1
|
Smadi BM, Shekouhi R, Azizi A, Chim H. Development of Biomaterials for Addressing Upper Extremity Peripheral Nerve Gaps. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:711-717. [PMID: 39381386 PMCID: PMC11456663 DOI: 10.1016/j.jhsg.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injuries within the upper extremities can lead to impaired function and reduced quality of life. Although autografts have traditionally served as the primary therapeutic approach to bridge nerve gaps, these present challenges related to donor site morbidity. This review delves into the realm of biomaterials tailored for addressing nerve gaps. Biomaterials, whether natural or synthetically derived, offer the potential not only to act as scaffolds for nerve regeneration but also to be enhanced with growth factors and agents that promote nerve recovery. The historical progression of these biomaterials as well as their current applications, advantages, inherent challenges, and future impact in the arena of regenerative medicine are discussed. By providing a comprehensive overview, we aim to shed light on the transformative potential of biomaterials in peripheral nerve repair and the path toward refining their efficacy in clinical settings.
Collapse
Affiliation(s)
- Bassam M. Smadi
- J Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL
- Nanoscience Institute for Medical and Engineering Technology (NIMET), University of Florida, Gainesville, FL
- College of Medicine, University of Florida, Gainesville, FL
| | - Ramin Shekouhi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Armina Azizi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Harvey Chim
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
2
|
Xuan Y, Li L, Yin X, He D, Li S, Zhang C, Yin Y, Xu W, Zhang Z. Bredigite-Based Bioactive Nerve Guidance Conduit for Pro-Healing Macrophage Polarization and Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2302994. [PMID: 37972314 PMCID: PMC11469136 DOI: 10.1002/adhm.202302994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Structural and functional healing of peripheral nerves damaged by trauma or chronic disease remain major clinical challenges, requiring the development of an effective nerve guidance conduit (NGC). The present study investigates a NGC fabrication strategy based on bredigite (BRT, Ca7MgSi4O16) bioceramic for the treatment of peripheral nerve injury. Here, BRT bioceramic shows good biocompatibility and sustainable release of Ca2+, Mg2+, and Si4+ ions. Both BRT extracts and BRT-incorporating electrospun membranes promote the proliferation and myelination potential of RSC96 cells, as well as accelerate vascular formation by human umbilical vein endothelial cells. Notably, BRT facilitates RAW 264.7 cell polarization to the pro-healing phenotype under LPS-induced inflammatory stimulation. More importantly, the macrophages activated by BRT in turn promote RSC96 cell migration and remyelination. In a rat sciatic nerve defect model, improved electrophysiological performance and alleviated gastrocnemius muscle atrophy are observed at 12 weeks post-implantation. Further experiments verify that BRT-loaded NGC facilitates axonal regrowth and revascularization with high M2-like macrophage infiltration. These findings support the beneficial effects of BRT for creating a pro-healing immune microenvironment and orchestrating multicellular processes associated with functional nerve regeneration, indicating the potential of rationally engineered bioceramics as safe, effective, and economical materials for peripheral nerve repair.
Collapse
Affiliation(s)
- Yaowei Xuan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Lin Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Xuelai Yin
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Dongming He
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Siyao Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Chenping Zhang
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Yuan Yin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Wanlin Xu
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Zhen Zhang
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| |
Collapse
|
3
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
4
|
Qin Y, Ge G, Yang P, Wang L, Qiao Y, Pan G, Yang H, Bai J, Cui W, Geng D. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207334. [PMID: 37162248 PMCID: PMC10369252 DOI: 10.1002/advs.202207334] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/24/2023] [Indexed: 05/11/2023]
Abstract
Over the last decade, adipose-derived stem cells (ADSCs) have attracted increasing attention in the field of regenerative medicine. ADSCs appear to be the most advantageous cell type for regenerative therapies owing to their easy accessibility, multipotency, and active paracrine activity. This review highlights current challenges in translating ADSC-based therapies into clinical settings and discusses novel strategies to overcome the limitations of ADSCs. To further establish ADSC-based therapies as an emerging platform for regenerative medicine, this review also provides an update on the advancements in this field, including fat grafting, wound healing, bone regeneration, skeletal muscle repair, tendon reconstruction, cartilage regeneration, cardiac repair, and nerve regeneration. ADSC-based therapies are expected to be more tissue-specific and increasingly important in regenerative medicine.
Collapse
Affiliation(s)
- Yi Qin
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Gaoran Ge
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Peng Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Liangliang Wang
- Department of OrthopaedicsThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouJiangsu213000China
| | - Yusen Qiao
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| | - Huilin Yang
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Dechun Geng
- Department of OrthopaedicsThe First Affiliated Hospital of Soochow UniversityOrthopaedic Institute, Medical CollegeSoochow UniversitySuzhouJiangsu215006China
| |
Collapse
|
5
|
Aydeger A, Aysit N, Baydas G, Cakici C, Erim UC, Arpa MD, Ozcicek I. Design of IKVAV peptide/gold nanoparticle decorated, micro/nano-channeled PCL/PLGA film scaffolds for neuronal differentiation and neurite outgrowth. BIOMATERIALS ADVANCES 2023; 152:213472. [PMID: 37301056 DOI: 10.1016/j.bioadv.2023.213472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
In the field of neural tissue engineering, intensive efforts are being made to develop tissue scaffolds that can support an effective functional recovery and neural development by guiding damaged axons and neurites. Micro/nano-channeled conductive biomaterials are considered a promising approach for repairing the injured neural tissues. Many studies have demonstrated that the micro/nano-channels and aligned nanofibers could guide the neurites to extend along the direction of alignment. However, an ideal biocompatible scaffold containing conductive arrays that could promote effective neural stem cell differentiation and development, and also stimulate high neurite guidance has not been fully developed. In the current study, we aimed to fabricate micro/nano-channeled polycaprolactone (PCL)/Poly-d,l-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, decorate their surfaces with IKVAV pentapeptide/gold nanoparticles (AuNPs), and investigate the behavior of PC12 cells and neural stem cells (NSCs) on the developed biomaterial under static/bioreactor conditions. Here we show that channeled groups decorated with AuNPs highly promote neurite outgrowth and neuronal differentiation along linear lines in the presence of electrical stimulation, compared with the polypyrrole (PPy) coating, which has been used traditionally for many years. Hopefully, this newly developed channeled scaffold structure (PCL/PLGA-AuNPs-IKVAV) could help to support long-distance axonal regeneration and neuronal development after different neural damages.
Collapse
Affiliation(s)
- Asel Aydeger
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Nese Aysit
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Gulsena Baydas
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Cagri Cakici
- Department of Medical Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Umit Can Erim
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Ilyas Ozcicek
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
6
|
Mao X, Li T, Cheng J, Tao M, Li Z, Ma Y, Javed R, Bao J, Liang F, Guo W, Tian X, Fan J, Yu T, Ao Q. Nerve ECM and PLA-PCL based electrospun bilayer nerve conduit for nerve regeneration. Front Bioeng Biotechnol 2023; 11:1103435. [PMID: 36937756 PMCID: PMC10017983 DOI: 10.3389/fbioe.2023.1103435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: The porcine nerve-derived extracellular matrix (ECM) fabricated as films has good performance in peripheral nerve regeneration. However, when constructed as conduits to bridge nerve defects, ECM lacks sufficient mechanical strength. Methods: In this study, a novel electrospun bilayer-structured nerve conduit (BNC) with outer poly (L-lactic acid-co-ε-caprolactone) (PLA-PCL) and inner ECM was fabricated for nerve regeneration. The composition, structure, and mechanical strength of BNC were characterized. Then BNC biosafety was evaluated by cytotoxicity, subcutaneous implantation, and cell affinity tests. Furthermore, BNC was used to bridge 10-mm rat sciatic nerve defect, and nerve functional recovery was assessed by walking track, electrophysiology, and histomorphology analyses. Results: Our results demonstrate that BNC has a network of nanofibers and retains some bioactive molecules, including collagen I, collagen IV, laminin, fibronectin, glycosaminoglycans, nerve growth factor, and brain-derived neurotrophic factor. Biomechanical analysis proves that PLA-PCL improves the BNC mechanical properties, compared with single ECM conduit (ENC). The functional evaluation of in vivo results indicated that BNC is more effective in nerve regeneration than PLA-PCL conduit or ENC. Discussion: In conclusion, BNC not only retains the good biocompatibility and bioactivity of ECM, but also obtains the appropriate mechanical strength from PLA-PCL, which has great potential for clinical repair of nerve defects.
Collapse
Affiliation(s)
- Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Ting Li
- Department of Tissue Engineering, China Medical University, Shenyang, China
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junqiu Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Zhiyuan Li
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yizhan Ma
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Jie Bao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Fang Liang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weihong Guo
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Tian
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Jun Fan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Low-intensity pulsed ultrasound promotes proliferation and myelinating genes expression of Schwann cells through NRG1/ErbB signaling pathway. Tissue Cell 2023; 80:101985. [PMID: 36459840 DOI: 10.1016/j.tice.2022.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Schwann cells (SCs) are the major component of myelin sheath in the peripheral nervous system, which are necessary in the development, function maintenance, and repair of peripheral nerves. This study aimed to investigate the potential mechanism of low-intensity pulsed ultrasound (LIPUS) affecting the proliferation and myelinating activity of SCs. Rat Schwann cell line RSC96 were cultured and exposed to LIPUS of different duty ratios (control, 20 %, 50 %, 80 %). Results demonstrated that LIPUS with a duty ratio of 50 % showing the maximal effect in facilitating proliferation of SCs. The expressions of Krox20 and myelin basic protein (MBP), the key molecules of SC myelination, and the potent inducer of myelination neuregulin 1 (NRG1) and its receptors ErbB2 and ErbB3 increased significantly by LIPUS. The reaction of these factors to LIPUS were both time- and duty ratio-dependent: namely LIPUS with higher duty ratios took effects when applied repeatedly over more consecutive days. These observations indicated that NRG1/ErbB signaling pathway might contribute to the effects of LIPUS on the proliferation and myelinating status of SCs, which could be one of the mechanisms in the protective role of LIPUS in nerve repair and regeneration. Our work provided novel insights for promising strategies of nerve repair therapy.
Collapse
|
8
|
Takeuchi H, Sakamoto A, Ikeguchi R, Ohta S, Noguchi T, Ando M, Yoshimoto K, Sakamoto D, Matsuda S. Muscle Grafts with Doxorubicin Pretreatment Produce "Empty Tubes" in the Basal Laminae, Promote Contentious Maturation of the Regenerated Axons, and Bridge 20-mm Sciatic Nerve Defects in Rats. J Reconstr Microsurg 2023; 39:120-130. [PMID: 35850137 DOI: 10.1055/s-0042-1750082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND We newly developed a muscle graft that employs a doxorubicin pretreatment technique. The aims of this study were to reveal the biological and morphological features of the muscle tissue in the second week (Study I), to reveal the regeneration outcomes of functional and kinematic assessments of longer-term follow-up (16 weeks, Study II), and to make assessments of the muscle graft with doxorubicin pretreatment in the critical-sized nerve defect model (20 mm, Study III). METHODS A total of 26 adult rats were used in this study. Doxorubicin treatment was accomplished by immersion in a doxorubicin solution for 10 minutes followed by a rinsing procedure. The rats were divided into three groups: the muscle graft with and without doxorubicin pretreatment (M-graft-w-Dox and M-graft-w/o-Dox) groups and the autologous nerve graft (N-graft) group. Assays of apoptosis, immunofluorescent histochemistry including CD68 (macrophage marker), scanning electron microscopy (SEM), morphometrical studies of the regenerated axons, nerve conduction studies, and kinematic studies were performed. RESULTS The M-graft-w-Dox group contained significantly larger numbers of apoptotic cells and CD68-positive cells. SEM revealed the existence of the basal lamina, so called "empty tubes," in the M-graft-w-Dox group. Study II showed contentious maturation of the regenerated axons, especially in the compound muscle action potentials. Study III showed that even at 20 mm, the M-graft-w-Dox group promoted axonal regeneration and functional regeneration. CONCLUSION The M-graft-w-Dox group showed superior regeneration results, and this easy and short-term procedure can expand the muscle graft clinical indication for the treatment of peripheral nerve defects.
Collapse
Affiliation(s)
- Hisataka Takeuchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Sakamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Souichi Ohta
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Ando
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Yoshimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Sakamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
10
|
Manganas P, Kavatzikidou P, Kordas A, Babaliari E, Stratakis E, Ranella A. The role of mechanobiology on the Schwann cell response: A tissue engineering perspective. Front Cell Neurosci 2022; 16:948454. [PMID: 36035260 PMCID: PMC9399718 DOI: 10.3389/fncel.2022.948454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS), do not only form myelin sheaths thereby insulating the electrical signal propagated by the axons, but also play an essential role in the regeneration of injured axons. SCs are inextricably connected with their extracellular environment and the mechanical stimuli that are received determine their response during development, myelination and injuries. To this end, the mechanobiological response of SCs is being actively researched, as it can determine the suitability of fabricated scaffolds for tissue engineering and regenerative medicine applications. There is growing evidence that SCs are sensitive to changes in the mechanical properties of the surrounding environment (such as the type of material, its elasticity and stiffness), different topographical features provided by the environment, as well as shear stress. In this review, we explore how different mechanical stimuli affect SC behaviour and highlight the importance of exploring many different avenues when designing scaffolds for the repair of PNS injuries.
Collapse
Affiliation(s)
- Phanee Manganas
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Paraskevi Kavatzikidou
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- Ultrafast Laser Micro and Nano Processing Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Antonis Kordas
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Eleftheria Babaliari
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- Ultrafast Laser Micro and Nano Processing Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Emmanuel Stratakis
- Ultrafast Laser Micro and Nano Processing Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Anthi Ranella
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- *Correspondence: Anthi Ranella
| |
Collapse
|
11
|
Idrisova KF, Zeinalova AK, Masgutova GA, Bogov AA, Allegrucci C, Syromiatnikova VY, Salafutdinov II, Garanina EE, Andreeva DI, Kadyrov AA, Rizvanov AA, Masgutov RF. Application of neurotrophic and proangiogenic factors as therapy after peripheral nervous system injury. Neural Regen Res 2022; 17:1240-1247. [PMID: 34782557 PMCID: PMC8643040 DOI: 10.4103/1673-5374.327329] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic ability of peripheral nerves to regenerate after injury is extremely limited, especially in case of severe injury. This often leads to poor motor function and permanent disability. Existing approaches for the treatment of injured nerves do not provide appropriate conditions to support survival and growth of nerve cells. This drawback can be compensated by the use of gene therapy and cell therapy-based drugs that locally provide an increase in the key regulators of nerve growth, including neurotrophic factors and extracellular matrix proteins. Each growth factor plays its own specific angiotrophic or neurotrophic role. Currently, growth factors are widely studied as accelerators of nerve regeneration. Particularly noteworthy is synergy between various growth factors, that is essential for both angiogenesis and neurogenesis. Fibroblast growth factor 2 and vascular endothelial growth factor are widely known for their proangiogenic effects. At the same time, fibroblast growth factor 2 and vascular endothelial growth factor stimulate neural cell growth and play an important role in neurodegenerative diseases of the peripheral nervous system. Taken together, their neurotrophic and angiogenic properties have positive effect on the regeneration process. In this review we provide an in-depth overview of the role of fibroblast growth factor 2 and vascular endothelial growth factor in the regeneration of peripheral nerves, thus demonstrating their neurotherapeutic efficacy in improving neuron survival in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Cinzia Allegrucci
- Biodiscovery Institute, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | - Ruslan Faridovich Masgutov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Republican Clinical Hospital, Kazan, Russia
| |
Collapse
|
12
|
Gong B, Zhang X, Zahrani AA, Gao W, Ma G, Zhang L, Xue J. Neural tissue engineering: From bioactive scaffolds and in situ monitoring to regeneration. EXPLORATION (BEIJING, CHINA) 2022; 2:20210035. [PMID: 37323703 PMCID: PMC10190951 DOI: 10.1002/exp.20210035] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/09/2022] [Indexed: 06/17/2023]
Abstract
Peripheral nerve injury is a large-scale problem that annually affects more than several millions of people all over the world. It remains a great challenge to effectively repair nerve defects. Tissue engineered nerve guidance conduits (NGCs) provide a promising platform for peripheral nerve repair through the integration of bioactive scaffolds, biological effectors, and cellular components. Herein, we firstly describe the pathogenesis of peripheral nerve injuries at different orders of severity to clarify their microenvironments and discuss the clinical treatment methods and challenges. Then, we discuss the recent progress on the design and construction of NGCs in combination with biological effectors and cellular components for nerve repair. Afterward, we give perspectives on imaging the nerve and/or the conduit to allow for the in situ monitoring of the nerve regeneration process. We also cover the applications of different postoperative intervention treatments, such as electric field, magnetic field, light, and ultrasound, to the well-designed conduit and/or the nerve for improving the repair efficacy. Finally, we explore the prospects of multifunctional platforms to promote the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Bowen Gong
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Xindan Zhang
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Ahmed Al Zahrani
- Department of Mechanical and Materials EngineeringUniversity of JeddahJeddahSaudi Arabia
| | - Wenwen Gao
- Department of RadiologyChina–Japan Friendship HospitalBeijingChina
| | - Guolin Ma
- Department of RadiologyChina–Japan Friendship HospitalBeijingChina
| | - Liqun Zhang
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| | - Jiajia Xue
- Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
13
|
Bittner GD, Bushman JS, Ghergherehchi CL, Roballo KCS, Shores JT, Smith TA. Typical and atypical properties of peripheral nerve allografts enable novel strategies to repair segmental-loss injuries. J Neuroinflammation 2022; 19:60. [PMID: 35227261 PMCID: PMC8886977 DOI: 10.1186/s12974-022-02395-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
We review data showing that peripheral nerve injuries (PNIs) that involve the loss of a nerve segment are the most common type of traumatic injury to nervous systems. Segmental-loss PNIs have a poor prognosis compared to other injuries, especially when one or more mixed motor/sensory nerves are involved and are typically the major source of disability associated with extremities that have sustained other injuries. Relatively little progress has been made, since the treatment of segmental loss PNIs with cable autografts that are currently the gold standard for repair has slow and incomplete (often non-existent) functional recovery. Viable peripheral nerve allografts (PNAs) to repair segmental-loss PNIs have not been experimentally or clinically useful due to their immunological rejection, Wallerian degeneration (WD) of anucleate donor graft and distal host axons, and slow regeneration of host axons, leading to delayed re-innervation and producing atrophy or degeneration of distal target tissues. However, two significant advances have recently been made using viable PNAs to repair segmental-loss PNIs: (1) hydrogel release of Treg cells that reduce the immunological response and (2) PEG-fusion of donor PNAs that reduce the immune response, reduce and/or suppress much WD, immediately restore axonal conduction across the donor graft and re-innervate many target tissues, and restore much voluntary behavioral functions within weeks, sometimes to levels approaching that of uninjured nerves. We review the rather sparse cellular/biochemical data for rejection of conventional PNAs and their acceptance following Treg hydrogel and PEG-fusion of PNAs, as well as cellular and systemic data for their acceptance and remarkable behavioral recovery in the absence of tissue matching or immune suppression. We also review typical and atypical characteristics of PNAs compared with other types of tissue or organ allografts, problems and potential solutions for PNA use and storage, clinical implications and commercial availability of PNAs, and future possibilities for PNAs to repair segmental-loss PNIs.
Collapse
Affiliation(s)
- George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, WY, 82072, USA
| | - Cameron L Ghergherehchi
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tyler A Smith
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
14
|
Ławkowska K, Rosenbaum C, Petrasz P, Kluth L, Koper K, Drewa T, Pokrywczynska M, Adamowicz J. Tissue engineering in reconstructive urology-The current status and critical insights to set future directions-critical review. Front Bioeng Biotechnol 2022; 10:1040987. [PMID: 36950181 PMCID: PMC10026841 DOI: 10.3389/fbioe.2022.1040987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 03/05/2023] Open
Abstract
Advanced techniques of reconstructive urology are gradually reaching their limits in terms of their ability to restore urinary tract function and patients' quality of life. A tissue engineering-based approach to urinary tract reconstruction, utilizing cells and biomaterials, offers an opportunity to overcome current limitations. Although tissue engineering studies have been heralding the imminent introduction of this method into clinics for over a decade, tissue engineering is only marginally applied. In this review, we discuss the role of tissue engineering in reconstructive urology and try to answer the question of why such a promising technology has not proven its clinical usability so far.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Clemens Rosenbaum
- Department of Urology Asklepios Klinik Barmbek Germany, Urologist in Hamburg, Hamburg, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Piotr Petrasz
- Department of Urology Voivodeship Hospital Gorzów Wielkopolski, Gorzów Wielkopolski, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Luis Kluth
- Department of Urology, University Medical Center Frankfurt, Frankfurt am Main, Germany
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Marta Pokrywczynska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- *Correspondence: Karolina Ławkowska, ; Clemens Rosenbaum, ; Piotr Petrasz, ; Krzysztof Koper, ; Luis Kluth, ; Tomasz Drewa, ; Marta Pokrywczynska, ; Jan Adamowicz,
| | | |
Collapse
|
15
|
Poongodi R, Chen YL, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair. Int J Mol Sci 2021; 22:13347. [PMID: 34948144 PMCID: PMC8707664 DOI: 10.3390/ijms222413347] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ying-Lun Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Jen-Kun Cheng
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
16
|
Wei Z, Hong FF, Cao Z, Zhao SY, Chen L. In Situ Fabrication of Nerve Growth Factor Encapsulated Chitosan Nanoparticles in Oxidized Bacterial Nanocellulose for Rat Sciatic Nerve Regeneration. Biomacromolecules 2021; 22:4988-4999. [PMID: 34724615 DOI: 10.1021/acs.biomac.1c00947] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autograft is currently the gold standard in the clinical treatment of peripheral nerve injury (PNI), which, however, is limited by the availability of a donor nerve and secondary injuries. Nerve guidance conduits (NGC) provide a suitable microenvironment to promote the regeneration of injured nerves, which could be the substitutes for autografts. In this study, nerve growth factor (NGF) encapsulated chitosan nanoparticles (CSNPs) were first constructed in situ in an oxidized bacterial cellulose (OBC) conduit using the ion gel method after the introduction of a CS/NGF solution under pressure to enable a sustainable release of NGF. A novel NGF@CSNPs/OBC nanocomposite with antibacterial activity, biodegradability, and porous microstructure was successfully developed. In vitro experiments showed that the nanocomposite promoted the adhesion and proliferation of Schwann cells. When the nanocomposite was applied as NGC to repair the sciatic nerve defect of rats, a successful repair of the 10 mm nerve defect was observed after 4 weeks. At week 9, the diameter, morphology, histology, and functional recovery of the regenerated nerve was comparable to the autografts, indicating that the NGC effectively promoted the regeneration and function recovery of the nerve. In summary, the NGF@CSNPs/OBC as a novel NGC provides great potential in the treatment of PNI.
Collapse
Affiliation(s)
- Zhao Wei
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China.,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Feng F Hong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China.,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.,Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, Shanghai, 201620, China
| | - Zhangjun Cao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China.,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China
| | - Lin Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Ren Min Road, Shanghai, 201620, China.,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Yang H, Li Q, Li L, Chen S, Zhao Y, Hu Y, Wang L, Lan X, Zhong L, Lu D. Gastrodin modified polyurethane conduit promotes nerve repair via optimizing Schwann cells function. Bioact Mater 2021; 8:355-367. [PMID: 34541406 PMCID: PMC8427216 DOI: 10.1016/j.bioactmat.2021.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve regeneration and functional recovery remain a major clinical challenge. Nerve guidance conduit (NGC) that can regulate biological behavior of Schwann cells (SCs) and facilitate axonal regeneration through microenvironmental remodeling is beneficial for nerve regeneration and functional recovery. Gastrodin, a main constituent of a Chinese traditional herbal medicine, has been known to display several biological and pharmacological properties, especially antioxidative, anti‐inflammatory and nerve regeneration. Herein, polyurethane (PU) NGCs modified by different weight ratio of Gastrodin (0, 1 and 5 wt%) were designed for sequential and sustainable drug release, that created a favorable microenvironment for nerve regeneration. The scaffold showed suitable pore structure and biocompatibility in vitro, and evidently promoted morphological and functional recovery of regenerated sciatic nerves in vivo. Compared to the PU and 1%Gastrodin/PU scaffolds, the 5%Gastrodin/PU significantly enhanced the proliferation, migration and myelination of SCs and up-regulated expression of neurotrophic factors, as well as induction of the differentiation of PC12 cells. Interestingly, the obvious anti-inflammatory response was observed in 5%Gastrodin/PU by reduced expression of TNF-α and iNOS, which also evidenced by the few fibrous capsule formation in the subcutaneous implantation. Such a construct presented a similarity to autograft in vivo repairing a 10 mm sciatic nerve defects. It was able to not only boost the regenerated area of nerve and microvascular network, but also facilitate functional axons growth and remyelination, leading to highly improved functional restoration. These findings demonstrate that the 5%Gastrodin/PU NGC efficiently promotes nerve regeneration, indicating their potential for use in peripheral nerve regeneration applications. NGC with a sustained release of Gastrodin creates a favorable microenvironment. . Gastrodin/PU has superior anti-inflammatory effects. SCs-mediated tissue engineering strategies effectively drive myelination. 5Gastrodin/PU boosts nerve regeneration and functional restoration in vivo.
Collapse
Affiliation(s)
- Hongcai Yang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Shaochun Chen
- The School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Yu Zhao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Yingrui Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Lu Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Xiaoqian Lan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, China
| | - Lianmei Zhong
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650500, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
18
|
Shlomy I, Divald S, Tadmor K, Leichtmann-Bardoogo Y, Arami A, Maoz BM. Restoring Tactile Sensation Using a Triboelectric Nanogenerator. ACS NANO 2021; 15:11087-11098. [PMID: 34137606 PMCID: PMC8320237 DOI: 10.1021/acsnano.0c10141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/08/2021] [Indexed: 05/28/2023]
Abstract
Loss of tactile sensation is a common occurrence in patients with traumatic peripheral nerve injury or soft tissue loss, but as yet, solutions for restoring such sensation are limited. Implanted neuro-prosthetics are a promising direction for tactile sensory restoration, but available technologies have substantial shortcomings, including complexity of use and of production and the need for an external power supply. In this work, we propose, fabricate, and demonstrate the use of a triboelectric nanogenerator (TENG) as a relatively simple, self-powered, biocompatible, sensitive, and flexible device for restoring tactile sensation. This integrated tactile TENG (TENG-IT) device is implanted under the skin and translates tactile pressure into electrical potential, which it relays via cuff electrodes to healthy sensory nerves, thereby stimulating them, to mimic tactile sensation. We show that the device elicits electrical activity in sensory neurons in vitro, and that the extent of this activity is dependent on the level of tactile pressure applied to the device. We subsequently demonstrate the TENG-IT in vivo, showing that it provides tactile sensation capabilities (as measured by a von Frey test) to rats in which sensation in the hindfoot was blocked through transection of the distal tibial nerve. These findings point to the substantial potential of self-powered TENG-based implanted devices as a means of restoring tactile sensation.
Collapse
Affiliation(s)
- Iftach Shlomy
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shay Divald
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Keshet Tadmor
- Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | - Amir Arami
- Hand
Surgery Department, Microsurgery and Peripheral Nerve Surgery Unit, Sheba Medical Center, Tel Hashomer, 52621, Israel
- Sackler
School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ben M. Maoz
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
19
|
Castro VO, Merlini C. Aligned electrospun nerve conduits with electrical activity as a strategy for peripheral nerve regeneration. Artif Organs 2021; 45:813-818. [PMID: 33590503 DOI: 10.1111/aor.13942] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Peripheral nerve injuries affect the quality of life of people worldwide. Despite advances in materials and processing in recent decades, nerve repair remains a challenge. The autograft is considered the most effective nerve repair in cases of serious injuries in which direct suture is not applied. However, the autograft causes the loss of functionality of the donor site, and additionally, there is a limited availability of donor nerves. Nerve conduits emerge as an alternative to the autograft and nowadays some conduits are available for clinical use. Nevertheless, they still need to be optimized for better functional nerve response. This review proposes to analyze the use of aligned electrospun nerve conduits with electrical activity as a strategy to enhance a satisfactory nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Vanessa Oliveira Castro
- Mechanical Engineering Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Claudia Merlini
- Mechanical Engineering Department, Federal University of Santa Catarina, Florianópolis, Brazil.,Materials Engineering Special Coordinating, Federal University of Santa Catarina, Blumenau, Brazil
| |
Collapse
|
20
|
Saghazadeh A, Rezaei N. Biosensing surfaces and therapeutic biomaterials for the central nervous system in COVID-19. EMERGENT MATERIALS 2021; 4:293-312. [PMID: 33718777 PMCID: PMC7944718 DOI: 10.1007/s42247-021-00192-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 can affect the central nervous system (CNS) indirectly by inflammatory mechanisms and even directly enter the CNS. Thereby, COVID-19 can evoke a range of neurosensory conditions belonging to infectious, inflammatory, demyelinating, and degenerative classes. A broad range of non-specific options, including anti-viral agents and anti-inflammatory protocols, is available with varying therapeutic. Due to the high mortality and morbidity in COVID-19-related brain damage, some changes to these general protocols, however, are necessary for ensuring the delivery of therapeutic(s) to the specific components of the CNS to meet their specific requirements. The biomaterials approach permits crossing the blood-brain barrier (BBB) and drug delivery in a more accurate and sustained manner. Beyond the BBB, drugs can protect neural cells, stimulate endogenous stem cells, and induce plasticity more effectively. Biomaterials for cell delivery exist, providing an efficient tool to improve cell retention, survival, differentiation, and integration. This paper will review the potentials of the biomaterials approach for the damaged CNS in COVID-19. It mainly includes biomaterials for promoting synaptic plasticity and modulation of inflammation in the post-stroke brain, extracellular vesicles, exosomes, and conductive biomaterials to facilitate neural regeneration, and artificial nerve conduits for treatment of neuropathies. Also, biosensing surfaces applicable to the first sensory interface between the host and the virus that encourage the generation of accelerated anti-viral immunity theoretically offer hope in solving COVID-19.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
21
|
Peripheral Nerve Regeneration Using a Nerve Conduit with Olfactory Ensheathing Cells in a Rat Model. Tissue Eng Regen Med 2021; 18:453-465. [PMID: 33515167 DOI: 10.1007/s13770-020-00326-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Autologous nerve grafts are the gold standard treatment for peripheral nerve injury treatment. However, this procedure cannot avoid sacrificing other nerves as a major limitation. The aim of the present study was to evaluate the potential of olfactory ensheathing cells (OECs) embedded in a nerve conduit. METHODS A 10-mm segment of the sciatic nerve was resected in 21 rats, and the nerve injury was repaired with one of the following (n = 7 per group): autologous nerve graft, poly (ε-caprolactone) (PCL) conduit and OECs, and PCL conduit only. The consequent effect on nerve regeneration was measured based on the nerve conduction velocity (NCV), amplitude of the compound muscle action potential (ACMAP), wet muscle weight, histomorphometric analysis, and nerve density quantification. RESULTS Histomorphometric analysis revealed nerve regeneration and angiogenesis in all groups. However, there were significant differences (p < 0.05) in the ACMAP nerve regeneration rate of the gastrocnemius and tibialis anterior muscles between the autologous graft (37.9 ± 14.3% and 39.1% ± 20.4%) and PCL only (17.8 ± 8.6% and 13.6 ± 5.8%) groups, and between the PCL only and PCL + OECs (46.3 ± 20.0% and 34.5 ± 14.6%) groups, with no differences between the autologous nerve and PCL + OEC groups (p > 0.05). No significant results in NCV, wet muscle weight, and nerve density quantification were observed among the 3 groups. CONCLUSION A PCL conduit with OECs enhances the regeneration of injured peripheral nerves, offering a good alternative to autologous nerve grafts.
Collapse
|
22
|
Gregory H, Phillips JB. Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers? Neurochem Int 2020; 143:104953. [PMID: 33388359 DOI: 10.1016/j.neuint.2020.104953] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
The efficacious repair of severe peripheral nerve injuries is currently an unmet clinical need, and biomaterial constructs offer a promising approach to help promote nerve regeneration. Current research focuses on the development of more sophisticated constructs with complex architecture and the addition of regenerative agents to encourage timely reinnervation and promote functional recovery. This review surveyed the present landscape of nerve repair construct literature with a focus on six selected materials that are frequently encountered in this application: the natural proteins collagen, chitosan, and silk, and the synthetic polymers poly-ε-caprolactone (PCL), poly-lactic-co-glycolic acid (PLGA) and poly-glycolic acid (PGA). This review also investigated the use of cell therapy in nerve repair constructs, and in all instances concentrated on publications reporting constructs developed and tested in vivo in the last five years (2015-2020). Across the selected literature, the popularity of natural proteins and synthetic polymers appears to be broadly equivalent, with a similar number of studies reporting successful outcomes in vivo. Both material types are also utilised as vehicles for cell therapy, which has much potential to improve the results of nerve bridging for treating longer gaps.
Collapse
Affiliation(s)
- Holly Gregory
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, London, UK.
| | - James B Phillips
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
23
|
He L, Xiao Q, Zhao Y, Li J, Reddy S, Shi X, Su X, Chiu K, Ramakrishna S. Engineering an Injectable Electroactive Nanohybrid Hydrogel for Boosting Peripheral Nerve Growth and Myelination in Combination with Electrical Stimulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53150-53163. [PMID: 33179500 DOI: 10.1021/acsami.0c16885] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrical stimulation (ES) can be used to manipulate recovery after peripheral nerve injuries. Although biomaterial-based strategies have already been implemented to gain momentum for ES and engineer permissive microenvironments for neural regeneration, the development of biomaterials for specific stimuli-responsive modulation of neural cell properties remains a challenge. Herein, we homogeneously incorporate pristine carbon nanotubes into a functional self-assembling peptide to prepare a hybrid hydrogel with good injectability and conductivity. Two-dimensional (on the surface) and three-dimensional (within the hybrid hydrogel) culturing experiments demonstrate that ES promotes axon outgrowth and Schwann cell (SC) migration away from dorsal root ganglia spheres, further revealing that ES-enhanced interactions between SCs and axons result in improved myelination. Thus, our study not only advances the development of tailor-made materials but also provides useful insights into comprehensive approaches for promoting nerve growth and presents a practical strategy of repairing peripheral nerve injuries.
Collapse
Affiliation(s)
- Liumin He
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Qiao Xiao
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yuyuan Zhao
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jun Li
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Sathish Reddy
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xueshuang Shi
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xin Su
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Kin Chiu
- Department of Ophthalmology, Faculty of Medicine, The University of Hong Kong, Hongkong, China
| | - Seeram Ramakrishna
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
24
|
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, Guinea GV, Perez-Rigueiro J, Gonzalez-Nieto D, Panetsos F. Biomimetic Approaches for Separated Regeneration of Sensory and Motor Fibers in Amputee People: Necessary Conditions for Functional Integration of Sensory-Motor Prostheses With the Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:584823. [PMID: 33224936 PMCID: PMC7670549 DOI: 10.3389/fbioe.2020.584823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.
Collapse
Affiliation(s)
- Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Irune Orueta-Zenarruzabeitia
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gustavo Víctor Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - José Perez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
25
|
Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2020; 8:554257. [PMID: 33178670 PMCID: PMC7596179 DOI: 10.3389/fbioe.2020.554257] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury treatment is a relevant problem because of nerve lesion high incidence and because of unsatisfactory regeneration after severe injuries, thus resulting in a reduced patient's life quality. To repair severe nerve injuries characterized by substance loss and to improve the regeneration outcome at both motor and sensory level, different strategies have been investigated. Although autograft remains the gold standard technique, a growing number of research articles concerning nerve conduit use has been reported in the last years. Nerve conduits aim to overcome autograft disadvantages, but they must satisfy some requirements to be suitable for nerve repair. A universal ideal conduit does not exist, since conduit properties have to be evaluated case by case; nevertheless, because of their high biocompatibility and biodegradability, natural-based biomaterials have great potentiality to be used to produce nerve guides. Although they share many characteristics with synthetic biomaterials, natural-based biomaterials should also be preferable because of their extraction sources; indeed, these biomaterials are obtained from different renewable sources or food waste, thus reducing environmental impact and enhancing sustainability in comparison to synthetic ones. This review reports the strengths and weaknesses of natural-based biomaterials used for manufacturing peripheral nerve conduits, analyzing the interactions between natural-based biomaterials and biological environment. Particular attention was paid to the description of the preclinical outcome of nerve regeneration in injury repaired with the different natural-based conduits.
Collapse
Affiliation(s)
- Benedetta E. Fornasari
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
26
|
Xie Y, Schneider KJ, Ali SA, Hogikyan ND, Feldman EL, Brenner MJ. Current landscape in motoneuron regeneration and reconstruction for motor cranial nerve injuries. Neural Regen Res 2020; 15:1639-1649. [PMID: 32209763 PMCID: PMC7437597 DOI: 10.4103/1673-5374.276325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
The intricate anatomy and physiology of cranial nerves have inspired clinicians and scientists to study their roles in the nervous system. Damage to motor cranial nerves may result from a variety of organic or iatrogenic insults and causes devastating functional impairment and disfigurement. Surgical innovations directed towards restoring function to injured motor cranial nerves and their associated organs have evolved to include nerve repair, grafting, substitution, and muscle transposition. In parallel with this progress, research on tissue-engineered constructs, development of bioelectrical interfaces, and modulation of the regenerative milieu through cellular, immunomodulatory, or neurotrophic mechanisms has proliferated to enhance the available repertoire of clinically applicable reconstructive options. Despite these advances, patients continue to suffer from functional limitations relating to inadequate cranial nerve regeneration, aberrant reinnervation, or incomplete recovery of neuromuscular function. These shortfalls have profound quality of life ramifications and provide an impetus to further elucidate mechanisms underlying cranial nerve denervation and to improve repair. In this review, we summarize the literature on reconstruction and regeneration of motor cranial nerves following various injury patterns. We focus on seven cranial nerves with predominantly efferent functions and highlight shared patterns of injuries and clinical manifestations. We also present an overview of the existing reconstructive approaches, from facial reanimation, laryngeal reinnervation, to variations of interposition nerve grafts for reconstruction. We discuss ongoing endeavors to promote nerve regeneration and to suppress aberrant reinnervation and the development of synkinesis. Insights from these studies will shed light on recent progress and new horizons in understanding the biomechanics of peripheral nerve neurobiology, with emphasis on promising strategies for optimizing neural regeneration and identifying future directions in the field of motor cranial neuron research.
Collapse
Affiliation(s)
- Yanjun Xie
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kevin J. Schneider
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Syed A. Ali
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Norman D. Hogikyan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael J. Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020; 15:1421-1431. [PMID: 31997801 PMCID: PMC7059590 DOI: 10.4103/1673-5374.271668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Surgical treatment of peripheral nerve injuries is still a major challenge in human clinic. Up to now, none of the well-developed microsurgical treatment options is able to guarantee a complete restoration of nerve function. This restriction is also effective for novel clinically approved artificial nerve guides. In this review, we compare surgical repair techniques primarily for digital nerve injuries reported with relatively high prevalence to be valuable attempts in clinical digital nerve repair and point out their advantages and shortcomings. We furthermore discuss the use of artificial nerve grafts with a focus on chitosan-based nerve guides, for which our own studies contributed to their approval for clinical use. In the second part of this review, very recent future perspectives for the enhancement of tubular (commonly hollow) nerve guides are discussed in terms of their clinical translatability and ability to form three-dimensional constructs that biomimick the natural nerve structure. This includes materials that have already shown their beneficial potential in in vivo studies like fibrous intraluminal guidance structures, hydrogels, growth factors, and approaches of cell transplantation. Additionally, we highlight upcoming future perspectives comprising co-application of stem cell secretome. From our overview, we conclude that already simple attempts are highly effective to increase the regeneration supporting properties of nerve guides in experimental studies. But for bringing nerve repair with bioartificial nerve grafts to the next level, e.g. repair of defects > 3 cm in human patients, more complex intraluminal guidance structures such as innovatively manufactured hydrogels and likely supplementation of stem cells or their secretome for therapeutic purposes may represent promising future perspectives.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| |
Collapse
|
28
|
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:259-290. [PMID: 30896342 DOI: 10.1089/ten.teb.2018.0325] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPACT STATEMENT The use of autologous tissue in the reconstruction of tissue defects has been the gold standard. However, current standards still face many limitations and complications. Improving patient outcomes and quality of life by addressing these barriers remain imperative. This article provides historical perspective, covers the major limitations of current standards of care, and reviews recent advances and future prospects in applied bioengineering in the context of tissue reconstruction, replacement, and regeneration.
Collapse
Affiliation(s)
- Juan M Colazo
- 1Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,2Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian C Evans
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Angel F Farinas
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salam Al-Kassis
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wesley P Thayer
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
29
|
Molotkovets VY, Medvediev VV, Korsak AV, Chaikovsky YB, Marynsky GS, Tsymbaliuk VI. Restoration of the Integrity of a Transected Peripheral Nerve with the Use of an Electric Welding Technology. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09848-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3524-3539. [PMID: 31437011 DOI: 10.1080/21691401.2019.1639723] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nervous system is known as a crucial part of the body and derangement in this system can cause potentially lethal consequences or serious side effects. Unfortunately, the nervous system is unable to rehabilitate damaged regions following seriously debilitating disorders such as stroke, spinal cord injury and brain trauma which, in turn, lead to the reduction of quality of life for the patient. Major challenges in restoring the damaged nervous system are low regenerative capacity and the complexity of physiology system. Synthetic polymeric biomaterials with outstanding properties such as excellent biocompatibility and non-immunogenicity find a wide range of applications in biomedical fields especially neural implants and nerve tissue engineering scaffolds. Despite these advancements, tailoring polymeric biomaterials for design of a desired scaffold is fundamental issue that needs tremendous attention to promote the therapeutic benefits and minimize adverse effects. This review aims to (i) describe the nervous system and related injuries. Then, (ii) nerve tissue engineering strategies are discussed and (iii) physiochemical properties of synthetic polymeric biomaterials systematically highlighted. Moreover, tailoring synthetic polymeric biomaterials for nerve tissue engineering is reviewed.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science , Tehran , Iran
| | - Hanif Kazerooni
- Biotechnology Group, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran
| | - Hossein Hassanpoor
- Department of Cognitive Science, Dade Pardazi, Shenakht Mehvar, Atynegar (DSA) Institute , Tehran , Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
31
|
Li T, Sui Z, Matsuno A, Ten H, Oyama K, Ito A, Jiang H, Ren X, Javed R, Zhang L, Ao Q. Fabrication and Evaluation of a Xenogeneic Decellularized Nerve-Derived Material: Preclinical Studies of a New Strategy for Nerve Repair. Neurotherapeutics 2020; 17:356-370. [PMID: 31758411 PMCID: PMC7007487 DOI: 10.1007/s13311-019-00794-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The repair and regeneration of transected peripheral nerves is an important area of clinical research, and the adhesion of anastomosis sites to surrounding tissues is a vital factor affecting the quality of nerve recovery after nerve anastomosis. This study involves the generation of a novel nerve repair membrane derived from decellularized porcine nerves using a unique, innovative technique. The decellularized nerve matrix was verified to be effective in eliminating cellular components, and it still retained some neural extracellular matrix components and bioactive molecules (collagens, glycosaminoglycans, laminin, fibronectin, TGF-β, etc.), which were mainly determined by proteomic analysis, histochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. Cytotoxicity, intracutaneous reactivity, hemolysis, and cell affinity analyses were conducted to confirm the biosecurity of the nerve repair membrane. The in vivo functionality was assessed in a rat sciatic nerve transection model, and indices of functional nerve recovery, including the measurement of the claw-spread reflex, nerve anastomosis site adhesion, electrophysiological properties, and the number of regenerated nerve fibers, were evaluated. The results indicated that the nerve repair membrane could effectively prevent adhesion between the nerve anastomosis sites and the surrounding tissues and enhance nerve regeneration, which could be attributed to its various bioactive components. In conclusion, the novel nerve repair membrane derived from xenogeneic decellularized nerves described in this study shows great potential auxiliary clinical treatment for peripheral nerve injuries.
Collapse
Affiliation(s)
- Ting Li
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Zhigang Sui
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Akira Matsuno
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Hirotomo Ten
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Judo Physical Therapy, Faculty of Health, Teikyo Heisei University, Tokyo, Japan
| | - Kenichi Oyama
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Akihiro Ito
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Hong Jiang
- Shandong Junxiu Biotechnology Company, Limited, Yantai, China
| | - Xiaomin Ren
- Shandong Junxiu Biotechnology Company, Limited, Yantai, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.
- Institute of Regulatory Science for Medical Devices, Engineering Research Center in Biomaterials, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Dietzmeyer N, Huang Z, Schüning T, Rochkind S, Almog M, Nevo Z, Lieke T, Kankowski S, Haastert-Talini K. In Vivo and In Vitro Evaluation of a Novel Hyaluronic Acid-Laminin Hydrogel as Luminal Filler and Carrier System for Genetically Engineered Schwann Cells in Critical Gap Length Tubular Peripheral Nerve Graft in Rats. Cell Transplant 2020; 29:963689720910095. [PMID: 32174148 PMCID: PMC7444218 DOI: 10.1177/0963689720910095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
In the current study we investigated the suitability of a novel hyaluronic acid-laminin hydrogel (HAL) as luminal filler and carrier system for co-transplanted cells within a composite chitosan-based nerve graft (CNG) in a rat critical nerve defect model. The HAL was meant to improve the performance of our artificial nerve guides by giving additional structural and molecular support to regrowing axons. We filled hollow CNGs or two-chambered nerve guides with an inserted longitudinal chitosan film (CNG[F]s), with cell-free HAL or cell-free HA or additionally suspended either naïve Schwann cells (SCs) or fibroblast growth factor 2-overexpressing Schwann cells (FGF2-SCs) within the gels. We subjected female Lewis rats to immediate 15 mm sciatic nerve gap reconstruction and comprehensively compared axonal and functional regeneration parameters with the gold standard autologous nerve graft (ANG) repair. Motor recovery was surveyed by means of electrodiagnostic measurements at 60, 90, and 120 days post-reconstruction. Upon explantation after 120 days, lower limb target muscles were harvested for calculation of muscle-weight ratios. Semi-thin cross-sections of nerve segments distal to the grafts were evaluated histomorphometrically. After 120 days of recovery, only ANG treatment led to full motor recovery. Surprisingly, regeneration outcomes revealed no regeneration-supportive effect of HAL alone and even an impairment of peripheral nerve regeneration when combined with SCs and FGF2-SCs. Furthermore, complementary in vitro studies, conducted to elucidate the reason for this unexpected negative result, revealed that SCs and FGF2-SCs suspended within the hydrogel relatively downregulated gene expression of regeneration-supporting neurotrophic factors. In conclusion, cell-free HAL in its current formulation did not qualify for optimizing regeneration outcome through CNG[F]s. In addition, we demonstrate that our HAL, when used as a carrier system for co-transplanted SCs, changed their gene expression profile and deteriorated the pro-regenerative milieu within the nerve guides.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Tobias Schüning
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Shimon Rochkind
- Research Center for Nerve Reconstruction, Department of
Neurosurgery, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv,
Israel
| | - Mara Almog
- Research Center for Nerve Reconstruction, Department of
Neurosurgery, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv,
Israel
| | - Zvi Nevo
- Department of Human Molecular Genetics and Biochemistry, Sackler
School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Prof. Nevo passed away
| | - Thorsten Lieke
- Transplant Laboratory, Department of General-, Visceral-, and
Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
33
|
Zhang Z, Li X, Li Z, Bai Y, Liao G, Pan J, Zhang C. Collagen/nano-sized β-tricalcium phosphate conduits combined with collagen filaments and nerve growth factor promote facial nerve regeneration in miniature swine: an in vivo study. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:472-478. [DOI: 10.1016/j.oooo.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
34
|
Wu S, Kuss M, Qi D, Hong J, Wang HJ, Zhang W, Chen S, Ni S, Duan B. Development of Cryogel-Based Guidance Conduit for Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:4864-4871. [DOI: 10.1021/acsabm.9b00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao 266071, China
| | | | | | | | | | | | - Shaojuan Chen
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao 266071, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan 250100, China
| | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
35
|
Lotfi L, Khakbiz M, Moosazadeh Moghaddam M, Bonakdar S. A biomaterials approach to Schwann cell development in neural tissue engineering. J Biomed Mater Res A 2019; 107:2425-2446. [DOI: 10.1002/jbm.a.36749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Lotfi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of Tehran Tehran Iran
| | - Mehrdad Khakbiz
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of Tehran Tehran Iran
| | | | - Shahin Bonakdar
- National Cell Bank DepartmentPasteur Institute of Iran Tehran Iran
| |
Collapse
|
36
|
Teleanu RI, Gherasim O, Gherasim TG, Grumezescu V, Grumezescu AM, Teleanu DM. Nanomaterial-Based Approaches for Neural Regeneration. Pharmaceutics 2019; 11:E266. [PMID: 31181719 PMCID: PMC6630326 DOI: 10.3390/pharmaceutics11060266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanical, thermal, chemical, or ischemic injury of the central or peripheral nervous system results in neuron loss, neurite damage, and/or neuronal dysfunction, almost always accompanied by sensorimotor impairment which alters the patient's life quality. The regenerative strategies for the injured nervous system are currently limited and mainly allow partial functional recovery, so it is necessary to develop new and effective approaches for nervous tissue regenerative therapy. Nanomaterials based on inorganic or organic and composite or hybrid compounds with tunable physicochemical properties and functionality proved beneficial for the transport and delivery/release of various neuroregenerative-relevant biomolecules or cells. Within the following paragraphs, we will emphasize that nanomaterial-based strategies (including nanosized and nanostructured biomaterials) represent a promising alternative towards repairing and regenerating the injured nervous system.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.
| | - Tudor George Gherasim
- National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania.
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
37
|
Santos Roballo KC, Dhungana S, Jiang Z, Oakey J, Bushman JS. Localized delivery of immunosuppressive regulatory T cells to peripheral nerve allografts promotes regeneration of branched segmental defects. Biomaterials 2019; 209:1-9. [PMID: 31022556 DOI: 10.1016/j.biomaterials.2019.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Segmental injuries to peripheral nerves (PNs) too often result in lifelong disability or pain syndromes due to a lack of restorative treatment options. For injuries beyond a critical size, a bridging device must be inserted to direct regeneration. PN allografts from immunologically incompatible donors are highly effective bridging devices but are not a regular clinical option because of the expense and health risks of systemic immunosuppression (ISN). We have developed a method to deliver a single administration of ISN localized around a PN allograft that circumvents the risks of systemic ISN. Localized ISN was provided by regulatory T cells (Tregs), a potently immunosuppressive cell type, that was delivered around a PN allograft with a poly(ethylene glycol) norbornene (PEGNB) degradable hydrogel. Tregs are released from the hydrogel over 14 d, infiltrate the graft, suppress the host immune response and facilitate regeneration of the recipient rats equal to the autograft control. Furthermore, this method was effective in a segmental PN defect that included a branch point, for which there currently exist no treatment options. These results show that localized delivery of immunosuppressive cells for PN allografts is an effective new strategy for treating segmental PN defects that can also be used to regenerate complex nerve structures.
Collapse
Affiliation(s)
| | - Subash Dhungana
- University of Wyoming, School of Pharmacy, Laramie, WY, 82071, USA
| | - Zhongliang Jiang
- University of Wyoming, Department of Chemical Engineering, Laramie, WY, 82071, USA
| | - John Oakey
- University of Wyoming, Department of Chemical Engineering, Laramie, WY, 82071, USA
| | - Jared S Bushman
- University of Wyoming, School of Pharmacy, Laramie, WY, 82071, USA.
| |
Collapse
|
38
|
Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci 2019; 221:99-108. [PMID: 30735735 DOI: 10.1016/j.lfs.2019.01.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/23/2022]
Abstract
Peripheral nerve injury (PNI) is a common life-changing disability of peripheral nervous system with significant socioeconomic consequences. Conventional therapeutic approaches for PNI have several drawbacks such as need to autologous nerve scarifying, surplus surgery, and difficult accessibility to donor nerve; therefore, other therapeutic strategies such as mesenchymal stem cells (MSCs) therapy are getting more interesting. MSCs have been proved to be safe and efficient in numerous degenerative diseases of central and peripheral nervous systems. In this paper, we review novel biotechnological advancements in treating PNI using MSCs.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Nikkhah
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Kang WB, Chen YJ, Lu DY, Yan JZ. Folic acid contributes to peripheral nerve injury repair by promoting Schwann cell proliferation, migration, and secretion of nerve growth factor. Neural Regen Res 2019; 14:132-139. [PMID: 30531087 PMCID: PMC6263007 DOI: 10.4103/1673-5374.243718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
After peripheral nerve injury, intraperitoneal injection of folic acid improves axon quantity, increases axon density and improves electromyography results. However, the mechanisms for this remain unclear. This study explored whether folic acid promotes peripheral nerve injury repair by affecting Schwann cell function. Primary Schwann cells were obtained from rats by in vitro separation and culture. Cell proliferation, assayed using the Cell Counting Kit-8 assay, was higher in cells cultured for 72 hours with 100 mg/L folic acid compared with the control group. Cell proliferation was also higher in the 50, 100, 150, and 200 mg/L folic acid groups compared with the control group after culture for 96 hours. Proliferation was markedly higher in the 100 mg/L folic acid group compared with the 50 mg/L folic acid group and the 40 ng/L nerve growth factor group. In Transwell assays, the number of migrated Schwann cells dramatically increased after culture with 100 and 150 mg/L folic acid compared with the control group. In nerve growth factor enzyme-linked immunosorbent assays, treatment of Schwann cell cultures with 50, 100, and 150 mg/L folic acid increased levels of nerve growth factor in the culture medium compared with the control group at 3 days. The nerve growth factor concentration of Schwann cell cultures treated with 100 mg/L folic acid group was remarkably higher than that in the 50 and 150 mg/L folic acid groups at 3 days. Nerve growth factor concentration in the 10, 50, and 100 mg/L folic acid groups was higher than that in the control group at 7 days. The nerve growth factor concentration in the 50 mg/L folic acid group was remarkably higher than that in the 10 and 100 mg/L folic acid groups at 7 days. In vivo, 80 μg/kg folic acid was intraperitoneally administrated for 7 consecutive days after sciatic nerve injury. Immunohistochemical staining showed that the number of Schwann cells in the folic acid group was greater than that in the control group. We suggest that folic acid may play a role in improving the repair of peripheral nerve injury by promoting the proliferation and migration of Schwann cells and the secretion of nerve growth factors.
Collapse
Affiliation(s)
- Wei-Bo Kang
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Jie Chen
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Du-Yi Lu
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia-Zhi Yan
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Yang Y, Zhang Y, Chai R, Gu Z. Designs of Biomaterials and Microenvironments for Neuroengineering. Neural Plast 2018; 2018:1021969. [PMID: 30627148 PMCID: PMC6304813 DOI: 10.1155/2018/1021969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023] Open
Abstract
Recent clinical research on neuroengineering is primarily focused on biocompatible materials, which can be used to provide electroactive and topological cues, regulate the microenvironment, and perform other functions. Novel biomaterials for neuroengineering have been received much attention in the field of research, including graphene, photonic crystals, and organ-on-a-chip. Graphene, which has the advantage of high mechanical strength and chemical stability with the unique electrochemical performance for electrical signal detection and transmission, has significant potential as a conductive scaffolding in the field of medicine. Photonic crystal materials, known as a novel concept in nerve substrates, have provided a new avenue for neuroengineering research because of their unique ordered structure and spectral attributes. The "organ-on-a-chip" systems have shown significant prospects for the developments of the solutions to nerve regeneration by mimicking the microenvironment of nerve tissue. This paper presents a review of current progress in the designs of biomaterials and microenvironments and provides case studies in developing nerve system stents upon these biomaterials. In addition, we compose a conductive patterned compounded biomaterial, which could mimic neuronal microenvironment for neuroengineering by concentrating the advantage of such biomaterials.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 211189, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
41
|
Riccio M, Marchesini A, Pugliese P, Francesco F. Nerve repair and regeneration: Biological tubulization limits and future perspectives. J Cell Physiol 2018; 234:3362-3375. [DOI: 10.1002/jcp.27299] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Andrea Marchesini
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Pierfrancesco Pugliese
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| | - Francesco Francesco
- Department of Reconstructive Surgery and Hand Surgery AOU “Ospedali Riuniti,” Ancona Italy
| |
Collapse
|
42
|
Ghafaralahi S, Ebrahimian-Hosseinabadi M, Zargar Kharazi A. Poly(glycerol-sebacate)/poly(caprolactone)/graphene nanocomposites for nerve tissue engineering. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518793912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, mechanical, electrical, physical, and biological properties of polymeric matrixes comprising poly(glycerol-sebacate) (PGS) and poly(caprolactone) (PCL) with various weight ratio of PGS:PCL (1:3 and 1:1) were evaluated in order to apply as nerve guidance conduit. For this purpose, synthetic PGS pre-polymer was acquired using poly-condensation of glycerol and sebacic acid and characterized by attenuated total reflection-fourier transformed infrared (ATR-FTIR) and X-ray diffraction (XRD) spectroscopies. Furthermore, the effect of 1 wt% graphene (Gr) Nano sheets incorporation as filler, was investigated. Blending PGS with PCL significantly improves the hydrophilicity of the samples and improves cells attachment; however, their mechanical properties decreased dramatically. Presence of Gr within the polymeric matrix, significantly increased elastic modulus and tensile strength, which is possibly attributed to its superior mechanical properties and high aspect of ratio. Moreover, aforementioned polymeric matrixes, turned to conductive membranes by addition of Gr, which affected drastically on their biological properties; that way, 3, 4, 5-dimethylthiazol-2, 5-diphenyl tetrazolium bromide assay elucidated that only addition of 1 wt% Gr to the polymeric films resulted in improved cell survival and cell attachment for 7 days of cell seeding. In addition, cell attachment was enhanced considerably by increasing PGS up to 50 wt%, due to positive role of PGS on contact angle reduction. Therefore, the nano-composite film (50PGS-50PCL-1Gr) can be a promising substrate to use as a nerve guidance conduit.
Collapse
Affiliation(s)
- Shirin Ghafaralahi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | | | - Anousheh Zargar Kharazi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
The multiple functions of melatonin in regenerative medicine. Ageing Res Rev 2018; 45:33-52. [PMID: 29630951 DOI: 10.1016/j.arr.2018.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Melatonin research has been experiencing hyper growth in the last two decades; this relates to its numerous physiological functions including anti-inflammation, oncostasis, circadian and endocrine rhythm regulation, and its potent antioxidant activity. Recently, a large number of studies have focused on the role of melatonin in the regeneration of cells or tissues after their partial loss. In this review, we discuss the recent findings on the molecular involvement of melatonin in the regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others.
Collapse
|
44
|
miR-129 controls axonal regeneration via regulating insulin-like growth factor-1 in peripheral nerve injury. Cell Death Dis 2018; 9:720. [PMID: 29915198 PMCID: PMC6006361 DOI: 10.1038/s41419-018-0760-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 05/10/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023]
Abstract
The microenvironment of peripheral nerve regeneration consists of multiple neurotrophic factors, adhesion molecules, and extracellular matrix molecules, secreted by unique glial cells in the peripheral nerve system (PNS)-Schwann cell (SCs). Following peripheral nerve injury (PNI), local IGF-1 production is upregulated in SCs and denervated muscle during axonal sprouting and regeneration. Regulation of IGF-1/IGF-1R signaling is considered as a potentially targeted therapy of PNI. We previously identified a group of novel miRNAs in proximal nerve following rat sciatic nerve transection. The present work focused on the role of miR-129 in regulation of IGF-1 signaling after sciatic nerve injury. The temporal change profile of the miR-129 expression was negatively correlated with the IGF-1 expression in proximal nerve stump and dorsal root ganglion (DRG) following sciatic nerve transection. An increased expression of miR-129 inhibited proliferation and migration of SCs, and axonal outgrowth of DRG neurons, which was inversely promoted by silencing of the miR-129 expression. The IGF-1 was identified as one of the multiple target genes of miR-129, which exerted negative regulation of IGF-1 by translational suppression. Moreover, knockdown of IGF-1 attenuated the promoting effects of miR-129 inhibitor on proliferation and migration of SCs, and neurite outgrowth of DRG neurons. Overall, our data indicated that miR-129 own the potential to regulate the proliferation and migration of SCs by targeting IGF-1, providing further insight into the regulatory role of miRNAs in peripheral nerve regeneration. The present work not only provides new insight into miR-129 regulation of peripheral nerve regeneration by robust phenotypic modulation of neural cells, but also opens a novel therapeutic window for PNI by mediating IGF-1 production. Our results may provide further experimental basis for translation of the molecular therapy into the clinic.
Collapse
|
45
|
Gnavi S, Morano M, Fornasari BE, Riccobono C, Tonda-Turo C, Zanetti M, Ciardelli G, Gambarotta G, Perroteau I, Geuna S, Raimondo S. Combined Influence of Gelatin Fibre Topography and Growth Factors on Cultured Dorsal Root Ganglia Neurons. Anat Rec (Hoboken) 2018; 301:1668-1677. [DOI: 10.1002/ar.23846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Sara Gnavi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
| | - Michela Morano
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Benedetta Elena Fornasari
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Claudio Riccobono
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering; Politecnico of Torino; Torino 10100 Italy
| | - Marco Zanetti
- Nanostructured Interfaces and Surfaces, Department of Chemistry; University of Torino; Torino 10100 Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico of Torino; Torino 10100 Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Stefano Geuna
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| | - Stefania Raimondo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation; University of Torino; Orbassano 10043 Italy
- Department of Clinical and Biological Sciences; University of Torino; Orbassano 10043 Italy
| |
Collapse
|
46
|
Qian Y, Song J, Zhao X, Chen W, Ouyang Y, Yuan W, Fan C. 3D Fabrication with Integration Molding of a Graphene Oxide/Polycaprolactone Nanoscaffold for Neurite Regeneration and Angiogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700499. [PMID: 29721407 PMCID: PMC5908351 DOI: 10.1002/advs.201700499] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/02/2017] [Indexed: 05/17/2023]
Abstract
Treating peripheral nerve injury faces major challenges and may benefit from bioactive scaffolds due to the limited autograft resources. Graphene oxide (GO) has emerged as a promising nanomaterial with excellent physical and chemical properties. GO has functional groups that confer biocompatibility that is better than that of graphene. Here, GO/polycaprolactone (PCL) nanoscaffolds are fabricated using an integration molding method. The nanoscaffolds exhibit many merits, including even GO nanoparticle distribution, macroporous structure, and strong mechanical support. Additionally, the process enables excellent quality control. In vitro studies confirm the advantages of the GO/PCL nanoscaffolds in terms of Schwann cell proliferation, viability, and attachment, as well as neural characteristics maintenance. This is the first study to evaluate the in vivo performance of GO-based nanoscaffolds in this context. GO release and PCL biodegradation is analyzed after long-term in vivo study. It is also found that the GO/PCL nerve guidance conduit could successfully repair a 15 mm sciatic nerve defect. The pro-angiogenic characteristic of GO is evaluated in vivo using immunohistochemistry. In addition, the AKT-endothelial nitric oxide synthase (eNOS)-vascular endothelial growth factor (VEGF) signaling pathway might play a major role in the angiogenic process. These findings demonstrate that the GO/PCL nanoscaffold efficiently promotes functional and morphological recovery in peripheral nerve regeneration, indicating its promise for tissue engineering applications.
Collapse
Affiliation(s)
- Yun Qian
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Shanghai Sixth People's Hospital East CampusShanghai University of Medicine and HealthShanghai201306China
| | - Jialin Song
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Xiaotian Zhao
- School of PharmacyShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Wei Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Yuanming Ouyang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Shanghai Sixth People's Hospital East CampusShanghai University of Medicine and HealthShanghai201306China
| | - Weien Yuan
- School of PharmacyShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Cunyi Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| |
Collapse
|
47
|
Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair. Ann Biomed Eng 2018; 46:1013-1025. [PMID: 29603044 DOI: 10.1007/s10439-018-2011-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the "gold standard" clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was introduced into a chitosan (CS) matrix scaffold utilizing genipin (GP) as the crosslinking agent, to fabricate CS-GP-TNF-α inhibitor nerve conduits. The in vitro release kinetics of TNF-α inhibitors from the CS-GP-TNF-α inhibitor nerve conduits were investigated using high-performance liquid chromatography. The in vivo continuous release profile of the TNF-α inhibitors released from the CS-GP-TNF-α inhibitor nerve conduits was measured using an enzyme-linked immunosorbent assay over 14 days. We found that the amount of TNF-α inhibitors released decreased with time after the bridging of the sciatic nerve defects in rats. Moreover, 4 and 12 weeks after surgery, histological analyses and functional evaluations were carried out to assess the influence of the TENG on regeneration. Immunochemistry performed 4 weeks after grafting to assess early regeneration outcomes revealed that the TENG strikingly promoted axonal outgrowth. Twelve weeks after grafting, the TENG accelerated myelin sheath formation, as well as functional restoration. In general, the regenerative outcomes following TENG more closely paralleled findings observed with autologous grafting than the use of the CS matrix scaffold. Collectively, our data indicate that the CS-GP-TNF-α inhibitor nerve conduits comprised an elaborate system for sustained release of TNF-α inhibitors in vitro, while studies in vivo demonstrated that the TENG could accelerate regenerating axonal outgrowth and functional restoration. The introduction of CS-GP-TNF-α-inhibitor nerve conduits into a scaffold may contribute to an efficient and adaptive immune microenvironment that can be used to facilitate peripheral nerve repair.
Collapse
|
48
|
Masgutov R, Masgutova G, Mukhametova L, Garanina E, Arkhipova SS, Zakirova E, Mukhamedshina YO, Margarita Z, Gilazieva Z, Syromiatnikova V, Mullakhmetova A, Kadyrova G, Nigmetzyanova M, Mikhail S, Igor P, Yagudin R, Rizvanov A. Allogenic Adipose Derived Stem Cells Transplantation Improved Sciatic Nerve Regeneration in Rats: Autologous Nerve Graft Model. Front Pharmacol 2018; 9:86. [PMID: 29559908 PMCID: PMC5845725 DOI: 10.3389/fphar.2018.00086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/25/2018] [Indexed: 01/19/2023] Open
Abstract
We examined the effect of transplantation of allogenic adipose-derived stem cells (ADSCs) with properties of mesenchymal stem cells (MSCs) on posttraumatic sciatic nerve regeneration in rats. We suggested an approach to rat sciatic nerve reconstruction using the nerve from the other leg as a graft. The comparison was that of a critical 10 mm nerve defect repaired by means of autologous nerve grafting versus an identical lesion on the contralateral side. In this experimental model, the same animal acts simultaneously as a test model, and control. Regeneration of the left nerve was enhanced by the use of ADSCs, whereas the right nerve healed under natural conditions. Thus the effects of individual differences were excluded and a result closer to clinical practice obtained. We observed significant destructive changes in the sciatic nerve tissue after surgery which resulted in the formation of combined contractures in knee and ankle joints of both limbs and neurotrophic ulcers only on the right limb. The stimulation of regeneration by ADSCs increased the survival of spinal L5 ganglia neurons by 26.4%, improved sciatic nerve vascularization by 35.68% and increased the number of myelin fibers in the distal nerve by 41.87%. Moreover, we have demonstrated that S100, PMP2, and PMP22 gene expression levels are suppressed in response to trauma as compared to intact animals. We have shown that ADSC-based therapy contributes to significant improvement in the regeneration.
Collapse
Affiliation(s)
- Ruslan Masgutov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Republican Clinical Hospital, Kazan, Russia
| | - Galina Masgutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Liliya Mukhametova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Garanina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana S Arkhipova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elena Zakirova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana O Mukhamedshina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Zhuravleva Margarita
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Zarema Gilazieva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriia Syromiatnikova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya Mullakhmetova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Gulnaz Kadyrova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Mariya Nigmetzyanova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Pankov Igor
- Department of Traumatology and Orthopedics, Kazan State Medical Academy, Kazan, Russia
| | | | - Albert Rizvanov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
49
|
Smith WR, Hudson PW, Ponce BA, Rajaram Manoharan SR. Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord 2018; 19:67. [PMID: 29499666 PMCID: PMC5833027 DOI: 10.1186/s12891-018-1990-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Abstract
The utility of nanotechnology in medicine, specifically within the field of orthopedics, is a topic of extensive research. Our review provides a unique comprehensive overview of the current and potential future uses of nanotechnology with respect to orthopedic sub-specialties. Nanotechnology offers an immense assortment of novel applications, most notably the use of nanomaterials as scaffolds to induce a more favorable interaction between orthopedic implants and native bone. Nanotechnology has the capability to revolutionize the diagnostics and treatment of orthopedic surgery, however the long-term health effects of nanomaterials are poorly understood and extensive research is needed regarding clinical safety.
Collapse
Affiliation(s)
- Walter Ryan Smith
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | - Parke William Hudson
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | - Brent Andrew Ponce
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | | |
Collapse
|
50
|
Palayapalayam Ganapathi H, Onol F, Rogers T, Patel V. Nerve wrapping with biomaterials during radical prostatectomy to improve potency recovery. BJU Int 2018; 121:322-323. [PMID: 29480585 DOI: 10.1111/bju.14104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Fikret Onol
- Global Robotics Institute at Florida Hospital, University of Central Florida College of Medicine, Celebration, FL, USA
| | - Travis Rogers
- Global Robotics Institute at Florida Hospital, University of Central Florida College of Medicine, Celebration, FL, USA
| | - Vipul Patel
- Global Robotics Institute at Florida Hospital, University of Central Florida College of Medicine, Celebration, FL, USA
| |
Collapse
|