1
|
Ansari M, Shahlaei M, Hosseinzadeh S, Moradi S. Recent advances in nanostructured delivery systems for vancomycin. Nanomedicine (Lond) 2024; 19:1931-1951. [PMID: 39143926 PMCID: PMC11457640 DOI: 10.1080/17435889.2024.2377063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the development of new generations of antibiotics, vancomycin remained as a high-efficacy antibiotic for treating the infections caused by MRSA. Researchers have explored various nanoformulations, aiming to enhance the therapeutic efficacy of vancomycin. Such novel formulations improve the effectiveness of drug cargoes in treating bacterial infections and minimizing the risk of adverse effects. The vast of researches have focuses on enhancing the permeation ability of vancomycin through different biological barriers especially those of gastrointestinal tract. Increasing the drug loading and tuning the drug release from nanocarrier are other important goal for many conducted studies. This study reviews the newest nano-based formulations for vancomycin as a key antibiotic in treating hospitalized bacterial infections.
Collapse
Affiliation(s)
- Mohabbat Ansari
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Tan F, Li H, Zhang K, Xu L, Zhang D, Han Y, Han J. Sodium Alginate/Chitosan-Coated Liposomes for Oral Delivery of Hydroxy-α-Sanshool: In Vitro and In Vivo Evaluation. Pharmaceutics 2023; 15:2010. [PMID: 37514196 PMCID: PMC10383520 DOI: 10.3390/pharmaceutics15072010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Hydroxy-α-Sanshool (HAS) possesses various pharmacological properties, such as analgesia and regulating gastrointestinal function. However, the low oral bioavailability of HAS has limited its oral delivery in clinical application. METHODS AND RESULTS To enhance its oral bioavailability, a nanocomposite delivery system based on chitosan (CH, as the polycation) and sodium alginate (SA, as the polyanion) was prepared using a layer-by-layer coating technique. The morphology, thermal behavior and Fourier transform infrared spectrum (FTIR) showed that the obtained sodium alginate/chitosan-coated HAS-loaded liposomes (SA/CH-HAS-LIP) with core-shell structures have been successfully covered with polymers. When compared with HAS-loaded liposomes (HAS-LIP), SA/CH-HAS-LIP displayed obvious pH sensitivity and a sustained-release behavior in in vitro studies, which fitted well to Weibull model. In vivo, the half-life of HAS from SA/CH-HAS-LIP remarkably extended after oral administration compared to the free drug. Additionally, it allowed a 4.6-fold and 4.2-fold increase in oral bioavailability, respectively, compared with free HAS and HAS-LIP. CONCLUSIONS SA/CH-HAS-LIP could be a promising release vehicle for the oral delivery of HAS to increase its oral bioavailability.
Collapse
Affiliation(s)
- Fengming Tan
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Huan Li
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Kai Zhang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lulu Xu
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dahan Zhang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
3
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
4
|
Exploration of Dual Ionic Cross-Linked Alginate Hydrogels Via Cations of Varying Valences towards Wound Healing. Polymers (Basel) 2022; 14:polym14235192. [PMID: 36501587 PMCID: PMC9738749 DOI: 10.3390/polym14235192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
This study explored the synergistic effects of simultaneously using calcium and gallium cations in the cross-linking of alginate, detailing its effects on the characteristics of alginate compared to its single cation counterparts. The primary goal is to determine if there are any synergistic effects associated with the utilisation of multiple multivalent cations in polymer cross-linking and whether or not it could therefore be used in pharmaceutical applications such as wound healing. Given the fact divalent and trivalent cations have never been utilised together for cross-linking, an explanation for the mode of binding that occurs between the alginate and the cations during the cross-linking process and how it may affect the future applications of the polymer has been investigated. The calcium gallium alginate polymers were able to retain the antibacterial effects of gallium within the confines of the polymer matrix, possessing superior rheological properties, 6 times that of pure calcium and pure gallium, coupled with an improved swelling capacity that is 4 times higher than that of gallium alginate.
Collapse
|
5
|
Synthesis of pH-responsive dimethylglycine surface-modified branched lipids for targeted delivery of antibiotics. Chem Phys Lipids 2022; 249:105241. [PMID: 36152880 DOI: 10.1016/j.chemphyslip.2022.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023]
Abstract
The rampant antimicrobial resistance crisis calls for efficient and targeted drug delivery of antibiotics at the infectious site. Hence, this study aimed to synthesize a pH-responsive dimethylglycine surface-modified branched lipid (DMGSAD-lipid). The structure of the synthesized lipid was fully confirmed. The lipid polymer hybrid nanoparticles (LPHNPs) were formulated using the solvent evaporation method and characterised. Two LPHNPs (VCM_HS15_LPHNPs and VCM_RH40_LPHNPs) were formulated and characterised for size, polydispersity index (PDI), and zeta potential (ZP). Atomistic molecular dynamics simulations revealed that both the systems self-assembled to form energetically stable aggregates. The ZP of RH40_VCM_LPHNPs changed from 0.55 ± 0.14-9.44 ± 0.33 Vm, whereas for SH15_VCM_LPHNPs, ZP changed from - 1.55 ± 0.184 Vm to 9.83 ± 0.52 Vm at pH 7.4 and 6.0, respectively. The encapsulation efficiencies of VCM were above 40% while the drug release was faster at acidic pH when compared to pH 7.4. The antibacterial activity of LPHNPs against MRSA was eight-fold better in MICs at pH 6.0, compared to 7.4, when compared to bare VCM-treated specimens. The study confirms that pH-responsive LPHNPs have the potential for enhancing the treatment of bacterial infections and other diseases characterised by acidic conditions at the target site.
Collapse
|
6
|
Ren R, Lim C, Li S, Wang Y, Song J, Lin TW, Muir BW, Hsu HY, Shen HH. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3855. [PMID: 36364631 PMCID: PMC9658259 DOI: 10.3390/nano12213855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 05/29/2023]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are becoming a serious threat to public health worldwide. With an ever-reducing pipeline of last-resort drugs further complicating the current dire situation arising due to antibiotic resistance, there has never been a greater urgency to attempt to discover potential new antibiotics. The use of nanotechnology, encompassing a broad range of organic and inorganic nanomaterials, offers promising solutions. Organic nanomaterials, including lipid-, polymer-, and carbon-based nanomaterials, have inherent antibacterial activity or can act as nanocarriers in delivering antibacterial agents. Nanocarriers, owing to the protection and enhanced bioavailability of the encapsulated drugs, have the ability to enable an increased concentration of a drug to be delivered to an infected site and reduce the associated toxicity elsewhere. On the other hand, inorganic metal-based nanomaterials exhibit multivalent antibacterial mechanisms that combat MDR bacteria effectively and reduce the occurrence of bacterial resistance. These nanomaterials have great potential for the prevention and treatment of MDR bacterial infection. Recent advances in the field of nanotechnology are enabling researchers to utilize nanomaterial building blocks in intriguing ways to create multi-functional nanocomposite materials. These nanocomposite materials, formed by lipid-, polymer-, carbon-, and metal-based nanomaterial building blocks, have opened a new avenue for researchers due to the unprecedented physiochemical properties and enhanced antibacterial activities being observed when compared to their mono-constituent parts. This review covers the latest advances of nanotechnologies used in the design and development of nano- and nanocomposite materials to fight MDR bacteria with different purposes. Our aim is to discuss and summarize these recently established nanomaterials and the respective nanocomposites, their current application, and challenges for use in applications treating MDR bacteria. In addition, we discuss the prospects for antimicrobial nanomaterials and look forward to further develop these materials, emphasizing their potential for clinical translation.
Collapse
Affiliation(s)
- Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Chiaxin Lim
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jiangning Song
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | | | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 518057, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Lee H, Kharel S, Loo SCJ. Lipid-Coated Hybrid Nanoparticles for Enhanced Bacterial Biofilm Penetration and Antibiofilm Efficacy. ACS OMEGA 2022; 7:35814-35824. [PMID: 36249378 PMCID: PMC9558607 DOI: 10.1021/acsomega.2c04008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/23/2022] [Indexed: 06/01/2023]
Abstract
Up to 80% of all infections are biofilm-mediated and they are often challenging to treat as the underlying bacterial cells can become 100- to 1000-fold more tolerant toward antibiotics. Antibiotic-loaded nanoparticles have gained traction as a potential drug delivery system to treat biofilm infections. In particular, lipid-coated hybrid nanoparticles (LCHNPs) were investigated on their capability to deliver antibiotics into biofilms. In this study, LCHNPs composed of a poly(lactic-co-glycolic acid) (PLGA) core and dioleoyl-3-trimethylammonium propane (DOTAP) lipid shell were developed and loaded with vancomycin (Van). In vitro antibacterial and antibiofilm tests were performed to evaluate the antimicrobial efficacy of the LCHNPs. LCHNPs were successfully fabricated with high vancomycin encapsulation and loading efficiencies, and exhibited enhanced antibacterial effects against planktonic Staphylococcus aureus USA300 when compared against Free-Van and Van-PLGANPs. When used to treat USA300 biofilms, Van-LCHNPs eradicated up to 99.99% of the underlying biofilm cells, an effect which was not observed for Free-Van and Van-PLGANPs. Finally, we showed that by possessing a robust DOTAP shell, LCHNPs were able to penetrate deeply into the biofilms.
Collapse
Affiliation(s)
- Hiang
Wee Lee
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Sharad Kharel
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, Singapore 308232, Singapore
| |
Collapse
|
8
|
Waqas MK, Sadia H, Khan MI, Omer MO, Siddique MI, Qamar S, Zaman M, Butt MH, Mustafa MW, Rasool N. Development and characterization of niosomal gel of fusidic acid: in-vitro and ex-vivo approaches. Des Monomers Polym 2022; 25:165-174. [PMID: 35711622 PMCID: PMC9196814 DOI: 10.1080/15685551.2022.2086411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Niosomes are multilamellar vesicles that efficiently deliver active substance into skin systemic circulation or skin layers. They are used in topical drug delivery system to enhance the skin permeation of active substance. So, the prime objective of this study was to develop a niosomal gel of fusidic acid to increase its skin permeation. Different formulations of niosomes of fusidic acid were designed by varying the cholesterol to surfactant ratio. Formulations containing fusidic acid, cholesterol, dihexadecyl pyridinium chloride, Span 60, or Tween 60 were prepared by thin film hydration method in rotary evaporator. The thin film formed in rotary flask was hydrated by phosphate buffer saline of pH 7.2. The niosomes formed were characterized through entrapment efficiency, size, polydispersity index (PDI), and zeta potential. The S3 formulation containing span 60 showed the highest entrapment efficiency (EE) of niosomes, so it was incorporated into Carbopol gel. Determination of pH, spreadability, rheological, and ex vivo permeation studies was conducted of niosomal gel. The results of ex vivo permeation studies showed high permeation of fusidic acid when gel was applied to an albino rat skin. According to the results and previous studies of niosomes, it can be concluded that niosomes enhanced the permeation of fusidic acid through the skin.
Collapse
Affiliation(s)
- Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haleema Sadia
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah University Lahore Campus, Pakistan
| | - Muhammad Ovais Omer
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences Lahore, Pakistan
| | - Muhammad Irfan Siddique
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shaista Qamar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Mian Waqar Mustafa
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Naeem Rasool
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences Lahore, Pakistan
| |
Collapse
|
9
|
Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent Advances in Antimicrobial Nano-Drug Delivery Systems. NANOMATERIALS 2022; 12:nano12111855. [PMID: 35683711 PMCID: PMC9182179 DOI: 10.3390/nano12111855] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Infectious diseases are among the major health issues of the 21st century. The substantial use of antibiotics over the years has contributed to the dissemination of multidrug resistant bacteria. According to a recent report by the World Health Organization, antibacterial (ATB) drug resistance has been one of the biggest challenges, as well as the development of effective long-term ATBs. Since pathogens quickly adapt and evolve through several strategies, regular ATBs usually may result in temporary or noneffective treatments. Therefore, the demand for new therapies methods, such as nano-drug delivery systems (NDDS), has aroused huge interest due to its potentialities to improve the drug bioavailability and targeting efficiency, including liposomes, nanoemulsions, solid lipid nanoparticles, polymeric nanoparticles, metal nanoparticles, and others. Given the relevance of this subject, this review aims to summarize the progress of recent research in antibacterial therapeutic drugs supported by nanobiotechnological tools.
Collapse
Affiliation(s)
- Tong-Xin Zong
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Ariane Pandolfo Silveira
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | | | - Marina Carvalho Sampaio
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasília, Brasilia 70910900, Brazil; (A.P.S.); (J.A.V.M.); (M.C.S.)
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220900, Brazil
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| | - Shan-Kui Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (T.-X.Z.); (J.Z.)
- Correspondence: (L.A.M.); (C.-S.J.); (S.-K.L.)
| |
Collapse
|
10
|
Fasiku VO, Omolo CA, Kiruri LW, Devnarain N, Faya M, Mocktar C, Govender T. A hyaluronic acid-based nanogel for the co-delivery of nitric oxide (NO) and a novel antimicrobial peptide (AMP) against bacterial biofilms. Int J Biol Macromol 2022; 206:381-397. [PMID: 35202637 DOI: 10.1016/j.ijbiomac.2022.02.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023]
Abstract
Biofilms are a global health concern because they are associated with chronic and recurrent infections as well as resistance to conventional antibiotics. The aim of this study was to prepare a nanogel for the co-delivery of NO and AMPs against bacteria and biofilms. The NO-releasing nanogel was prepared by crosslinking HA solution with divinyl sulfone and extensively characterized. The nanogel was found to be biocompatible, injectable and NO release from the gel was sustained over a period of 24 h. In vitro antibacterial studies showed that the NO-AMP-loaded nanogel exhibited a broad spectrum antibacterial/antibiofilm activity. The NO-releasing nanogel had a greater antibacterial effect when compared to NO alone with MIC values of 1.56, 0.78 and 0.39 μg/ml against Escherichia coli, Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa bacteria respectively. The antibiofilm results showed there was a 12.5 and 24-folds reduction in biofilms of MRSA, and P. aeruginosa respectively for catheters exposed to nanogel loaded with AMP/NO when compared to only NO, while a 7 and 9.4-folds reduction in biofilms of MRSA, and P. aeruginosa respectively was displayed by the nanogel loaded with only NO compared to only NO. The AMP/NO-releasing nanogel showed the potential to combat both biofilms and bacterial infections.
Collapse
Affiliation(s)
- Victoria O Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P. O. Box 43844 - 00100, Nairobi, Kenya
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Mbuso Faya
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
11
|
Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022; 57:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
12
|
|
13
|
Naidu ECS, Olojede SO, Lawal SK, Peter AI, Akang EA, Azu OO. Effects of vancomycin linoleic acid nanoparticles on male reproductive indices of Sprague-Dawley rats. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:587-595. [PMID: 34425727 DOI: 10.1080/21691401.2021.1968883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
The management of bacterial infections, especially trains of methicillin-resistant Staphylococcus aureus observe in health care settings, has markedly improved with the introduction of established drugs but using newer nano-based formulations. This study investigates the effects of vancomycin-linoleic acid nanoparticles on testicular tissue in an experimental animal model. Twenty-five adult male Sprague-Dawley rats maintained at the Animal House of the Biomedical Resources Unit were assigned to five groups namely E - solid lipid nanoparticles; F - vancomycin solid lipid nanoparticle; G - linoleic acid nanoparticle; H - vancomycin linoleic acid; and A - control. Perturbations in seminal fluid parameters showed a reduced sperm count in groups F & G which was statistically significant (p < .05) but motility and morphology were not significant when compared to controls (A). Reduced testosterone levels were found in groups E, F and H but were not statistically significant (p > .05). There was also increased luteinizing hormone (LH) and decreased in follicular stimulating hormone (FSH) levels was statistically significant (p < .05). Hypoplasia, tubular atrophy and shrinkage were observed in histologic sections of the treated groups with basement membrane thickening. Vancomycin solid lipid nanoparticle and its constituents SLN and LA disrupted testicular morphometry and the hormonal milieu sufficient to potentially induce altered reproductive function.
Collapse
Affiliation(s)
- Edwin Coleridge Stephen Naidu
- Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of Kwazulu-Natal, Durban, South Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of Kwazulu-Natal, Durban, South Africa
| | - Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of Kwazulu-Natal, Durban, South Africa
| | - Aniekan Imo Peter
- Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of Kwazulu-Natal, Durban, South Africa
| | - Edidiong Anamso Akang
- Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of Kwazulu-Natal, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of Kwazulu-Natal, Durban, South Africa
- Department of Anatomy, School of Medicine, University of Namibia, Windhoek, Namibia
| |
Collapse
|
14
|
Khan MA, Khan S, Kazi M, Alshehri SM, Shahid M, Khan SU, Hussain Z, Sohail M, Shafique M, Hamid HA, Kamran M, Elhissi A, Wasim M, Thu HE. Norfloxacin Loaded Lipid Polymer Hybrid Nanoparticles for Oral Administration: Fabrication, Characterization, In Silico Modelling and Toxicity Evaluation. Pharmaceutics 2021; 13:pharmaceutics13101632. [PMID: 34683925 PMCID: PMC8540086 DOI: 10.3390/pharmaceutics13101632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/04/2022] Open
Abstract
Norfloxacin (NOR), widely employed as an anti-bacterial drug, has poor oral bioavailability. Nano based drug delivery systems are widely used to overcome the existing oral bioavailability challenges. Lipid–Polymer Hybrid Nanoparticles (LPHNs) exhibit the distinctive advantages of both polymeric and liposomes nanoparticles, while excluding some of their disadvantages. In the current study, NOR loaded LPHNs were prepared, and were solid amorphous in nature, followed by in vitro and in vivo evaluation. The optimized process conditions resulted in LPHNs with the acceptable particle size 121.27 nm, Polydispersity Index (PDI) of 0.214 and zeta potential of −32 mv. The addition of a helper lipid, oleic acid, and polymers, ethyl cellulose, substantially increased the encapsulation efficiency (EE%) (65% to 97%). In vitro study showed a sustained drug release profile (75% within 12 h) for NOR LPHNs. The optimized NOR LPHNs showed a significant increase (p < 0.05) in bioavailability compared to the commercial product. From the acute toxicity study, the LD50 value was found to be greater than 1600 mg/kg. The molecular modelling studies substantiated the experimental results with the best combination of polymers and surfactants that produced highly stable LPHNs. Therefore, LPHNs proved to be a promising system for the delivery of NOR, as well as for other antibiotics and hydrophobic drugs.
Collapse
Affiliation(s)
- Muhammad Asghar Khan
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan; (M.A.K.); (H.A.H.); (M.K.)
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan; (M.A.K.); (H.A.H.); (M.K.)
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of Kawazulu Natal, Durban X54001, South Africa
- Correspondence: ; Tel.: +0092-345-9492-869
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (S.M.A.)
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (S.M.A.)
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan;
| | - Shafi Ullah Khan
- Department of Pharmacy, Abasyn University Peshawar, Peshawar 25000, Pakistan;
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Abbottabad Campus, Abbottabad 45550, Pakistan; (M.S.); (M.W.)
| | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy-Boys, Al-Dawadmi Campus, Shaqra University, Shaqra, Riyadh 11451, Saudi Arabia;
| | - Hajra Afeera Hamid
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan; (M.A.K.); (H.A.H.); (M.K.)
| | - Mahwish Kamran
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan; (M.A.K.); (H.A.H.); (M.K.)
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health and Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar;
| | - Muhammad Wasim
- Department of Pharmacy, COMSATS University Abbottabad Campus, Abbottabad 45550, Pakistan; (M.S.); (M.W.)
| | - Hnin Ei Thu
- Research and Innovation Department, Lincolon University College, Petaling Jaya 47301, Malaysia;
- Innoscience Research Institute, Subang Jaya 47650, Malaysia
| |
Collapse
|
15
|
Improvement of Imiquimod Solubilization and Skin Retention via TPGS Micelles: Exploiting the Co-Solubilizing Effect of Oleic Acid. Pharmaceutics 2021; 13:pharmaceutics13091476. [PMID: 34575553 PMCID: PMC8469695 DOI: 10.3390/pharmaceutics13091476] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Imiquimod (IMQ) is an immunostimulant drug approved for the topical treatment of actinic keratosis, external genital-perianal warts as well as superficial basal cell carcinoma that is used off-label for the treatment of different forms of skin cancers, including some malignant melanocytic proliferations such as lentigo maligna, atypical nevi and other in situ melanoma-related diseases. Imiquimod skin delivery has proven to be a real challenge due to its very low water-solubility and reduced skin penetration capacity. The aim of the work was to improve the drug solubility and skin retention using micelles of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a water-soluble derivative of vitamin E, co-encapsulating various lipophilic compounds with the potential ability to improve imiquimod affinity for the micellar core, and thus its loading into the nanocarrier. The formulations were characterized in terms of particle size, zeta potential and stability over time and micelles performance on the skin was evaluated through the quantification of imiquimod retention in the skin layers and the visualization of a micelle-loaded fluorescent dye by two-photon microscopy. The results showed that imiquimod solubility strictly depends on the nature and concentration of the co-encapsulated compounds. The micellar formulation based on TPGS and oleic acid was identified as the most interesting in terms of both drug solubility (which was increased from few µg/mL to 1154.01 ± 112.78 µg/mL) and micellar stability (which was evaluated up to 6 months from micelles preparation). The delivery efficiency after the application of this formulation alone or incorporated in hydrogels showed to be 42- and 25-folds higher than the one of the commercial creams.
Collapse
|
16
|
Fasiku V, Omolo CA, Devnarain N, Ibrahim UH, Rambharose S, Faya M, Mocktar C, Singh SD, Govender T. Chitosan-Based Hydrogel for the Dual Delivery of Antimicrobial Agents Against Bacterial Methicillin-Resistant Staphylococcus aureus Biofilm-Infected Wounds. ACS OMEGA 2021; 6:21994-22010. [PMID: 34497894 PMCID: PMC8412894 DOI: 10.1021/acsomega.1c02547] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Chronic wound infections caused by antibiotic-resistant bacteria have become a global health concern. This is attributed to the biofilm-forming ability of bacteria on wound surfaces, thus enabling their persistent growth. In most cases, it leads to morbidity and in severe cases mortality. Current conventional approaches used in the treatment of biofilm wounds are proving to be ineffective due to limitations such as the inability to penetrate the biofilm matrix; hence, biofilm-related wounds remain a challenge. Therefore, there is a need for more efficient alternate therapeutic interventions. Hydrogen peroxide (HP) is a known antibacterial/antibiofilm agent; however, prolonged delivery has been challenging due to its short half-life. In this study, we developed a hydrogel for the codelivery of HP and antimicrobial peptides (Ps) against bacteria, biofilms, and wound infection associated with biofilms. The hydrogel was prepared via the Michael addition technique, and the physiochemical properties were characterized. The safety, in vitro, and in vivo antibacterial/antibiofilm activity of the hydrogel was also investigated. Results showed that the hydrogel is biosafe. A greater antibacterial effect was observed with HP-loaded hydrogels (CS-HP; hydrogel loaded with HP and CS-HP-P; hydrogel loaded with HP and peptide) when compared to HP as seen in an approximately twofold and threefold decrease in minimum inhibitory concentration values against methicillin-resistant Staphylococcus aureus (MRSA) bacteria, respectively. Similarly, both the HP-releasing hydrogels showed enhanced antibiofilm activity in the in vivo study in mice models as seen in greater wound closure and enhanced wound healing in histomorphological analysis. Interestingly, the results revealed a synergistic antibacterial/antibiofilm effect between HP and P in both in vitro and in vivo studies. The successfully prepared HP-releasing hydrogels showed the potential to combat bacterial biofilm-related infections and enhance wound healing in mice models. These results suggest that the HP-releasing hydrogels may be a superior platform for eliminating bacterial biofilms without using antibiotics in the treatment of chronic MRSA wound infections, thus improving the quality of human health.
Collapse
Affiliation(s)
- Victoria
O. Fasiku
- Discipline
of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South
Africa
| | - Calvin A. Omolo
- Discipline
of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South
Africa
- School
of Pharmacy and Health Sciences, Department of Pharmaceutics, United States International University-Africa, P.O. Box 14634, Nairobi 00800, Kenya
| | - Nikita Devnarain
- Discipline
of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South
Africa
| | - Usri H. Ibrahim
- Discipline
of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South
Africa
| | - Sanjeev Rambharose
- Department
of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Mbuso Faya
- Discipline
of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South
Africa
| | - Chunderika Mocktar
- Discipline
of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South
Africa
| | - Sanil D. Singh
- Biomedical
Research Unit, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South
Africa
| | - Thirumala Govender
- Discipline
of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South
Africa
| |
Collapse
|
17
|
Zhuang Y, Zhao Y, Wang B, Wang Q, Cai T, Cai Y. Strategies for Preparing Different Types of Lipid Polymer Hybrid Nanoparticles in Targeted Tumor Therapy. Curr Pharm Des 2021; 27:2274-2288. [PMID: 33222665 DOI: 10.2174/1381612826666201120155558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/27/2020] [Indexed: 11/22/2022]
Abstract
At present, cancer is one of the most common diseases in the world, causing a large number of deaths and seriously affecting people's health. The traditional treatment of cancer is mainly surgery, radiotherapy or chemotherapy. Conventional chemotherapy is still an important treatment, but it has some shortcomings, such as poor cell selectivity, serious side effects, drug resistance and so on. Nanoparticle administration can improve drug stability, reduce toxicity, prolong drug release time, prolong system half-life, and bring broad prospects for tumor therapy. Lipid polymer hybrid nanoparticles (LPNs), which combine the advantages of polymer core and phospholipid shell to form a single platform, have become multi-functional drug delivery platforms. This review introduces the basic characteristics, structure and preparation methods of LPNs, and discusses targeting strategies of LPNs in tumor therapy in order to overcome the defects of traditional drug therapy.
Collapse
Affiliation(s)
- Yong Zhuang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yiye Zhao
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Bingyue Wang
- Guangzhou Jiayuan Medical and Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Qi Wang
- Guangzhou Jiayuan Medical and Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Tiange Cai
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Baig MMFA, Dissanayaka WL, Zhang C. 2D DNA nanoporous scaffold promotes osteogenic differentiation of pre-osteoblasts. Int J Biol Macromol 2021; 188:657-669. [PMID: 34371047 DOI: 10.1016/j.ijbiomac.2021.07.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 01/06/2023]
Abstract
Biofunctional materials with nanomechanical parameters similar to bone tissue may promote the adherence, migration, proliferation, and differentiation of pre-osteoblasts. In this study, deoxyribonucleic acid (DNA) nanoporous scaffold (DNA-NPS) was synthesized by the polymerization of rectangular and double-crossover (DX) DNA tiles. The diagonally precise polymerization of nanometer-sized DNA tiles (A + B) through sticky end cohesion gave rise to a micrometer-sized porous giant-sheet material. The synthesized DNA-NPS exhibited a uniformly distributed porosity with a size of 25 ± 20 nm. The morphology, dimensions, sectional profiles, 2-dimensional (2D) layer height, texture, topology, pore size, and mechanical parameters of DNA-NPS have been characterized by atomic force microscopy (AFM). The size and zeta potential of DNA-NPS have been characterized by the zeta sizer. Cell biocompatibility, proliferation, and apoptosis have been evaluated by flow cytometry. The AFM results confirmed that the fabricated DNA-NPS was interconnected and uniformly porous, with a surface roughness of 0.125 ± 0.08035 nm. The elastic modulus of the DNA-NPS was 22.45 ± 8.65 GPa, which was comparable to that of native bone tissue. DNA-NPS facilitated pre-osteoblast adhesion, proliferation, and osteogenic differentiation. These findings indicated the potential of 2D DNA-NPS in promoting bone tissue regeneration.
Collapse
Affiliation(s)
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
19
|
Jaglal Y, Osman N, Omolo CA, Mocktar C, Devnarain N, Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021; 165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Multi antibiotic-resistant bacterial infections are on the rise due to the overuse of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the pathogens listed under the category of serious threats where vancomycin remains the mainstay treatment despite the availability of various antibacterial agents. Recently, decreased susceptibility to vancomycin from clinical isolates of MRSA has been reported and has drawn worldwide attention as it is often difficult to overcome and leads to increased medical costs, mortality, and longer hospital stays. Development of antibiotic delivery systems is often necessary to improve bioavailability and biodistribution, in order to reduce antibiotic resistance and increase the lifespan of antibiotics. Liposome entrapment has been used as a method to allow higher drug dosing apart from reducing toxicity associated with drugs. The surface of the liposomes can also be designed and enhanced with drug-release properties, active targeting, and stealth effects to prevent recognition by the mononuclear phagocyte system, thus enhancing its circulation time. The present review aimed to highlight the possible targeting strategies of liposomes against MRSA bacteremia systemically while investigating the magnitude of this effect on the minimum inhibitory concentration level.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Zahraa Mustafa Hussein
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Fahimi Mustapa
- Hospital Batu Gajah Jalan Changkat, 31000 Batu Gajah, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Xiang Yi Chen
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
22
|
Baig MMFA, Zhang C, Akhtar MF, Saleem A, Mudassir J. The effective transfection of a low dose of negatively charged drug-loaded DNA-nanocarriers into cancer cells via scavenger receptors. J Pharm Anal 2021; 11:174-182. [PMID: 34012693 PMCID: PMC8116213 DOI: 10.1016/j.jpha.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
DNA-nanotechnology-based nano-architecture scaffolds based on circular strands were designed in the form of DNA-nanowires (DNA-NWs) as a polymer of DNA-triangles. Circularizing a scaffold strand (84-NT) was the critical step followed by annealing with various staple strands to make stiff DNA-triangles. Atomic force microcopy (AFM), native polyacrylamide gel electrophoresis (PAGE), UV-analysis, MTT-assay, flow cytometry, and confocal imaging were performed to assess the formulated DNA-NWs and cisplatin (CPT) loading. The AFM and confocal microscopy images revealed a uniform shape and size distribution of the DNA-NWs, with lengths ranging from 2 to 4 μm and diameters ranging from 150 to 300 nm. One sharp band at the top of the lane (500 bp level) with the loss of electrophoretic mobility during the PAGE (native) gel analysis revealed the successful fabrication of DNA-NWs. The loading efficiency of CPT ranged from 66.85% to 97.35%. MTT and flow cytometry results showed biocompatibility of the blank DNA-NWs even at 95% concentration compared with the CPT-loaded DNA-NWs. The CPT-loaded DNA-NWs exhibited enhanced apoptosis (22%) compared to the apoptosis (7%) induced by the blank DNA-NWs. The release of CPT from the DNA-NWs was sustained at < 75% for 6 h in the presence of serum, demonstrating suitability for systemic applications. The IC50 of CPT@DNA-NWs was reduced to 12.8 nM CPT, as compared with the free CPT solution exhibiting an IC50 of 51.2 nM. Confocal imaging revealed the targetability, surface binding, and slow internalization of the DNA-NWs in the scavenger-receptor-rich cancer cell line (HepG2) compared with the control cell line.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Chengfei Zhang
- Laboratory of Biomedical & Pharmaceutical Engineering of Stem Cells Research, Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong, PR China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Jahanzeb Mudassir
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60000, Pakistan
| |
Collapse
|
23
|
Tuncer K, Gür B, Şenol O, Aydın MR, Gündoğdu Ö. New bone cements with Pluronic®F127 for prophylaxis and treatment of periprosthetic joint infections. J Mech Behav Biomed Mater 2021; 119:104496. [PMID: 33812290 DOI: 10.1016/j.jmbbm.2021.104496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
In line with the increase in orthopedic prosthetic surgeries, there has been a significant rise in periprosthetic joint infections (PJI) due to Methicillin-Resistant Staphylococcus Aureus (MRSA) bacteria. In case of infection, antibiotic-added spacers are temporarily placed into the periprosthetic region. With the release of antibiotics usually failing to work in fighting off infection, recent studies have centered around developing more effective approaches. New polymethylmethacrylate (PMMA) cement mixtures were prepared for this study with Pluronic®F127, bicarbonate, and citric acid addition. Optimal solutions were searched by monitoring vancomycin release on consecutive days with HPLC in in-vitro. The strengths of the samples were measured via four-point bending tests. Compared to conventional PMMA, strength values were observed to have improved by about 20% with 1.0 g of Pluronic®F127. According to HPLC studies, the highest increase for the area under the curve value was obtained for Pluronic®F127 doped mixture with a value of about 20%. It is understood from SEM and BET studies that addition of Pluronic®F127 helps increase porosity. The present study concludes that the optimum concentration of Pluronic®F127 could improve the strength and drug-releasing capacity of the spacer by increasing its porosity.
Collapse
Affiliation(s)
- Kutsi Tuncer
- Department of Orthopedics and Traumatology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey; Anesthesiology, Clinical Research Office, Atatürk University, 25240, Erzurum, Turkey
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, 76000, Iğdır, Turkey.
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, 25240, Erzurum, Turkey
| | - Muhammet Raci Aydın
- Department of Mechanical Engineering, Faculty of Engineering, Iğdır University, 76000, Iğdır, Turkey.
| | - Ömer Gündoğdu
- Department of Mechanical Engineering, Faculty of Engineering, Iğdır University, 76000, Iğdır, Turkey; Department of Mechanical Engineering, Faculty of Engineering, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
24
|
Kaur R, Gorki V, Singh G, Kaur R, Katare O, Nirmalan N, Singh B. Intranasal delivery of polymer-anchored lipid nanoconstructs of artemether-lumefantrine in Plasmodium berghei ANKA murine model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Razaghi M, Ramazani A, Khoobi M, Mortezazadeh T, Aksoy EA, Küçükkılınç TT. Highly fluorinated graphene oxide nanosheets for anticancer linoleic-curcumin conjugate delivery and T2-Weighted magnetic resonance imaging: In vitro and in vivo studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Hassan D, Omolo CA, Fasiku VO, Elrashedy AA, Mocktar C, Nkambule B, Soliman MES, Govender T. Formulation of pH-Responsive Quatsomes from Quaternary Bicephalic Surfactants and Cholesterol for Enhanced Delivery of Vancomycin against Methicillin Resistant Staphylococcus aureus. Pharmaceutics 2020; 12:E1093. [PMID: 33202629 PMCID: PMC7696852 DOI: 10.3390/pharmaceutics12111093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Globally, human beings continue to be at high risk of infectious diseases caused by methicillin-resistant Staphylococcus aureus (MRSA); and current treatments are being depleted due to antimicrobial resistance. Therefore, the synthesis and formulation of novel materials is essential for combating antimicrobial resistance. The study aimed to synthesize a quaternary bicephalic surfactant (StBAclm) and thereof to formulate pH-responsive vancomycin (VCM)-loaded quatsomes to enhance the activity of the antibiotic against MRSA. The surfactant structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution mass spectrometry (HRMS). The quatsomes were prepared using a sonication/dispersion method and were characterized using various in vitro, in vivo, and in silico techniques. The in vitro cell biocompatibility studies of the surfactant and pH-responsive vancomycin-loaded quatsomes (VCM-StBAclm-Qt1) revealed that they are biosafe. The prepared quatsomes had a mean hydrodynamic diameter (MHD), polydispersity index (PDI), and drug encapsulation efficiency (DEE) of 122.9 ± 3.78 nm, 0.169 ± 0.02 mV, and 52.22 ± 8.4%, respectively, with surface charge switching from negative to positive at pH 7.4 and pH 6.0, respectively. High-resolution transmission electron microscopy (HR-TEM) characterization of the quatsomes showed spherical vesicles with MHD similar to the one obtained from the zeta-sizer. The in vitro drug release of VCM from the quatsomes was faster at pH 6.0 compared to pH 7.4. The minimum inhibitory concentration (MIC) of the drug loaded quatsomes against MRSA was 32-fold and 8-fold lower at pH 6.0 and pH 7.4, respectively, compared to bare VCM, demonstrating the pH-responsiveness of the quatsomes and the enhanced activity of VCM at acidic pH. The drug-loaded quatsomes demonstrated higher electrical conductivity and a decrease in protein and deoxyribonucleic acid (DNA) concentrations as compared to the bare drug. This confirmed greater MRSA membrane damage, compared to treatment with bare VCM. The flow cytometry study showed that the drug-loaded quatsomes had a similar bactericidal killing effect on MRSA despite a lower (8-fold) VCM concentration when compared to the bare VCM. Fluorescence microscopy revealed the ability of the drug-loaded quatsomes to eradicate MRSA biofilms. The in vivo studies in a skin infection mice model showed that groups treated with VCM-loaded quatsomes had a 13-fold decrease in MRSA CFUs when compared to the bare VCM treated groups. This study confirmed the potential of pH-responsive VCM-StBAclm quatsomes as an effective delivery system for targeted delivery and for enhancing the activity of antibiotics.
Collapse
Affiliation(s)
- Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634, Nairobi 00800, Kenya
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Ahmed A Elrashedy
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Bongani Nkambule
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Mahmoud E. S. Soliman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| |
Collapse
|
27
|
Bose RJC, Tharmalingam N, Choi Y, Madheswaran T, Paulmurugan R, McCarthy JR, Lee SH, Park H. Combating Intracellular Pathogens with Nanohybrid-Facilitated Antibiotic Delivery. Int J Nanomedicine 2020; 15:8437-8449. [PMID: 33162754 PMCID: PMC7642590 DOI: 10.2147/ijn.s271850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Lipid polymer hybrid nanoparticles (LPHNPs) have been widely investigated in drug and gene delivery as well as in medical imaging. A knowledge of lipid-based surface engineering and its effects on how the physicochemical properties of LPHNPs affect the cell-nanoparticle interactions, and consequently how it influences the cytological response, is in high demand. METHODS Herein, we have engineered antibiotic-loaded (doxycycline or vancomycin) LPHNPs with cationic and zwitterionic lipids and examined the effects on their physicochemical characteristics (size and charge), antibiotic entrapment efficiency, and the in vitro intracellular bacterial killing efficiency against Mycobacterium smegmatis or Staphylococcus aureus infected macrophages. RESULTS The incorporation of cationic or zwitterionic lipids in the LPHNP formulation resulted in a size reduction in LPHNPs formulations and shifted the surface charge of bare NPs towards positive or neutral values. Also observed were influences on the drug incorporation efficiency and modulation of the drug release from the biodegradable polymeric core. The therapeutic efficacy of LPHNPs loaded with vancomycin was improved as its minimum inhibitory concentration (MIC) (2 µg/mL) versus free vancomycin (4 µg/mL). Importantly, our results show a direct relationship between the cationic surface nature of LPHNPs and its intracellular bacterial killing efficiency as the cationic doxycycline or vancomycin loaded LPHNPs reduced 4 or 3 log CFU respectively versus the untreated controls. CONCLUSION In our study, modulation of surface charge in the nanomaterial formulation increased macrophage uptake and intracellular bacterial killing efficiency of LPHNPs loaded with antibiotics, suggesting alternate way for optimizing their use in biomedical applications.
Collapse
Affiliation(s)
- Rajendran J C Bose
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA94305-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA94305-5427, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Nagendran Tharmalingam
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI02903, USA
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur57000, Malaysia
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA94305-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA94305-5427, USA
| | | | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, Gyeonggi-do, South Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
28
|
Simon A, Moreira MLA, Costa IFDJB, de Sousa VP, Rodrigues CR, da Rocha E Lima LMT, Sisnande T, do Carmo FA, Leal ICR, Dos Santos KRN, da Silva LCRP, Cabral LM. Vancomycin-loaded nanoparticles against vancomycin intermediate and methicillin resistant Staphylococcus aureus strains. NANOTECHNOLOGY 2020; 31:375101. [PMID: 32470951 DOI: 10.1088/1361-6528/ab97d7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial infections represent one of the leading causes of mortality in the world. Among causative pathogens, S. aureus is prominently known as the underlying cause of many multidrug resistant infections that are often treated with the first-line choice antibiotic vancomycin (VCM). Loading antibiotics into polymeric nanoparticles (Np) displays promise as an alternative method to deliver therapy due to the greater access and accumulation of the antibiotic at the site of the infection as well as reducing toxicity, irritation and degradation. The aim of this work was to prepare, characterize and evaluate VCM-loaded nanoparticles (VNp) for use against S. aureus strains. Moreover, conjugation of Nps with holo-transferrin (h-Tf) was investigated as an approach for improving targeted drug delivery. VNp were prepared by double emulsion solvent evaporation method using PLGA and PVA or DMAB as surfactants. The particles were characterized for size distribution, Zeta Potential, morphology by transmission electron microscopy, encapsulation yield and protein conjugation efficiency. Process yield and drug loading were also investigated along with an in vitro evaluation of VNp antimicrobial effects against S. aureus strains. Results showed that Np were spontaneously formed with a mean diameter lower than 300 nm in a narrow size distribution that presented a spherical shape. The bioconjugation with h-Tf did not appear to increase the antimicrobial effect of VNp. However, non-bioconjugated Np presented a minimal inhibitory concentration lower than free VCM against a MRSA (Methicillin-resistant S. aureus) strain, and slightly higher against a VISA (VCM intermediate S. aureus) strain. VNp without h-Tf showed potential to assist in the development of new therapies against S. aureus infections.
Collapse
Affiliation(s)
- Alice Simon
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro - UFRJ, CCS, Lss20, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hariyadi DM, Islam N. Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci 2020; 2020:8886095. [PMID: 32832902 PMCID: PMC7428837 DOI: 10.1155/2020/8886095] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Alginate is one of the natural polymers that are often used in drug- and protein-delivery systems. The use of alginate can provide several advantages including ease of preparation, biocompatibility, biodegradability, and nontoxicity. It can be applied to various routes of drug administration including targeted or localized drug-delivery systems. The development of alginates as a selected polymer in various delivery systems can be adjusted depending on the challenges that must be overcome by drug or proteins or the system itself. The increased effectiveness and safety of sodium alginate in the drug- or protein-delivery system are evidenced by changing the physicochemical characteristics of the drug or proteins. In this review, various routes of alginate-based drug or protein delivery, the effectivity of alginate in the stem cells, and cell encapsulation have been discussed. The recent advances in the in vivo alginate-based drug-delivery systems as well as their toxicities have also been reviewed.
Collapse
Affiliation(s)
- Dewi Melani Hariyadi
- Pharmaceutics Department, Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Jl. Mulyorejo Campus C, Surabaya 60115, Indonesia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Ahmed IS, Elnahas OS, Assar NH, Gad AM, El Hosary R. Nanocrystals of Fusidic Acid for Dual Enhancement of Dermal Delivery and Antibacterial Activity: In Vitro, Ex Vivo and In Vivo Evaluation. Pharmaceutics 2020; 12:pharmaceutics12030199. [PMID: 32106544 PMCID: PMC7150744 DOI: 10.3390/pharmaceutics12030199] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 02/05/2023] Open
Abstract
With the alarming rise in incidence of antibiotic-resistant bacteria and the scarcity of newly developed antibiotics, it is imperative that we design more effective formulations for already marketed antimicrobial agents. Fusidic acid (FA), one of the most widely used antibiotics in the topical treatment of several skin and eye infections, suffers from poor water-solubility, sub-optimal therapeutic efficacy, and a significant rise in FA-resistant Staphylococcus aureus (FRSA). In this work, the physico-chemical characteristics of FA were modified by nanocrystallization and lyophilization to improve its therapeutic efficacy through the dermal route. FA-nanocrystals (NC) were prepared using a modified nanoprecipitation technique and the influence of several formulation/process variables on the prepared FA-NC characteristics were optimized using full factorial statistical design. The optimized FA-NC formulation was evaluated before and after lyophilization by several in-vitro, ex-vivo, and microbiological tests. Furthermore, the lyophilized FA-NC formulation was incorporated into a cream product and its topical antibacterial efficacy was assessed in vivo using a rat excision wound infection model. Surface morphology of optimized FA-NC showed spherical particles with a mean particle size of 115 nm, span value of 1.6 and zeta potential of −11.6 mV. Differential scanning calorimetry and powder X-ray diffractometry confirmed the crystallinity of FA following nanocrystallization and lyophilization. In-vitro results showed a 10-fold increase in the saturation solubility of FA-NC while ex-vivo skin permeation studies showed a 2-fold increase in FA dermal deposition from FA-NC compared to coarse FA. Microbiological studies revealed a 4-fofd decrease in the MIC against S. aureus and S. epidermidis from FA-NC cream compared to commercial Fucidin cream. In-vivo results showed that FA-NC cream improved FA distribution and enhanced bacterial exposure in the infected wound, resulting in increased therapeutic efficacy when compared to coarse FA marketed as Fucidin cream.
Collapse
Affiliation(s)
- Iman S. Ahmed
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE
- Correspondence: or ; Tel.: +971-503794374; Fax: +971-65585812
| | - Osama S. Elnahas
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Nouran H. Assar
- Department of Microbiology, National Organization for Drug Control and Research, Cairo 12553, Egypt
| | - Amany M. Gad
- Department of Pharmacology, National Organization for Drug Control and Research, Cairo 12553, Egypt
| | - Rania El Hosary
- Department of Pharmaceutics, National Organization for Drug Control and Research, Cairo 12553, Egypt;
| |
Collapse
|
31
|
Baig MMFA, Lai WF, Mikrani R, Jabeen M, Naveed M, Abbas M, Farooq MA, Ahsan A, Kassim SA, Khan GJ, Ansari MT. Synthetic NRG-1 functionalized DNA nanospindels towards HER2/neu targets for in vitro anti-cancer activity assessment against breast cancer MCF-7 cells. J Pharm Biomed Anal 2020; 182:113133. [PMID: 32004770 DOI: 10.1016/j.jpba.2020.113133] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
DNA based nano-carriers synthesized from short circular scaffolds (circular DNA nanotechnology) attains stiffer topology for ligand functionalization (neuregulin-1/NRG-1 ligand) and biological applications (targeted drug delivery). Daunorubicin (DR) is a hydrophobic chemical that requires robust vectors to efficiently encapsulate and avoid its free dispersion in water, biological media and cell culture. Here we design DNA nanospindels (DNA-NS) to efficiently load DR and target the (highly expressed) HER2/neu receptors on the plasma membrane of drug-resistant MCF-7 (breast cancer) cells. DNA-NS were synthesized by polymerizing the DNA-triangles (utilizing 84-nt short circular scaffold strand) into larger DNA nano-ribbons characterized by the native-PAGE testing. AFM results revealed the spinning of DNA nanoribbons on its (own) axis because of the intrinsic curvature of the DNA double helix resulting in the formation of the firm and twisted DNA-NS with the diameter (50-70 nm) and length (0.5-4 μm). DA loading onto DNA-NS was confirmed by the UV shift analysis. The MTT results with the blank DNA-NS evidenced its biocompatibility (remained value of 93%) compared to the decreased viability of the MCF-7 cells after treatment with DNA-NS (DR loaded). These findings were further supported by the analysis of cell proliferation/apoptosis through flow cytometry showing 64% apoptosis after treating with the DR loaded DNA-NS. Hence, through the short circular DNA nanotechnology, we have achieved a stiffer, uniform, and biocompatible DNA-NS for applications in the targeted therapy.
Collapse
Affiliation(s)
- Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan.
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, PR China
| | - Reyaj Mikrani
- Department of Pharmaceutics, Basic medicine, and Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Mehreen Jabeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing 211166, PR China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, Basic medicine, and Clinical Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | - Said Abasse Kassim
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Ghulam Jilany Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54570, Pakistan
| | - Muhammad Tayyab Ansari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| |
Collapse
|
32
|
Hameed HA, Khan S, Shahid M, Ullah R, Bari A, Ali SS, Hussain Z, Sohail M, Khan SU, Htar TT. Engineering of Naproxen Loaded Polymer Hybrid Enteric Microspheres for Modified Release Tablets: Development, Characterization, in silico Modelling and in vivo Evaluation. Drug Des Devel Ther 2020; 14:27-41. [PMID: 32021089 PMCID: PMC6954845 DOI: 10.2147/dddt.s232111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Naproxen (NP) is a non-steroidal anti-inflammatory drug with poor aqueous solubility and low oral bioavailability, which may lead to therapeutic failure. NP causes crucial GIT irritation, bleeding, and peptic and duodenal ulcers. PURPOSE OF THE STUDY This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability. MATERIALS AND METHODS NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation. RESULTS The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed. CONCLUSION The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.
Collapse
Affiliation(s)
- Hajra Afeera Hameed
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa18800, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa18800, Pakistan
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban4000, South Africa
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Medicinal, Aromatic & Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Ahmed Bari
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Syed Saeed Ali
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah27272, United Arab Emirates
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad22060, Pakistan
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya47500, Malaysia
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya47500, Malaysia
| |
Collapse
|
33
|
Ma Y, Wang C, Li Y, Li J, Wan Q, Chen J, Tay FR, Niu L. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901872. [PMID: 31921562 PMCID: PMC6947519 DOI: 10.1002/advs.201901872] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Indexed: 05/19/2023]
Abstract
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Chen‐Yu Wang
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Yuan‐Yuan Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Jing Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Ji‐Hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| | - Li‐Na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| |
Collapse
|
34
|
Thakur K, Sharma G, Singh B, Katare OP. Topical Drug Delivery of Anti-infectives Employing Lipid-Based Nanocarriers: Dermatokinetics as an Important Tool. Curr Pharm Des 2019; 24:5108-5128. [PMID: 30657036 DOI: 10.2174/1381612825666190118155843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The therapeutic approaches for the management of topical infections have always been a difficult approach due to lack of efficacy of conventional topical formulations, high frequency of topical applications and non-patient compliance. The major challenge in the management of topical infections lies in antibiotic resistance which leads to severe complications and hospitalizations resulting in economic burden and high mortality rates. METHODS Topical delivery employing lipid-based carriers has been a promising strategy to overcome the challenges of poor skin permeation and retention along with large doses which need to be administered systemically. The use of lipid-based delivery systems is a promising strategy for the effective topical delivery of antibiotics and overcoming drug-resistant strains in the skin. The major systems include transfersomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion as the most promising drug delivery approaches to treat infectious disorders. The main advantages of these systems include lipid bilayer structure which mimics the cell membrane and can fuse with infectious microbes. The numerous advantages associated with nanocarriers like enhanced efficacy, improvement in bioavailability, controlled drug release and ability to target the desired infectious pathogen have made these carriers successful. CONCLUSION Despite the number of strides taken in the field of topical drug delivery in infectious diseases, it still requires extensive research efforts to have a better perspective of the factors that influence drug permeation along with the mechanism of action with regard to skin penetration and deposition. The final objective of the therapy is to provide a safe and effective therapeutic approach for the management of infectious diseases affecting topical sites leading to enhanced therapeutic efficacy and patient-compliance.
Collapse
Affiliation(s)
- Kanika Thakur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Bhupindar Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
35
|
Maji R, Omolo CA, Agrawal N, Maduray K, Hassan D, Mokhtar C, Mackhraj I, Govender T. pH-Responsive Lipid–Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens. Mol Pharm 2019; 16:4594-4609. [DOI: 10.1021/acs.molpharmaceut.9b00713] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ruma Maji
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kaminee Maduray
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mokhtar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackhraj
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
36
|
Evaluation of chitosan/eudragit hybrid coating over cubic DNA nanospheres with superior stability and therapeutic outcomes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
He X, Zhou Z, Han Z, Zeng Y, Chen X, Su J. Mechanism of Controlled Release of Vancomycin from Crumpled Graphene Oxides. ACS OMEGA 2019; 4:12252-12258. [PMID: 31460341 PMCID: PMC6682005 DOI: 10.1021/acsomega.9b00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
The physical and chemical interactions with vancomycin (VAN) were accessed between graphene oxide (GO) and crumpled graphene oxide (CGO) to present the possible loading and release mechanisms. The improved hydrophilicity and surface charge were found on CGO through water contact angle and ζ-potential measurements. Fourier transform infrared and X-ray photoelectron spectroscopies confirmed the attachment of VAN onto CGO or GO through π-π stacking and hydrogen bonding. Both CGO-VAN and GO-VAN drug complexes showed pH-controlled release property. The high VAN loading and delayed release in CGO-VAN system were mainly due to the crumpled morphology.
Collapse
Affiliation(s)
- Xing He
- School
of Material Science and Engineering, University
of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ziyan Zhou
- School
of Material Science and Engineering, University
of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhuo Han
- Department
of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yang Zeng
- School
of Material Science and Engineering, University
of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xiaojie Chen
- School
of Material Science and Engineering, University
of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiacan Su
- Department
of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
38
|
Ndlovu ST, Ullah N, Khan S, Ramharack P, Soliman M, de Matas M, Shahid M, Sohail M, Imran M, Shah SWA, Hussain Z. Domperidone nanocrystals with boosted oral bioavailability: fabrication, evaluation and molecular insight into the polymer-domperidone nanocrystal interaction. Drug Deliv Transl Res 2019; 9:284-297. [PMID: 30387048 DOI: 10.1007/s13346-018-00596-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to employ experimental and molecular modelling approaches to use molecular level interactions to rationalise the selection of suitable polymers for use in the production of stable domperidone (DOMP) nanocrystals with enhanced bioavailability. A low-energy antisolvent precipitation method was used for the preparation and screening of polymers for stable nanocrystals of DOMP. Ethyl cellulose was found to be very efficient in producing stable DOMP nanocrystals with particle size of 130 ± 3 nm. Moreover, the combination of hydroxypropyl methylcellulose and polyvinyl alcohol was also shown to be better in producing DOMP nanocrystals with smaller particle size (200 ± 3.5 nm). DOMP nanosuspension stored at 2-8 °C and at room temperature (25 °C) exhibited better stability compared to the samples stored at 40 °C. Crystallinity of the unprocessed and processed DOMP was monitored by differential scanning calorimetry and powder X-ray diffraction. DOMP nanocrystals gave enhanced dissolution rate compared to the unprocessed drug substance. DOMP nanocrystals at a dose of 10 mg/kg in rats showed enhanced bioavailability compared to the raw drug substance and marketed formulation. A significant increase in plasma concentration of 2.6 μg/mL with a significant decrease in time (1 h) to reach maximum plasma concentration was observed for DOMP nanocrystals compared to the raw DOMP. Molecular modelling studies provided underpinning knowledge at the molecular level of the DOMP-polymer nanocrystal interactions and substantiated the experimental studies. This included an understanding of the impact of polymers on the size of nanocrystals and their associated stability characteristics.
Collapse
Affiliation(s)
- Stalielson Tatenda Ndlovu
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Naseem Ullah
- Department of Pharmacy, Abasyn University, Peshawar, KPK, Pakistan
| | - Shahzeb Khan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
- Department of Pharmacy, University of Malakand, Dir Lower Chakdara, KPK, Pakistan.
| | - Pritika Ramharack
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud Soliman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, KPK, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, 22060, Pakistan
| | - Muhammad Imran
- HEJ, Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Dir Lower Chakdara, KPK, Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Puncak Alam Campus 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
39
|
Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. Solid nanoparticles for oral antimicrobial drug delivery: a review. Drug Discov Today 2019; 24:858-866. [PMID: 30654055 DOI: 10.1016/j.drudis.2019.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
Most microbial infectious diseases can be treated successfully with the remarkable array of antimicrobials current available; however, antimicrobial resistance, adverse effects, and the high cost of antimicrobials are crucial health challenges worldwide. One of the common efforts in addressing this issue lies in improving the existing antibacterial delivery systems. Solid nanoparticles (SNPs) have been widely used as promising strategies to overcome these challenges. In addition, oral delivery is the most common method of drug administration with high levels of patient acceptance. Formulation into NPs can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. Here, we discuss SNPs for the oral delivery of antimicrobials, including solid lipid NPs (SLNs), polymeric NPs (PNs), mesoporous silica NPs (MSNs) and hybrid NPs (HNs). We also discussed about the role of nanotechnology in IV to oral antimicrobial therapy development as well as challenges, clinical transformation, and limitations of SNPs for oral antimicrobial drug delivery.
Collapse
Affiliation(s)
- Aun Raza
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Fekade Bruck Sime
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Peter J Cabot
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia
| | - Faheem Maqbool
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
40
|
Synthesis of an oleic acid based pH-responsive lipid and its application in nanodelivery of vancomycin. Int J Pharm 2018; 550:149-159. [DOI: 10.1016/j.ijpharm.2018.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
|
41
|
Ghitman J, Stan R, Cecoltan S, Chifiriuc MC, Iovu H. Hybrid nanocarriers based on PLGA-vegetable oil: A novel approach for high lipophilic drug delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
42
|
Ghitman J, Stan R, Ghebaur A, Cecoltan S, Vasile E, Iovu H. Novel PEG-Modified Hybrid PLGA-Vegetable Oils Nanostructured Carriers for Improving Performances of Indomethacin Delivery. Polymers (Basel) 2018; 10:polym10060579. [PMID: 30966613 PMCID: PMC6403762 DOI: 10.3390/polym10060579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 01/01/2023] Open
Abstract
The purpose of this work was to more exhaustively study the influence of nanocarrier matrix composition and also the polyethylene glycol (PEG)-modified surface on the performances of formulations as lipophilic drug delivery systems. Poly (d,l-lactide-co-glycolide), two vegetable oils (Nigella sativa oil and Echium oil) and indomethacin were employed to prepare novel PEG-coated nanocarriers through emulsion solvent evaporation method. The surface modification was achieved by physical PEG adsorption (in the post-production step). Transmission electron microscopy (TEM) nanographs highlighted the core-shell structure of hybrid formulations while scanning electron microscopy (SEM) images showed no obvious morphological changes after PEG adsorption. Drug loading (DL) and entrapment efficiency (EE) varied from 4.6% to 16.4% and 28.7% to 61.4%, solely depending on the type of polymeric matrix. The oil dispersion within hybrid matrix determined a more amorphous structure, as was emphasized by differential scanning calorimetry (DSC) investigations. The release studies highlighted the oil effect upon the ability of nanocarrier to discharge in a more sustained manner the encapsulated drug. Among the kinetic models employed, the Weibull and Korsmeyer-Peppas models showed the better fit (R2 = 0.999 and 0.981) with n < 0.43 indicating a Fickian type release pattern. According to cytotoxic assessment the PEG presence on the surface increased the cellular viability with ~1.5 times as compared to uncoated formulations.
Collapse
Affiliation(s)
- Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| | - Raluca Stan
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-5 Gh. Polizu Street, 011061 Bucharest, Romania.
| | - Adi Ghebaur
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| | - Sergiu Cecoltan
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu, 060042 Bucharest, Romania.
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania.
| |
Collapse
|
43
|
Novel lipids with three C18-fatty acid chains and an amino acid head group for pH-responsive and sustained antibiotic delivery. Chem Phys Lipids 2018; 212:12-25. [DOI: 10.1016/j.chemphyslip.2017.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/12/2017] [Accepted: 12/31/2017] [Indexed: 12/13/2022]
|
44
|
Ullah N, Khan S, Ahmed S, Govender T, Faidah HS, de Matas M, Shahid M, Minhas MU, Sohail M, Khurram M. Dexibuprofen nanocrystals with improved therapeutic performance: fabrication, characterization, in silico modeling, and in vivo evaluation. Int J Nanomedicine 2018; 13:1677-1692. [PMID: 29599613 PMCID: PMC5866724 DOI: 10.2147/ijn.s151597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background The aim of this study was to prepare and evaluate the impact of polymers on fabricating stable dexibuprofen (Dexi) nanocrystals with enhanced therapeutic potential, using a low energy, anti-solvent precipitation method coupled with molecular modelling approach. Methods Dexi nanocrystals were prepared using antisolvent precipitation with syringe pump. Crystallinity of the processed Dexi particles was confirmed using differential scanning calorimetry and powdered X-ray diffraction and transmission electron microscopy. Dissolution of Dexi nanocrystals was compared with raw Dexi and marketed tablets. Molecular modelling study was coupled with experimental studies to rationalise the appropriate polymers for stable Dexi nanocrystals. Antinociceptive study was carried out using balb mice. Results Combinations of hydroxypropyl methylcellulose (HPMC)-polyvinyl pyrrolidone (PVP) and HPMC-Eudragit (EUD) were shown to be very effective in producing stable Dexi nanocrystals with particle sizes of 85.0±2.5 nm and 90±3.0 nm, and polydispersity of 0.179±0.01, 0.182±0.02, respectively. The stability studies conducted for 90 days demonstrated that nanocrystals stored at 2°C-8°C and 25°C were more stable than those at 40°C. The maximum recovery of Dexi nanocrystals was observed from the formulations using the combination of HPMC-PVP and HPMC-EUD, which equated to 98% and 94% of the nominal active drug content respectively. The saturation solubility of the Dexi nanocrystals was substantially increased to 270.0±3.5 μg/mL compared to the raw Dexi in water (51.0±2.0 μg/mL) and stabilizer solution (92.0±3.0 μg/mL). Enhanced dissolution rate (P<0.05) was observed for the Dexi nanocrystals compared to the unprocessed drug substance and marketed tablets. Dexi nanocrystals produced the analgesic effect at much lower doses (5 mg/kg) than that of control standard, diclofenac sodium (20 mg/kg) and Dexi counterparts (40 mg/kg). Conclusion HPMC-PVP and HPMC-EUD were found the best polymer combination to stabilise Dexi nanocrystals. The Dexi nanocrystals exhibited significant dissolution, solubility and analgesic effect compared to the raw Dexi and the control standard diclofenac sodium.
Collapse
Affiliation(s)
- Naseem Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Shaimaa Ahmed
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hani S Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
| | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Muhammad Usman Minhas
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Punjab, Pakistan
| | | | - Muhammad Khurram
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| |
Collapse
|
45
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
46
|
Ahmed S, Govender T, Khan I, Rehman NU, Ali W, Shah SMH, Khan S, Hussain Z, Ullah R, Alsaid MS. Experimental and molecular modeling approach to optimize suitable polymers for fabrication of stable fluticasone nanoparticles with enhanced dissolution and antimicrobial activity. Drug Des Devel Ther 2018; 12:255-269. [PMID: 29440875 PMCID: PMC5804124 DOI: 10.2147/dddt.s148912] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND AIM The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity. METHODS Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics®. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles. RESULTS AND CONCLUSION The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250 nm ±2.0 and 280 nm ±4.2 and polydispersity indices of 0.15 nm ±0.01 and 0.25 nm ±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22 kcal/mol ±0.79) and EUD-PVP-FLU (-25.17 kcal/mol ±1.12). In addition, it was observed that Ethocel® favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90 days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C-8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate (P<0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control.
Collapse
Affiliation(s)
- Shaimaa Ahmed
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Inamullah Khan
- Department of Pharmacy, COMSATS Institute of Information Technology (CIIT), Abbotabad
| | - Nisar ur Rehman
- Department of Pharmacy, COMSATS Institute of Information Technology (CIIT), Abbotabad
| | - Waqar Ali
- Department of Pharmacy, COMSATS Institute of Information Technology (CIIT), Abbotabad
| | | | - Shahzeb Khan
- Department of Pharmacy, University of Malakand Dir (Lower), Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi Mara, Puncak Alam, Selangor, Malaysia
| | - Riaz Ullah
- Department of Pharmacognosy and Medicinal, Aromatic & Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry, Government College Ara Khel FR, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Mansour S Alsaid
- Department of Pharmacognosy and Medicinal, Aromatic & Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin. Colloids Surf B Biointerfaces 2017; 158:650-657. [DOI: 10.1016/j.colsurfb.2017.07.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/23/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022]
|
48
|
Kalhapure RS, Sikwal DR, Rambharose S, Mocktar C, Singh S, Bester L, Oh JK, Renukuntla J, Govender T. Enhancing targeted antibiotic therapy via pH responsive solid lipid nanoparticles from an acid cleavable lipid. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2067-2077. [DOI: 10.1016/j.nano.2017.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
|
49
|
Bose RJ, Ravikumar R, Karuppagounder V, Bennet D, Rangasamy S, Thandavarayan RA. Lipid–polymer hybrid nanoparticle-mediated therapeutics delivery: advances and challenges. Drug Discov Today 2017; 22:1258-1265. [DOI: 10.1016/j.drudis.2017.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022]
|
50
|
Li Q, Cai T, Huang Y, Xia X, Cole SPC, Cai Y. A Review of the Structure, Preparation, and Application of NLCs, PNPs, and PLNs. NANOMATERIALS 2017; 7:nano7060122. [PMID: 28554993 PMCID: PMC5485769 DOI: 10.3390/nano7060122] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 01/17/2023]
Abstract
Nanostructured lipid carriers (NLCs) are modified solid lipid nanoparticles (SLNs) that retain the characteristics of the SLN, improve drug stability and loading capacity, and prevent drug leakage. Polymer nanoparticles (PNPs) are an important component of drug delivery. These nanoparticles can effectively direct drug delivery to specific targets and improve drug stability and controlled drug release. Lipid–polymer nanoparticles (PLNs), a new type of carrier that combines liposomes and polymers, have been employed in recent years. These nanoparticles possess the complementary advantages of PNPs and liposomes. A PLN is composed of a core–shell structure; the polymer core provides a stable structure, and the phospholipid shell offers good biocompatibility. As such, the two components increase the drug encapsulation efficiency rate, facilitate surface modification, and prevent leakage of water-soluble drugs. Hence, we have reviewed the current state of development for the NLCs’, PNPs’, and PLNs’ structures, preparation, and applications over the past five years, to provide the basis for further study on a controlled release drug delivery system.
Collapse
Affiliation(s)
- Qianwen Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, China.
| | - Yinghong Huang
- GuangzhouGuoyu Pharmaceutical Technology Co., Ltd., Guangzhou 510632, China.
| | - Xi Xia
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Susan P C Cole
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON K7L 3N6, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
- Cancer Research Institute of Jinan University, Guangzhou 510632, China.
| |
Collapse
|