1
|
Hughes KJ, Cheng J, Iyer KA, Ralhan K, Ganesan M, Hsu CW, Zhan Y, Wang X, Zhu B, Gao M, Wang H, Zhang Y, Huang J, Zhou QA. Unveiling Trends: Nanoscale Materials Shaping Emerging Biomedical Applications. ACS NANO 2024; 18:16325-16342. [PMID: 38888229 DOI: 10.1021/acsnano.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The realm of biomedical materials continues to evolve rapidly, driven by innovative research across interdisciplinary domains. Leveraging big data from the CAS Content Collection, this study employs quantitative analysis through natural language processing (NLP) to identify six emerging areas within nanoscale materials for biomedical applications. These areas encompass self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials. Our Nano Focus delves into the multifaceted utilization of nanoscale materials in these domains, spanning from augmenting physical and electronic properties for interfacing with human tissue to facilitating intricate functionalities like programmable drug delivery.
Collapse
Affiliation(s)
- Kevin J Hughes
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Jianjun Cheng
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Kavita A Iyer
- ACS International India Pvt. Ltd., Pune 411044, India
| | | | | | - Chia-Wei Hsu
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Yutao Zhan
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Xinning Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Bowen Zhu
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Menghua Gao
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Huaimin Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Yue Zhang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Jiaxing Huang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | | |
Collapse
|
2
|
Soleymani Eil Bakhtiari S, Karbasi S. Keratin-containing scaffolds for tissue engineering applications: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:916-965. [PMID: 38349200 DOI: 10.1080/09205063.2024.2311450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Sellappan LK, Manoharan S. Fabrication of bioinspired keratin/sodium alginate based biopolymeric mat loaded with herbal drug and green synthesized zinc oxide nanoparticles as a dual drug antimicrobial wound dressing. Int J Biol Macromol 2024; 259:129162. [PMID: 38181910 DOI: 10.1016/j.ijbiomac.2023.129162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Dual drug antibacterial wound dressings with biological materials possess crucial wound healing characteristics including biocompatibility, non-toxicity, degradability, mechanical strength and antibacterial properties. The study focusses on fabricating keratin (K)‑sodium alginate (A) based wound dressings by loading green synthesized zinc oxide nanoparticles (ZnO NPs) using C. roseus (leaf extract) and M. recutita (Chamomile flower part) herbal drug (CH) as a bioactive dual antibacterial wound dressing for the first time. The optimized ZnO NPs and CH exhibits strong physiochemical and electrostatic interactions (FT-IR, XRD and SEM) on the fabricated K-A-CH-ZnO biopolymeric mats. Moreover, the tiny porous network of the biopolymeric mat enhances thermal stability, hydrophilicity, mechanical strength and explores the water vapor transmission (2538.07 g/m2/day) and oxygen permeability (7.38 ± 0.31 g/m2) to maintain moist environment and cell-material interactions. During enzymatic degradation studies, ZnO NPs and CH of biopolymeric mat not only retains structural integrity but also increases the characteristic of swelling with sustained drug release (57 %) in 144 h which accelerates wound healing process. Also, K-A-CH-ZnO mat exhibited excellent antibacterial effects against B. subtilis and E. coli. Furthermore, NIH 3T3 fibroblast cell behavior using MTT assay and in vivo evaluations of biopolymeric mat depicted enhanced biocompatibility with increased collagen deposition at the wound site as a prominent dual drug medicated antimicrobial wound dressing.
Collapse
Affiliation(s)
- Logesh Kumar Sellappan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| | - Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| |
Collapse
|
4
|
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel) 2023; 12:antiox12040787. [PMID: 37107164 DOI: 10.3390/antiox12040787] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
Collapse
|
5
|
Yilmaz EG, Ece E, Erdem Ö, Eş I, Inci F. A Sustainable Solution to Skin Diseases: Ecofriendly Transdermal Patches. Pharmaceutics 2023; 15:579. [PMID: 36839902 PMCID: PMC9960884 DOI: 10.3390/pharmaceutics15020579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Skin is the largest epithelial surface of the human body, with a surface area of 2 m2 for the average adult human. Being an external organ, it is susceptible to more than 3000 potential skin diseases, including injury, inflammation, microbial and viral infections, and skin cancer. Due to its nature, it offers a large accessible site for administrating several medications against these diseases. The dermal and transdermal delivery of such medications are often ensured by utilizing dermal/transdermal patches or microneedles made of biocompatible and biodegradable materials. These tools provide controlled delivery of drugs to the site of action in a rapid and therapeutically effective manner with enhanced diffusivity and minimal side effects. Regrettably, they are usually fabricated using synthetic materials with possible harmful environmental effects. Manufacturing such tools using green synthesis routes and raw materials is hence essential for both ecological and economic sustainability. In this review, natural materials including chitosan/chitin, alginate, keratin, gelatin, cellulose, hyaluronic acid, pectin, and collagen utilized in designing ecofriendly patches will be explored. Their implementation in wound healing, skin cancer, inflammations, and infections will be discussed, and the significance of these studies will be evaluated with future perspectives.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Emre Ece
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
6
|
Preparation Methods and Functional Characteristics of Regenerated Keratin-Based Biofilms. Polymers (Basel) 2022; 14:polym14214723. [DOI: 10.3390/polym14214723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The recycling, development, and application of keratin-containing waste (e.g., hair, wool, feather, and so on) provide an important means to address related environmental pollution and energy shortage issues. The extraction of keratin and the development of keratin-based functional materials are key to solving keratin-containing waste pollution. Keratin-based biofilms are gaining substantial interest due to their excellent characteristics, such as good biocompatibility, high biodegradability, appropriate adsorption, and rich renewable sources, among others. At present, keratin-based biofilms are a good option for various applications, and the development of keratin-based biofilms from keratin-containing waste is considered crucial for sustainable development. In this paper, in order to achieve clean production while maintaining the functional characteristics of natural keratin as much as possible, four important keratin extraction methods—thermal hydrolysis, ultrasonic technology, eco-friendly solvent system, and microbial decomposition—are described, and the characteristics of these four extraction methods are analysed. Next, methods for the preparation of keratin-based biofilms are introduced, including solvent casting, electrospinning, template self-assembly, freeze-drying, and soft lithography methods. Then, the functional properties and application prospects of keratin-based biofilms are discussed. Finally, future research directions related to keratin-based biofilms are proposed. Overall, it can be concluded that the high-value conversion of keratin-containing waste into regenerated keratin-based biofilms has great importance for sustainable development and is highly suggested due to their great potential for use in biomedical materials, optoelectronic devices, and metal ion detection applications. It is hoped that this paper can provide some basic information for the development and application of keratin-based biofilms.
Collapse
|
7
|
Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Feng CC, Lu WF, Liu YC, Liu TH, Chen YC, Chien HW, Wei Y, Chang HW, Yu J. A hemostatic keratin/alginate hydrogel scaffold with methylene blue mediated antimicrobial photodynamic therapy. J Mater Chem B 2022; 10:4878-4888. [PMID: 35698997 DOI: 10.1039/d2tb00898j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrollable bleeding and infection are two of the most common causes of trauma-related death. Yet, developing safe materials with high hemostatic and antibacterial effectiveness remains a challenge. Keratin-based biomaterials have been reported to exhibit the functions of enhancing platelet binding and activating and facilitating fibrinogen polymerization. In this study, we designed a hemostatic material with good biodegradability, biocompatibility, hemostatic ability, and antibacterial function to solve the shortcomings of common hemostatic materials. Methylene blue-loaded keratin/alginate composite scaffolds were prepared by the freeze-gelation method. The composite scaffolds exhibited over 1600% liquid absorption, well-interconnected pores, good biocompatibility, and biodegradability. We find that the keratin/alginate composite scaffolds' synergistic action may significantly reduce hemostasis time. To prevent infection, the drug-loaded scaffolds generated high burst release by absorbing wound exudate in the early stages of wound healing. The results obtained by the antimicrobial photoinactivation assay in vitro suggest that an antimicrobial photodynamic effect might be triggered, thereby preventing the fast growth of colonies.
Collapse
Affiliation(s)
- Ching-Chih Feng
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Wei-Fan Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Chen Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Tai-Hung Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
9
|
Zhao H, Zhang L, Zheng S, Chai S, Wei J, Zhong L, He Y, Xue J. Bacteriostatic activity and cytotoxicity of bacterial cellulose-chitosan film loaded with in-situ synthesized silver nanoparticles. Carbohydr Polym 2022; 281:119017. [DOI: 10.1016/j.carbpol.2021.119017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022]
|
10
|
Shuai C, Yuan X, Yang W, Peng S, Qian G, Zhao Z. Synthesis of a mace-like cellulose nanocrystal@Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Carbohydr Polym 2021; 262:117937. [DOI: 10.1016/j.carbpol.2021.117937] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
|
11
|
Anand R, Kumar A. Significant biopolymers and their applications in buccal mediated drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1203-1218. [PMID: 33704013 DOI: 10.1080/09205063.2021.1902175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Considerable research exercises have been directed towards the development of efficient and safe drug delivery systems. Various materials are used in different pharmaceutical formulations for the development of efficient drug delivery systems in the treatment of disease. Biopolymers are a choice of research as an excipient delivery system due to their biodegradability, low toxicity, safe, stable, and renewable nature. Biopolymers are naturally occurring polymers or polymer matrix composites, that are extracted from animals, bacteria, fungi, and plants. Cellulose, starches are carbohydrate-based polymers, and wool, silk, gelatin, and collagen are protein-based biopolymers. Biopolymers are obtained from various sources but biopolymers, that belong to the carbohydrate origin, have been found very promising in drug delivery through various routes. The review mainly focuses on the biopolymers currently in use for buccal-mediated pharmaceutical drug delivery systems because the buccal route is an efficient drug delivery system that allows direct systemic circulation of drugs. It also prevents the hydrolysis of the drug molecule in the gastrointestinal tract and thus increases the bioavailability of the drug. The present review discusses the overview of other drug delivery routes, challenges with conventional drug delivery systems, pharmaceutical applications of some biopolymers used in buccal drug delivery systems, that are published recently, currently in use, or used over the past decade.
Collapse
Affiliation(s)
- Rajat Anand
- Department of Biotechnology, National Institute of Technology, Raipur, Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Raipur, India
| |
Collapse
|
12
|
Papain immobilization on heterofunctional membrane bacterial cellulose as a potential strategy for the debridement of skin wounds. Int J Biol Macromol 2020; 165:3065-3077. [DOI: 10.1016/j.ijbiomac.2020.10.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022]
|
13
|
Feroz S, Muhammad N, Ranayake J, Dias G. Keratin - Based materials for biomedical applications. Bioact Mater 2020; 5:496-509. [PMID: 32322760 PMCID: PMC7171262 DOI: 10.1016/j.bioactmat.2020.04.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
Keratin constitutes the major component of the feather, hair, hooves, horns, and wool represents a group of biological material having high cysteine content (7-13%) as compared to other structural proteins. Keratin -based biomaterials have been investigated extensively over the past few decades due to their intrinsic biological properties and excellent biocompatibility. Unlike other natural polymers such as starch, collagen, chitosan, the complex three-dimensional structure of keratin requires the use of harsh chemical conditions for their dissolution and extraction. The most commonly used methods for keratin extraction are oxidation, reduction, steam explosion, microbial method, microwave irradiation and use of ionic liquids. Keratin -based materials have been used extensively for various biomedical applications such as drug delivery, wound healing, tissue engineering. This review covers the structure, properties, history of keratin research, methods of extraction and some recent advancements related to the use of keratin derived biomaterials in the form of a 3-D scaffold, films, fibers, and hydrogels.
Collapse
Affiliation(s)
- Sandleen Feroz
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Jithendra Ranayake
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| | - George Dias
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| |
Collapse
|
14
|
|
15
|
Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, Hussain Z, Abbasi M, Kousar M. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139:975-993. [PMID: 31386871 DOI: 10.1016/j.ijbiomac.2019.08.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Non-healing, chronic wounds place a huge burden on healthcare systems as well as individual patients. These chronic wounds especially diabetic wounds will ultimately lead to compromised mobility, amputation of limbs and even death. Currently, wounds and limb ulcers associated with diabetes remain significant health issues; the associated healthcare cost ultimately leads to the increased clinical burden. The presence of diabetes interrupts a highly coordinated cascade of events in the wound closure process. Advances in the understanding of pathophysiological conditions associated with diabetic wounds lead to the development of drug delivery systems which can enhance wound healing by targeting various phases of the impaired processes. Wound environments typically contain degradative enzymes, along with an elevated pH and demonstrate a physiological cascade involved in the regeneration of tissue, which requires the application of an effective delivery system. This article aims to review the pathophysiological conditions associated with chronic and diabetic wounds. The delivery systems, involved in their treatment are described, highlighting potential biomaterials and polymers for establishing drug delivery systems, specifically for the treatment of diabetic wounds and the promotion of the associated mechanisms involved in advanced wound healing. Emerging approaches and engineered devices for effective wound care are reported. The discussion will give insight into the mechanisms relevant to all stages of wound healing.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, USA.; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | | | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Victoria Sikstone
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, UK
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
16
|
Pakkaner E, Yalçın D, Uysal B, Top A. Self-assembly behavior of the keratose proteins extracted from oxidized Ovis aries wool fibers. Int J Biol Macromol 2019; 125:1008-1015. [PMID: 30572050 DOI: 10.1016/j.ijbiomac.2018.12.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/02/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
Water soluble keratose proteins were obtained from an Ovis Aries wool using peracetic acid oxidation. The wool samples and the extracted keratose proteins were characterized by using FTIR, XRD, SEM and TGA techniques. Fractions of α-keratose (MW = 43-53 kDa) along with protein species with molecular weights between 23 kDa and 33 kDa were identified in the SDS-PAGE analysis result of the extracted protein mixture. DLS and AFM experiments indicated that self-assembled globular nanoparticles with diameters between 15 nm and 100 nm formed at 5 mg/ml keratose concentration. On the other hand, upon incubation of 10 w % keratose solutions at 37 °C and 50 °C, interconnected keratose hydrogels with respective storage modulus (G') values of 0.17 ± 0.03 kPa and 3.7 ± 0.5 kPa were obtained. It was shown that the keratose hydrogel prepared at 37 °C supported L929 mouse fibroblast cell proliferation which suggested that these keratose hydrogels could be promising candidates in soft tissue engineering applications.
Collapse
Affiliation(s)
- Efecan Pakkaner
- Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Damla Yalçın
- Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Berk Uysal
- Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Ayben Top
- Department of Chemical Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey.
| |
Collapse
|
17
|
Chocarro-Wrona C, López-Ruiz E, Perán M, Gálvez-Martín P, Marchal JA. Therapeutic strategies for skin regeneration based on biomedical substitutes. J Eur Acad Dermatol Venereol 2019; 33:484-496. [PMID: 30520159 DOI: 10.1111/jdv.15391] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
Regenerative medicine and tissue engineering (TE) have experienced significant advances in the development of in vitro engineered skin substitutes, either for replacement of lost tissue in skin injuries or for the generation of in vitro human skin models to research. However, currently available skin substitutes present different limitations such as expensive costs, abnormal skin microstructure and engraftment failure. Given these limitations, new technologies, based on advanced therapies and regenerative medicine, have been applied to develop skin substitutes with several pharmaceutical applications that include injectable cell suspensions, cell-spray devices, sheets or 3Dscaffolds for skin tissue regeneration and others. Clinical practice for skin injuries has evolved to incorporate these innovative applications to facilitate wound healing, improve the barrier function of the skin, prevent infections, manage pain and even to ameliorate long-term aesthetic results. In this article, we review current commercially available skin substitutes for clinical use, as well as the latest advances in biomedical and pharmaceutical applications used to design advanced therapies and medical products for wound healing and skin regeneration. We highlight the current progress in clinical trials for wound healing as well as the new technologies that are being developed and hold the potential to generate skin substitutes such as 3D bioprinting-based strategies.
Collapse
Affiliation(s)
- C Chocarro-Wrona
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - E López-Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | - M Perán
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Department of Health Sciences, University of Jaén, Jaén, Spain
| | - P Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain.,Advanced Therapies Area, Bioibérica S.A.U., Barcelona, Spain
| | - J A Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| |
Collapse
|
18
|
Muñoz-Bonilla A, Echeverria C, Sonseca Á, Arrieta MP, Fernández-García M. Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E641. [PMID: 30791651 PMCID: PMC6416599 DOI: 10.3390/ma12040641] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
This article concisely reviews the most recent contributions to the development of sustainable bio-based polymers with antimicrobial properties. This is because some of the main problems that humanity faces, nowadays and in the future, are climate change and bacterial multi-resistance. Therefore, scientists are trying to provide solutions to these problems. In an attempt to organize these antimicrobial sustainable materials, we have classified them into the main families; i.e., polysaccharides, proteins/polypeptides, polyesters, and polyurethanes. The review then summarizes the most recent antimicrobial aspects of these sustainable materials with antimicrobial performance considering their main potential applications in the biomedical field and in the food industry. Furthermore, their use in other fields, such as water purification and coating technology, is also described. Finally, some concluding remarks will point out the promise of this theme.
Collapse
Affiliation(s)
- Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Coro Echeverria
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Águeda Sonseca
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Marina P Arrieta
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Av. Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
19
|
Subbiah R, Guldberg RE. Materials Science and Design Principles of Growth Factor Delivery Systems in Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2019; 8:e1801000. [PMID: 30398700 DOI: 10.1002/adhm.201801000] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Indexed: 01/22/2023]
Abstract
Growth factors (GFs) are signaling molecules that direct cell development by providing biochemical cues for stem cell proliferation, migration, and differentiation. GFs play a key role in tissue regeneration, but one major limitation of GF-based therapies is dosage-related adverse effects. Additionally, the clinical applications and efficacy of GFs are significantly affected by the efficiency of delivery systems and other pharmacokinetic factors. Hence, it is crucial to design delivery systems that provide optimal activity, stability, and tunable delivery for GFs. Understanding the physicochemical properties of the GFs and the biomaterials utilized for the development of biomimetic GF delivery systems is critical for GF-based regeneration. Many different delivery systems have been developed to achieve tunable delivery kinetics for single or multiple GFs. The identification of ideal biomaterials with tunable properties for spatiotemporal delivery of GFs is still challenging. This review characterizes the types, properties, and functions of GFs, the materials science of widely used biomaterials, and various GF loading strategies to comprehensively summarize the current delivery systems for tunable spatiotemporal delivery of GFs aimed for tissue regeneration applications. This review concludes by discussing fundamental design principles for GF delivery vehicles based on the interactive physicochemical properties of the proteins and biomaterials.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Robert E. Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact; 6231 University of Oregon; Eugene OR 97403 USA
| |
Collapse
|
20
|
Zhou X, Li G, Wang D, Sun X, Li X. Cytokeratin expression in epidermal stem cells in skin adnexal tumors. Oncol Lett 2018; 17:927-932. [PMID: 30655849 PMCID: PMC6312935 DOI: 10.3892/ol.2018.9679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
The expression levels of seven types of cytokeratin (CK) in different kinds of skin adnexal tumors were evaluated. One hundred and thirty-two patients with different kinds of skin adnexal tumors admitted and treated in the Department of Dermatology of Dongying People's Hospital from May 2013 to May 2015 were selected and underwent tissue section staining. Another 20 cases of normal skin were enrolled as the control group. The expression levels of the seven types of CK in different kinds of skin appendages were observed and recorded. The expression levels of the seven types of CK in the 132 cases of skin adnexal tumor tissues were different. CK10 was mainly expressed in squamous cell carcinoma, but it was not expressed in basal cell carcinoma. CK19 was expressed in basal cell carcinoma, but its expression was not detected in squamous cell carcinoma. As the degree of differentiation was increased in the epidermis, hair follicle and sebaceous gland, the expressed molecular weight of CK was augmented gradually. The expression levels of five types of CK (namely, CK8, CK10, CK14, CK18 and CK19) could be measured in the squamous cell carcinoma and basal cell carcinoma. Statistical analysis revealed that there were statistically significant differences in the expression levels of these five types of CK in the two cell carcinomas (P<0.05). Five types of CK, i.e., CK7, CK8, CK17, CK18 and CK19, had markedly different expression levels in hair follicle tumor and sweat gland tumor, which were statistically significant (P<0.05). The expression levels of a group of CKs detected by virtue of semi-quantitative analysis via immunohistochemistry can be regarded as one of the important indexes for clinical diagnosis of skin adnexal tumors.
Collapse
Affiliation(s)
- Xiaoqiu Zhou
- Department of Pathology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Guoyong Li
- Department of Stomatology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Dongguan Wang
- Department of Pathology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Xiyin Sun
- Department of Pathology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Xingong Li
- Department of Pathology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
21
|
Posati T, Giuri D, Nocchetti M, Sagnella A, Gariboldi M, Ferroni C, Sotgiu G, Varchi G, Zamboni R, Aluigi A. Keratin-hydrotalcites hybrid films for drug delivery applications. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Mohd Zuki SA, Abd Rahman N, Abu Bakar NF. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: an overview. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2018; 334:012046. [DOI: 10.1088/1757-899x/334/1/012046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Comparative study of kerateine and keratose based composite nanofibers for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:1-8. [PMID: 29208266 DOI: 10.1016/j.msec.2017.07.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
In this work, two forms of keratins, kerateine (KR) and keratose (KO), were fabricated respectively into electrospun nanofibers by combination with polyurethane (PU). The differences of the structure and material properties between KR and KO based fibers were investigated by SEM observation, ATR-FTIR, XRD, contact angle, tensile test, in vitro degradation and cytocompatibility assay. The results indicated that the KR based nanofibers exhibited a higher tensile modulus, lower fracture strain and slower degradation rate, mainly due to the reformation of disulfide crosslinking between the regenerated cysteines in KR after the reductive extraction. The KO based nanofibers demonstrated a stronger hydrophilic property and higher water uptake ability due to the cysteic acid residues resulting from the oxidative extraction. Furthermore, the combination of keratins, regardless of KR or KO, could obviously improve the cytocompatibility of PU, especially in the cell attachment stage.
Collapse
|