Deliv Rev 2015; 94:96-115. [PMID: 26032046 DOI: 10.1016/j.addr.2015.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 12/14/2022]
Abstract
By virtue of excellent tissue responses in bone tissue, silicon oxide (silica) based materials have been used for bone tissue engineering. Creating nanoscale porosity within silica based materials expands their applications into the realm of controlled release area. This additional benefit of silica based materials widens their application in the orthopedic fields in a major way. This review discusses the various chemical and physical forms of silica based controlled release materials, the release mechanisms, the applications in orthopedic procedures and their overall biocompatibility.
Collapse
|
43
|
Clinical Applications of S53P4 Bioactive Glass in Bone Healing and Osteomyelitic Treatment: A Literature Review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:684826. [PMID: 26504821 PMCID: PMC4609389 DOI: 10.1155/2015/684826] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022]
Abstract
Nowadays, S53P4 bioactive glass is indicated as a bone graft substitute in various clinical applications. This review provides an overview of the current published clinical results on indications such as craniofacial procedures, grafting of benign bone tumour defects, instrumental spondylodesis, and the treatment of osteomyelitis. Given the reported results that are based on examinations, such as clinical examinations by the surgeons, radiographs, CT, and MRI images, S53P4 bioactive glass may be beneficial in the various reported applications. Especially in craniofacial reconstructions like mastoid obliteration and orbital floor reconstructions, in grafting bone tumour defects, and in the treatment of osteomyelitis very promising results are obtained. Randomized clinical trials need to be performed in order to determine whether bioactive glass would be able to replace the current golden standard of autologous bone usage or with the use of antibiotic containing PMMA beads (in the case of osteomyelitis).
Collapse
|
44
|
Comparison of Borate Bioactive Glass and Calcium Sulfate as Implants for the Local Delivery of Teicoplanin in the Treatment of Methicillin-Resistant Staphylococcus aureus-Induced Osteomyelitis in a Rabbit Model. Antimicrob Agents Chemother 2015; 59:7571-80. [PMID: 26416858 DOI: 10.1128/aac.00196-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/20/2015] [Indexed: 12/20/2022] Open
Abstract
There is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TEC in vitro and to cure methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC.
Collapse
|
45
|
Zou Q, Li J, Li Y. Preparation and characterization of vanillin-crosslinked chitosan therapeutic bioactive microcarriers. Int J Biol Macromol 2015; 79:736-47. [PMID: 26051343 DOI: 10.1016/j.ijbiomac.2015.05.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 02/05/2023]
Abstract
Chitosan microspheres with diameter of 14.3-48.5 μm were prepared by emulsion method and using natural vanillin as cross-linking agent. The surface morphology and microstructure of the microspheres were characterized by scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy, etc. The hollow microspheres showed a well-defined spherical shape with median diameter of 30.3 μm and possessed a uniform surface with micro-wrinkles, which is in favor of the drug release. Interpenetrating network cross-linking mechanism might result from the Schiff base reaction and the acetalization of hydroxyl and carbonyl between chitosan and vanillin. Berberine, as a model drug, was loaded in the microspheres and released in a sustainable manner. The drug loading ratio could change from 9.16% to 29.70% corresponding to the entrapment efficiency of 91.61% to 74.25%. In vitro cell culture study using MG63 cells and in vivo implantation clearly showed that the microspheres could provide favorable cell attachment and biocompatibility. The results confirm that the drug-loaded vanillin-crosslinked chitosan microspheres could be a worthy candidate either as carriers of drugs and cells, or as therapeutic matrix for bone repair and regeneration.
Collapse
Affiliation(s)
- Qin Zou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Junfeng Li
- Department of Materials Science & Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
46
|
Wu J, Xu S, Qiu Z, Liu P, Liu H, Yu X, Cui FZ, Chunhua ZR. Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation. J Biomater Appl 2015; 30:722-31. [PMID: 25899928 DOI: 10.1177/0885328215582112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility. Better performance in mechanical match and bone integration is highly desirable. Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo. In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate). Human marrow mesenchymal stem cells are used in this experiment. Adhesion and proliferation were used to characterize biocompatibility. Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts. Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level. The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days. Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern.
Collapse
Affiliation(s)
- Jingjing Wu
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Suju Xu
- Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zhiye Qiu
- Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Peng Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiang Yu
- School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, China
| | - Fu-Zhai Cui
- Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zhao Robert Chunhua
- Chinese Academy of Medical Sciences, Institute of Basic Medical Science, Beijing, China
| |
Collapse
|
47
|
|
48
|
Scaffold-based anti-infection strategies in bone repair. Ann Biomed Eng 2014; 43:515-28. [PMID: 25476163 DOI: 10.1007/s10439-014-1205-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Abstract
Bone fractures and non-union defects often require surgical intervention where biomaterials are used to correct the defect, and approximately 10% of these procedures are compromised by bacterial infection. Currently, treatment options are limited to sustained, high doses of antibiotics and surgical debridement of affected tissue, leaving a significant, unmet need for the development of therapies to combat device-associated biofilm and infections. Engineering implants to prevent infection is a desirable material characteristic. Tissue engineered scaffolds for bone repair provide a means to both regenerate bone and serve as a base for adding antimicrobial agents. Incorporating anti-infection properties into regenerative medicine therapies could improve clinical outcomes and reduce the morbidity and mortality associated with biomaterial implant-associated infections. This review focuses on current animal models and technologies available to assess bone repair in the context of infection, antimicrobial agents to fight infection, the current state of antimicrobial scaffolds, and future directions in the field.
Collapse
|
49
|
Uskoković V, Desai TA. Nanoparticulate drug delivery platforms for advancing bone infection therapies. Expert Opin Drug Deliv 2014; 11:1899-912. [PMID: 25109804 PMCID: PMC4393954 DOI: 10.1517/17425247.2014.944860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and the consistently aging median member of the human race signal an impending increase in the incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery of therapeutics hold the greatest potential for providing minimally invasive and maximally regenerative therapies for this rare but persistent condition. AREAS COVERED Shortcomings of the clinically available treatment options, including poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is a composite wherein the weakness of each component alone is compensated for by the strength of its complement and an ideal bone substitute should be fundamentally the same. EXPERT OPINION Discrepancy between in vitro and in vivo bioactivity assessments is highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, synergistic and theranostic composites capable of simultaneously targeting, monitoring and treating internal organismic disturbances in a smart, feedback fashion and in direct response to the demands of the local environment.
Collapse
Affiliation(s)
- Vuk Uskoković
- University of Illinois, Department of Bioengineering, Advanced Materials and Bionanotechnology Laboratory, Chicago, IL 60607-7052, USA
| | - Tejal A Desai
- University of California, Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, San Francisco, CA 94158-2330, USA
| |
Collapse
|