1
|
Nendouvhada LP, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Meyer M, Gabuza KB. Phytonanotherapy for the Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:5571. [PMID: 38891759 PMCID: PMC11171778 DOI: 10.3390/ijms25115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease, is a steatotic liver disease associated with metabolic syndrome (MetS), especially obesity, hypertension, diabetes, hyperlipidemia, and hypertriglyceridemia. MASLD in 43-44% of patients can progress to metabolic dysfunction-associated steatohepatitis (MASH), and 7-30% of these cases will progress to liver scarring (cirrhosis). To date, the mechanism of MASLD and its progression is not completely understood and there were no therapeutic strategies specifically tailored for MASLD/MASH until March 2024. The conventional antiobesity and antidiabetic pharmacological approaches used to reduce the progression of MASLD demonstrated favorable peripheral outcomes but insignificant effects on liver histology. Alternatively, phyto-synthesized metal-based nanoparticles (MNPs) are now being explored in the treatment of various liver diseases due to their unique bioactivities and reduced bystander effects. Although phytonanotherapy has not been explored in the clinical treatment of MASLD/MASH, MNPs such as gold NPs (AuNPs) and silver NPs (AgNPs) have been reported to improve metabolic processes by reducing blood glucose levels, body fat, and inflammation. Therefore, these actions suggest that MNPs can potentially be used in the treatment of MASLD/MASH and related metabolic diseases. Further studies are warranted to investigate the feasibility and efficacy of phytonanomedicine before clinical application.
Collapse
Affiliation(s)
- Livhuwani P. Nendouvhada
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale O. Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Abram M. Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Kwazikwakhe B. Gabuza
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
2
|
Wang L, Huang X, Cao X, Zhou F, Liu B, Wei S, Liu X, Yang X, Yin S. Confining the Growth of AgNPs onto Epigallocatechin Gallate-Decorated Zein Nanoparticles for Constructing Potent Protein-Based Antibacterial Nanocomposites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4928-4938. [PMID: 38393975 DOI: 10.1021/acs.jafc.3c08029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Sliver nanoparticles (AgNPs) have attracted tremendous interest as an alternative to commercially available antibiotics due to their low microbial resistance and broad-spectrum antimicrobial activity. However, AgNPs are highly reactive and unstable and are susceptible to fast oxidation. Synthesizing stable and efficient AgNPs using green chemistry principles remains a major challenge. To address this issue, we establish a facile route to form AgNP-doped zein nanoparticle core-satellite superstructures with ultralow minimum bactericidal concentration (MBC). In brief, polyphenol surface-functionalization of zein nanoparticles was performed, and the epigallocatechin gallate (EGCG) layer on zein nanoparticles served as a reducing-cum-stabilizing agent. We used EGCG-decorated zein nanoparticles (ZE) as a template to direct the nucleation and growth of AgNPs to develop metallized hybrid nanoparticles (ZE-Ag). The highly monodispersed core-satellite nanoparticles (∼150 nm) decorated with ∼4.9 nm AgNPs were synthesized successfully. The spatial restriction of EGCG by zein nanoparticles confined the nucleation and growth of AgNPs only on the surface of the particles, which prevented the formation of entangled clusters of polyphenols and AgNPs and concomitantly inhibited the coalescence and oxidation of AgNPs. Thus, this strategy improved the effective specific surface area of AgNPs, and as a result, ZE-Ag efficiently killed the indicator bacteria, Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus(MRSA) after 20 min of incubation, with MBCs of 2 and 4 μg/mL, respectively. This situation indicated that as-prepared core-satellite nanoparticles possessed potent short-term sterilization capability. Moreover, the simulated wound infection model also confirmed the promising application of ZE-Ag as an efficient antimicrobial composite. This work provides new insights into the synthesis and emerging application of AgNPs in food preservation, packaging, biomedicine, and catalysis.
Collapse
Affiliation(s)
- Like Wang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaonan Huang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaoxuan Cao
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fuzhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Bo Liu
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuheng Wei
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xia Liu
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaoquan Yang
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shouwei Yin
- Research and Development Centre of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products Safety, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Andleeb S, Iqbal Z, Gulzar N, Raza A, Ahmad A. Synthesis, Characterization, Acute Dermal Toxicity, Anti-inflammatory, and Wound Healing Potential of Biogenic Silver Nanoparticles in Balb C Mice. Curr Pharm Biotechnol 2024; 25:1452-1465. [PMID: 37518998 DOI: 10.2174/1389201024666230727122201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 08/01/2023]
Abstract
AIM The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale. METHODS In the current research, silver nanoparticles were synthesized using Trillium govanianum aqueous extract. Characterizations were done using UV-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. In vivo biological activities such as acute dermal toxicity, wound healing, and anti-inflammatory were done on Balb C mice. Absorbance at 295 nm corresponds to the out-of-plane quadrupole Plasmonresonance while at 350 nm corresponds to in-plane dipole resonance. SEM images showed the morphology of TGAgNPs is not exactly spherical while XRD analysis shows that highly crystalline TGAgNPs with an average size of 27.94 nm. The FTIR spectrum represents sharp peaks of aldehyde, amide I, aromatic rings, and polysaccharides. The microscopic assessment did not find any epidermal and dermal layer abnormalities in Blab C mice when exposed to TGAgNPs during acute dermal toxicity. RESULTS & DISCUSSION Results revealed that 1000 mg/kg is not a lethal dose. In the wound healing activity, no mortality and no abnormal signs were observed when petroleum jelly, nitrofuranose, TGaqu, and TGAgNPs-based ointments were applied. Enhanced epithelization was recorded in TGaqu and TGAgNPs treated mice (p≤0.001). The wound contraction percentage was higher in nitrofuranose-treated mice (74%) followed by TGAgNPs (71%), and TGaqu (69%) compared to vehicle-treated and open-wounded mice. The paw edema model proved the potential use of TGAgNPs and TGaqu as anti-inflammatory agents. CONCLUSION Hence, the results proved that both TGaqu and TGAgNPs are not toxic and possessed strong anti-inflammatory and wound-healing effects due to the presence of phytochemical constituents and could be used in various drug production as a therapeutic agent.
Collapse
Affiliation(s)
- Saiqa Andleeb
- Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Nazia Gulzar
- Department of Zoology, Microbial Biotechnology Laboratory, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Abida Raza
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ashfaq Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Singh S, Sharma K, Sharma H. Green Extracts with Metal-based Nanoparticles for Treating Inflammatory Diseases: A Review. Curr Drug Deliv 2024; 21:544-570. [PMID: 37278036 DOI: 10.2174/1567201820666230602164325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Globally, high death rates and poor quality of life are caused mainly by inflammatory diseases. Corticosteroids, which may have systemic side effects and would enhance the risk of infection, are the common forms of therapy. The field of nanomedicine has created composite nanoparticles that carry a pharmacological carrier and target ligands for distribution to sites of inflammation with less systemic toxicity. However, their relatively large size often causes systemic clearance. An interesting approach is metal-based nanoparticles that naturally reduce inflammation. They are made not only to be small enough to pass through biological barriers but also to allow label-free monitoring of their interactions with cells. The following literature review discusses the mechanistic analysis of the anti-inflammatory properties of several metal-based nanoparticles, including gold, silver, titanium dioxide, selenium, and zinc oxide. Current research focuses on the mechanisms by which nanoparticles infiltrate cells and the anti-inflammatory techniques using herbal extracts-based nanoparticles. Additionally, it provides a brief overview of the literature on many environmentally friendly sources employed in nanoparticle production and the mechanisms of action of various nanoparticles.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Khushi Sharma
- Institute of Pharmaceutical Research GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| |
Collapse
|
5
|
Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M. Applications of Green Synthesized Metal Nanoparticles - a Review. Biol Trace Elem Res 2024; 202:360-386. [PMID: 37046039 PMCID: PMC10097525 DOI: 10.1007/s12011-023-03645-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.
Collapse
Affiliation(s)
| | - Hary Razafindralambo
- ProBioLab, Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Liège, Belgium
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux AgroBio Tech/Université de Liège, Gembloux, Belgium, University of Liege, Liège, Belgium
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Seerangaraj Vasantharaj
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, 641028, Tamil Nadu, India
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
6
|
Tran THM, Wang R, Kim H, Kim YJ. The anti-inflammation and skin-moisturizing effects of Boehmeria tricuspis-mediated biosynthesized gold nanoparticles in human keratinocytes. Front Pharmacol 2023; 14:1258057. [PMID: 37869754 PMCID: PMC10588637 DOI: 10.3389/fphar.2023.1258057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Recently, nanotechnology has emerged as a potential technique for skin generation, which has several treatment advantages, such as decreased drug cytotoxicity and enhanced skin penetration. Boehmeria tricuspis (BT) belongs to the Urticaceae family and is rich in phenolic and flavonoid compounds. In this study, we biosynthesized gold nanoparticles (BT-AuNPs) using BT extract to explore their anti-inflammatory and skin-moisturizing properties in keratinocytes. Methods: Field-emission transmission electron microscopy, energydispersive X-ray spectrometry, dynamic light scattering, and Fourier-transforminfrared spectroscopy were used to examine the synthesized BT-AuNPs. qRT-PCR, western blot, and ELISA were applied for investigating the effect of BT-AuNPs on anti-inflammation and moisturizing activity in HaCaT cells. Results: At concentrations below 200 μg/mL, BT-AuNPs had no cytotoxic effect on keratinocytes. BT-AuNPs dramatically alleviated the expression and secretion of inflammatory chemokines/cytokine, such as IL-6, IL-8, TARC, CTACK, and RANTES in keratinocytes stimulated by tumor necrosis factor-α/interferon-γ (T + I). These anti-inflammatory properties of BT-AuNPs were regulated by inhibiting the NF-κB and MAPKs signaling pathways. Furthermore, BT-AuNPs greatly promoted hyaluronic acid (HA) production by enhancing the expression of hyaluronic acid synthase genes (HAS1, HAS2, and HAS3) and suppressing the expression of hyaluronidase genes (HYAL1 and HYAL2) in HaCaT cells. Discussion: These results suggest that BT-AuNPs can be used as a promising therapeutic alternative for treating skin inflammation. Our findings provide a potential platform for the use of BT-AuNPs as candidates for treating inflammatory skin diseases and promoting skin health.
Collapse
Affiliation(s)
- Thi Hoa My Tran
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Rongbo Wang
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung Ang University, Anseong, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
7
|
Aldakheel FM, Sayed MME, Mohsen D, Fagir MH, El Dein DK. Green Synthesis of Silver Nanoparticles Loaded Hydrogel for Wound Healing; Systematic Review. Gels 2023; 9:530. [PMID: 37504410 PMCID: PMC10378855 DOI: 10.3390/gels9070530] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Wound healing is a biological process that involves a series of consecutive process, and its impairment can lead to chronic wounds and various complications. Recently, there has been a growing interest in employing nanotechnology to enhance wound healing. Silver nanoparticles (AgNPs) have expanded significant attention due to their wide range of applications in the medical field. The advantages of AgNPs include their easy synthesis, change their shape, and high surface area. Silver nanoparticles are very efficient for topical drug administration and wound healing because of their high ratio of surface area to volume. The efficiency of AgNPs depends on the synthesis method and the intended application. Green synthesis methods offer an eco-friendly approach by utilizing natural sources such as plant extracts and fungus. The characterization of nanoparticles plays an important character, and it is accomplished through the use of several characterization methods such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). These techniques are employed to confirm the specific characters of the prepared Silver Nanoparticles. Additionally, the review addresses the challenges and future perspectives of utilizing green-synthesized AgNPs loaded in Polyacrylamide hydrogel for wound healing applications, including the optimization of nanoparticle size, and release kinetics. Overall, this review highlights the potential of green-synthesized AgNPs loaded in Polyacrylamide hydrogel as promising for advanced wound healing therapies. There are different approaches of usage of AgNPs for wound healing such as polyacrylamide -hydrogels, and the mechanism after their antibacterial action, have been exposed.
Collapse
Affiliation(s)
- Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Prince Sattam Chair for Epidemiology and Public Health Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Marwa M El Sayed
- Chemical Engineering and Pilot Plant Department, National Research Centre, Giza 12622, Egypt
| | - Dalia Mohsen
- Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia
- National Research Centre, Giza 12622, Egypt
| | - Mohammed H Fagir
- Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia
| | - Dalia K El Dein
- Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia
| |
Collapse
|
8
|
Nikolova MP, Joshi PB, Chavali MS. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023; 15:1650. [PMID: 37376098 PMCID: PMC10301310 DOI: 10.3390/pharmaceutics15061650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Payal B. Joshi
- Shefali Research Laboratories, 203/454, Sai Section, Ambernath (East), Mumbai 421501, Maharashtra, India;
| | - Murthy S. Chavali
- Office of the Dean (Research), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune 411038, Maharashtra, India;
| |
Collapse
|
9
|
Atrooz O, Al-Nadaf A, Uysal H, Kutlu HM, Sezer CV. Biosynthesis of silver nanoparticles using Coriandrum sativum L. extract and evaluation of their antibacterial, anti-inflammatory and antinociceptive activities. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 157:219-227. [DOI: 10.1016/j.sajb.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
|
10
|
Lin J, Chen P, Tan Z, Sun Y, Tam WK, Ao D, Shen W, Leung VYL, Cheung KMC, To MKT. Application of silver nanoparticles for improving motor recovery after spinal cord injury via reduction of pro-inflammatory M1 macrophages. Heliyon 2023; 9:e15689. [PMID: 37234658 PMCID: PMC10205515 DOI: 10.1016/j.heliyon.2023.e15689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Silver nanoparticles (AgNPs) possess anti-inflammatory activities and have been widely deployed for promoting tissue repair. Here we explored the efficacy of AgNPs on functional recovery after spinal cord injury (SCI). Our data indicated that, in a SCI rat model, local AgNPs delivery could significantly recover locomotor function and exert neuroprotection through reducing of pro-inflammatory M1 survival. Furthermore, in comparison with Raw 264.7-derived M0 and M2, a higher level of AgNPs uptake and more pronounced cytotoxicity were detected in M1. RNA-seq analysis revealed the apoptotic genes in M1 were upregulated by AgNPs, whereas in M0 and M2, pro-apoptotic genes were downregulated and PI3k-Akt pathway signaling pathway was upregulated. Moreover, AgNPs treatment preferentially reduced cell viability of human monocyte-derived M1 comparing to M2, supporting its effect on M1 in human. Overall, our findings reveal AgNPs could suppress M1 activity and imply its therapeutic potential in promoting post-SCI motor recovery.
Collapse
Affiliation(s)
- Jie Lin
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Peikai Chen
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
| | - Zhijia Tan
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
| | - Yi Sun
- Department of Sports Medicine, Peking University-Shenzhen Hospital, Shenzhen, Guangdong, 518034, China
| | - Wai Kit Tam
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Di Ao
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Wei Shen
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Victor Yu-Leong Leung
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Michael Kai Tsun To
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
11
|
Khashan AA, Dawood Y, Khalaf YH. Green chemistry and anti-inflammatory activity of silver nanoparticles using aqueous curcumin extract. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
12
|
Simon S, Sibuyi NRS, Fadaka AO, Meyer S, Josephs J, Onani MO, Meyer M, Madiehe AM. Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles. Biomedicines 2022; 10:2792. [PMID: 36359308 PMCID: PMC9687463 DOI: 10.3390/biomedicines10112792] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.
Collapse
Affiliation(s)
- Sohail Simon
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Health Platform Diagnostic Unit, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Jamie Josephs
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Martin Opiyo Onani
- Organometallics and Nanomaterials, Department of Chemical Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation (DSI)/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
13
|
Janicka M, Ranoszek-Soliwoda K, Chodaczek G, Antos-Bielska M, Brytan M, Tomaszewska E, Celichowski G, Grobelny J, Cymerys J, Krzyżowska M, Chodkowski M. Functionalized Noble Metal Nanoparticles for the Treatment of Herpesvirus Infection. Microorganisms 2022; 10:microorganisms10112161. [PMID: 36363754 PMCID: PMC9695377 DOI: 10.3390/microorganisms10112161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Neuroinfections caused by herpesviruses, mainly by HHV-1, represent a significant problem for modern medicine due to the small number of therapeutic substances available in the pharmaceutical sector. Furthermore, HHV-1 infection has been linked to neurodegenerative processes such as Alzheimer’s disease, which justifies the search for new effective therapies. The development of nanotechnology opens up new possibilities for the treatment of neuroinflammation. Gold and silver nanoparticles are gaining popularity, and the number of clinical trials involving metallic nanoparticles is constantly increasing. This paper reviews the research on gold and silver nanoparticles and their potential use in the treatment of herpesvirus neuroinfection.
Collapse
Affiliation(s)
- Martyna Janicka
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Grzegorz Chodaczek
- Bioimaging Laboratory, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland
| | | | - Marek Brytan
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Małgorzata Krzyżowska
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- Correspondence: (M.K.); (M.C.)
| | - Marcin Chodkowski
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- Correspondence: (M.K.); (M.C.)
| |
Collapse
|
14
|
Garg R, Rani P, Garg R, Khan MA, Khan NA, Khan AH, Américo-Pinheiro JHP. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119830. [PMID: 35926739 DOI: 10.1016/j.envpol.2022.119830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology has been recognized as the emerging field for the synthesis, designing, and manipulation of particle structure at the nanoscale. Its rapid development is also expected to revolutionize industries such as applied physics, mechanics, chemistry, and electronics engineering with suitably tailoring various nanomaterials. Inorganic nanoparticles such as silver nanoparticles (Ag-NPs) have garnered more interest with their diverse applications. In correspondence to green chemistry, researchers prioritize green synthetic techniques over conventional ones due to their eco-friendly and sustainable potential. Green-synthesized NPs have proven more beneficial than those synthesized by conventional methods because of capping by secondary metabolites. The present study reviews the various means being used by the researchers for the green synthesis of Ag-NPs. The morphological characteristics of these NPs as obtained from numerous characterization techniques have been explored. The potential applications of bio-synthesized Ag-NPs viz. Antimicrobial, antioxidant, catalytic, and water remediation along with the plausible mechanisms have been discussed. In addition, toxicity analysis and biomedical applications of these NPs have also been reviewed to provide a detailed overview. The study signifies that biosynthesized Ag-NPs can be efficiently used for various applications in the biomedical and industrial sectors as an environment-friendly and efficient tool.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Priya Rani
- Department of Chemistry, University School of Sciences, Rayat-Bahra University, Mohali, Punjab, 140104, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Nadeem Ahmad Khan
- Civil Engineering Department, Faculty of Engineering, Jamia Millia Islamia University, New Delhi, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | | |
Collapse
|
15
|
Anticancer activity of silver nanoparticles from the aqueous extract of Dictyota ciliolata on non-small cell lung cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Kiyani MM, Moghul NB, Javed A, Butt MA, Abbas HB, Rehman H, Rajput TA, Bokhari SAI. In Vivo Effects of Orally Administered Different Concentrations of Silver Oxide Nanoparticles in Hyperuricemic Mice. Biol Trace Elem Res 2022; 200:3677-3687. [PMID: 34718960 DOI: 10.1007/s12011-021-02960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
Silver oxide nanoparticles (AgO-NPs) antioxidant, anti-cancer, anti-microbial, and tissue repair properties. Gouty arthritis is the inflammation of tissues and joints caused by the deposition of monosodium urate crystals. In this experiment, we investigated the anti-hyperuricemic effectiveness of different concentrations of AgO-NPs in mice. The present study aimed to investigate the effect of administration of AgO-NPs in monosodium urate (MSU)-induced gouty mice for the very first time. Monosodium urate (MSU) crystals were administered intraperitoneal for gout induction, followed by 5, 10, and 20 µg/mL doses of AgO-NPs for 2 weeks. The positive control was provided with the commercially available drug allopurinol to compare the effects of AgO-NPs and allopurinol. The main purpose of the study was to investigate the effectiveness of the nanoparticles in comparison with commercially available drugs. AgO-NPs have been shown to improve the condition of gouty arthritis by reducing significantly (P ˂ 0.001) increased levels of ALT, AST, and total bilirubin. The total protein estimation results showed significant improvement at concentration of 20 µg/mL of AgO-NPs. The lipid profile results showed that high concentration (20 µg/mL) of AgO-NPs decrease the lipid content significantly as compared to control. It was concluded from this study that the antioxidant, anti-inflammatory, and antilipidemic properties of AgO-NPs may improve the hyperuricemic condition in gouty arthritis mice.
Collapse
Affiliation(s)
- Mubin Mustafa Kiyani
- Shifa College of Medical Technology, Shifa Tameer-E-Millat University, Islamabad, Pakistan.
- Shifa International Hospitals, Ltd 'Gate No. 1' 4 Pitras Bukhari Rd, H 8/4 H-8, Islamabad, Islamabad Capital Territory, Pakistan.
| | - Nurain Baig Moghul
- Rawal Institute of Health Sciences, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
| | - Ambreen Javed
- Department of Biochemistry, HITEC-Institute of Medical Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Maisra Azhar Butt
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Hassan Burair Abbas
- Department of Medicine, HITEC-Institute of Medical Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Hamza Rehman
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Tausif Ahmed Rajput
- Faculty of Pharmaceutical & Allied Health Sciences, Shifa Tameer-E-Millat University, Islamabad, Pakistan
| | - Syed Ali Imran Bokhari
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
17
|
Kis B, Moacă EA, Tudoran LB, Muntean D, Magyari-Pavel IZ, Minda DI, Lombrea A, Diaconeasa Z, Dehelean CA, Dinu Ș, Danciu C. Green Synthesis of Silver Nanoparticles Using Populi gemmae Extract: Preparation, Physicochemical Characterization, Antimicrobial Potential and In Vitro Antiproliferative Assessment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5006. [PMID: 35888477 PMCID: PMC9318049 DOI: 10.3390/ma15145006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells-MCF7 and lung carcinoma epithelial cells-A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
| | - Elena-Alina Moacă
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Delia Muntean
- Department of Microbiology Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Daliana Ionela Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ștefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
18
|
Pan X, Zhang Y, Zhao Y, Yao S, Guan C, Wang L, Chen L. Inhibitory activity and mechanism of silver nanoparticles against herpes simplex virus type 1. Arch Virol 2022; 167:1619-1636. [PMID: 35648293 DOI: 10.1007/s00705-022-05467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a common pathogen that infects 50-90% of the world's population and causes a variety of diseases, some of which can be life-threatening. Silver nanoparticles (AgNPs) have been shown to have broad-spectrum antiviral activity. In this study, we investigated the activity of AgNPs against HSV-1 and found that AgNPs effectively inhibited plaque formation and HSV-1 progeny production, reduced the genomic load, and interfered with HSV-1 mRNA expression and protein synthesis. Transmission electron microscopy showed that AgNPs interacted with HSV-1 and altered the shape of the viral particles. Furthermore, AgNPs affected the entry of HSV-1 into cells as well as their release and cell-to-cell spread. AgNPs were also found to downregulate the expression of pro-inflammatory cytokines upon HSV-1 infection. Combined treatment with AgNPs and acyclovir (ACV) confirmed that AgNPs significantly enhanced the inhibitory effect of ACV against HSV-1. Our findings may contribute to an understanding of the mechanism of the antiviral effect of AgNPs against HSV-1 and help to provide a theoretical basis for their clinical application.
Collapse
Affiliation(s)
- Xuanhe Pan
- Department of Clinical Laboratory, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yapeng Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yiming Zhao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Siqi Yao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Chaxiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Linqian Wang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
19
|
A Green Approach for the Biosynthesis of Gold Nanoparticles Using Cuminum cyminum L. Seed and Its Application for Pain Management in Rats. IRANIAN BIOMEDICAL JOURNAL 2022; 26:219-29. [PMID: 35280043 PMCID: PMC9440691 DOI: 10.52547/ibj.26.3.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Kumawat M, Madhyastha H, Singh M, Jain D, Daima HK. Functional Silver Nanozymes Regulate Cell Inflammatory Cytokines Expression In Mouse Macrophages. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Plant-Mediated Green Synthesis of Ag NPs and Their Possible Applications: A Critical Review. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/2779237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The potential applications of Ag NPs are exciting and beneficial in a variety of fields; however, there is less awareness of the new risks posed by inappropriate disposal of Ag NPs. The Ag NPs have medicinal, plasmonic, and catalytic properties. The Ag NPs can be prepared via physical, chemical, or biological routes, and the selection of any specific route depends largely on the end-use. The downside of a physical and chemical approach is that it requires a wide space, high temperature, high temperature for a longer time to preserve the thermal stability of synthesized Ag NPs, and the use of toxic chemicals. Although these methods produce nanoparticles with high purity and well-defined morphology, it is critical to develop cost-effective, energy-efficient, and facile route, such as green synthesis; it suggests the desirable use of renewable resources by avoiding the use of additional solvents and toxic reagents in order to achieve the ultimate goal. However, each method has its pros and cons. The synthesized Ag NPs obtained using the green approach have larger biocompatibility and are less toxic towards the biotic systems. However, identifying the phytoconstituents that are responsible for nanoparticle synthesis is difficult and has been reported as a suitable candidate for biological application. The concentration of the effective bioreducing phytoconstituents plays a crucial role in deciding the morphology of the nanoparticle. Besides these reaction times, temperature, pH, and concentration of silver salt are some of the key factors that determine the morphology. Hence, careful optimization in the methodology is required as different morphologies have different properties and usage. It is due to which the development of methods to prepare nanoparticles effectively using various plant extracts is gaining rapid momentum in recent days. To make sense of what involves in the bioreduction of silver salt and to isolate the secondary metabolites from plants are yet challenging. This review focuses on the contribution of plant-mediated Ag NPs in different applications and their toxicity in the aquatic system.
Collapse
|
22
|
Development and Characterization of Viburnum opulus L. Extract-Loaded Orodispersible Films: Potential Route of Administration for Phytochemicals. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Jayeoye TJ, Eze FN, Olatunde OO, Singh S, Zuo J, Olatunji OJ. Multifarious Biological Applications and Toxic Hg 2+ Sensing Potentiality of Biogenic Silver Nanoparticles Based on Securidaca inappendiculata Hassk Stem Extract. Int J Nanomedicine 2021; 16:7557-7574. [PMID: 34803379 PMCID: PMC8597655 DOI: 10.2147/ijn.s325996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The use of environmentally benign resources for nanoparticles synthesis is consistently pushed to the front burner in a bid to ensure and enhance environmental protection and beneficiation. In this light, application of different plant parts for the reduction and stabilization of nanoparticles is gaining popularity. MATERIALS AND METHODS In this contribution, we have exploited Securidaca inappendiculata stem extract (SISE), as the reducing and stabilizing agent for room temperature synthesis of highly stable and dispersed AgNPs. The major bioactive compounds in SISE were profiled using an ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-MS-QTOF-MS). RESULTS AND DISCUSSION SISE could reduce silver salts to its nanoparticles almost instantaneously with a maximum absorption spectrum at 423 nm, under the optimal conditions. The fabricated SISE AgNPs was extensively characterized using FTIR, TEM, SEM, XRD, EDS, Zeta analysis/DLS and TGA/DTG analysis. SISE AgNPs with average particles size between 10-15 nm and a zeta potential value of -19.5 ± 1.8 mV was obtained. It was investigated for in-vitro biological applications by carrying out, antimicrobial, antioxidant, hemolytic, cytotoxicity and antidiabetic assays. It was found that SISE AgNPs exhibited potent antimicrobial capacity against some food borne microbes, good antioxidant property, while also demonstrating high biocompatibility. Moreover, with a view to extending further the applications SISE AgNPs, it was tested as a colorimetric nanoprobe for Hg2+ detection in aqueous environment, where good linearity between 0.10 and 10.0 μM, with a detection limit of 26.5 nM, were obtained. The practicality of the probe was investigated by carrying out Hg2+ detection in water sample, with good accuracy and precision. DISCUSSION Overall, this work introduced a new stabilizer for biocompatible AgNPs with far-reaching applications.
Collapse
Affiliation(s)
- Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Science, Alex-Ekwueme Federal University Ndufu-Alike, Abakalilki, Ebonyi State, Nigeria
| | - Fredrick Nwude Eze
- Faculty of Pharmaceutical Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence of Center, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Oladipupo Odunayo Olatunde
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, R3T 6C5, Canada
| | - Sudarshan Singh
- Food Technology and Innovation Research Center of Excellence, Institute of Research and Innovation, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241001, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
24
|
Chamkouri N, Naghashpour M, Adelipour M, Mohammadi A, Seyedsadjadi N, Oliveira B, Golabi S. Cuminum cyminum L.-Mediated Synthesis of Silver Nanoparticles: Their Characterization and Effect on Formalin-Induced Nociceptive Response in Male Rats. Biol Trace Elem Res 2021; 199:4171-4182. [PMID: 33462794 DOI: 10.1007/s12011-020-02530-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In this study, a simple, low-cost, rapid, and eco-friendly approach for the biosynthesis of silver nanoparticles (AgNPs) using the aqueous extract of Cuminum cyminum L. (cumin) seed (CcAgNPs) was developed. Also, the anti-nociceptive properties of these synthesized AgNPs were evaluated in vivo. The CcAgNPs characterized using Ultraviolet-visible (UV-Vis) spectrophotometer, X-ray diffraction analysis (XRD), Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The analysis of phytochemical components in the aqueous extract of cumin seeds showed high concentrations of total phenols and ascorbic acid and low concentrations of total flavonoids. The analysis of phytochemical components and FTIR spectroscopy confirmed the presence of functional groups responsible for the bioreduction of Ag+ to AgNPs. The UV-Vis absorbance spectrum of CcAgNPs showed a maximum wavelength at 442 nm. The analysis of TEM images showed a spherical shape with a size of less than 50 nm, while XRD spectra revealed the crystallinity of CcAgNPs. The analysis of anti-nociceptive properties of CcAgNPs showed that the first phase of formalin-induced pain was significantly reduced in the groups receiving 200, 500, and 1000 mg/kg CcAgNPs compared with the controls and the group receiving 300 mg/kg of sodium salicylate (SS300). The second phase of formalin pain was also significantly reduced in the groups receiving 200 and 500 mg/kg CcAgNPs compared to the controls and SS300 group. Overall, we introduced a new AgNPs synthesized from cumin seeds (CcAgNPs) and showed their anti-nociceptive properties in the formalin-induced pain.
Collapse
Affiliation(s)
- Narges Chamkouri
- Department of Biochemistry, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Mahshid Naghashpour
- Department of Nutrition, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asma Mohammadi
- Department of Biochemistry, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Neda Seyedsadjadi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Barbara Oliveira
- Faculty of Health and Social Development, School of Health and Exercise Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sahar Golabi
- Department of Medical Physiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
25
|
Singh KR, Nayak V, Singh J, Singh AK, Singh RP. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv 2021; 11:24722-24746. [PMID: 35481029 PMCID: PMC9036962 DOI: 10.1039/d1ra04273d] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
To date, various reports have shown that metallic gold bhasma at the nanoscale form was used as medicine as early as 2500 B.C. in India, China, and Egypt. Owing to their unique physicochemical, biological, and electronic properties, they have broad utilities in energy, environment, agriculture and more recently, the biomedical field. The biomedical domain has been used in drug delivery, imaging, diagnostics, therapeutics, and biosensing applications. In this review, we will discuss and highlight the increasing control over metal and metal oxide nanoparticle structures as smart nanomaterials utilized in the biomedical domain to advance the role of biosynthesized nanoparticles for improving human health through wide applications in the targeted drug delivery, controlled release drug delivery, wound dressing, tissue scaffolding, and medical implants. In addition, we have discussed concerns related to the role of these types of nanoparticles as an anti-viral agent by majorly highlighting the ways to combat the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, along with their prospects.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Vanya Nayak
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh (221005) India
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| |
Collapse
|
26
|
Wu X, Xie J, Qiu L, Zou L, Huang Y, Xie Y, Xu H, He S, Zhang Q. The anti-inflammatory and analgesic activities of the ethyl acetate extract of Viburnum taitoense Hayata. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113742. [PMID: 33359186 DOI: 10.1016/j.jep.2020.113742] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viburnum taitoense Hayata has been used as folk medicine by the minority people in Southwestern China for a long history, especially in Guangxi Zhuang Autonomous Region. The minority in Guangxi including Zhuang, Miao and Yao people use the ethanol extract of V. taitoense Hayata to treat the fracture, kill the pain of rheumatism because of its definite therapeutic effects. AIM OF THE STUDY So far, the scientific investigation of V. taitoense Hayata is done very little. Here, we first prepared the ethyl acetate extract of V. taitoense (EEVt), secondly measured the contents of phenols, flavonoids, and terpenoids in EEVt, and thirdly, the anti-inflammatory and analgesic activities of EEVt were investigated by invitro model of RAW 264.7 cells and invivo models of inflammation and pain in rats and mice. MATERIALS AND METHODS The contents of phenols, flavonoids, and terpenoids in EEVt were determined by UV spectrophotometry, respectively. The anti-inflammatory effect of EEVt (5, 25, 50, 100, and 200 μg/mL) in vitro was tested by determining its inhibitory effect on the nitric oxide production of RAW264.7 cells activated by lipopolysaccharide (LPS). The anti-inflammatory and analgesic effects of EEVt in vivo were investigated in the following experimental rats and mice models: carrageenan-induced paw edema, corton-oil-induced ear edema, acetic acid writhing test, and formalin pain test. RESULTS The contents of total phenolic, total flavonoids, and total triterpenoids in V. taitoense were measured to be 3.46 ± 0.04%, 2.38 ± 0.04%, and 14.96 ± 0.17%, respectively. In vitro test showed that EEVt at different tested dosages (5, 25, 50, 100, and 200 μg/mL) had no significant toxicity to RAW264.7 macrophages. At dosages of 37.5 and 75 μg/mL of EEVt significant inhibitory (p < 0.001) on the productions of nitric oxide (NO). High dosage (200 μg/mL) of EEVt displayed highly significant inhibitory (p < 0.001) on the productions of proinflammatory cytokines IL-6, IL-1β, and TNF-α from the LPS-induced RAW264.7 macrophages. EEVt showed obvious anti-inflammatory activity at different time points after carrageenan injection (p < 0.05) in vivo test, and its anti-inflammatory activity reached the strongest 4 h. Similarly, through the ear swelling test, EEVt (200 mg/kg) showed significant (p < 0.05) anti-inflammatory activity. Besides, formalin and acetic acid writhing experiments also showed that EEVt has significant (p < 0.05) analgesic activity. CONCLUSION EEVt was confirmed to be definite anti-inflammatory and analgesic effects, and the phytochemicals of EEVt was disclosed to be rich in triterpenoids, which was worthy to be further investigated.
Collapse
Affiliation(s)
- Xinduo Wu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Jizhao Xie
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Li Qiu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Luhui Zou
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Yunfeng Huang
- Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, China.
| | - Yunfeng Xie
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Huanji Xu
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Shineng He
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| | - Qing Zhang
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
27
|
An Overview on the Conservative Management of Endometriosis from a Naturopathic Perspective: Phytochemicals and Medicinal Plants. PLANTS 2021; 10:plants10030587. [PMID: 33804660 PMCID: PMC8003677 DOI: 10.3390/plants10030587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Background: Endometriosis is a chronic and debilitating disease, which affects millions of young women worldwide. Although medicine has incontestably evolved in the last years, there is no common ground regarding the early and accurate diagnosis of this condition, its pathogenic mechanisms, and curative treatment. Even though the spontaneous resolution of endometriosis is sometimes possible, recent reports suggested that it can be a progressive condition. It can associate chronic pelvic pain, vaginal bleeding, infertility, or malignant degenerescence. Conventional treatments could produce many side effects, and despite treatment, the symptoms may reappear. In recent years, experimental evidence suggested that plant-based medicine could exert beneficial effects on endometriosis and endometriosis-related symptoms. This study aims to highlight the pharmaceutical activity of phytochemicals and medicinal plants against endometriosis and to provide a source of information regarding the alternative treatment of this condition. Methods: For this review, we performed a research using PubMed, GoogleScholar, and CrossRef databases. We selected the articles published between January 2000 and July 2020, written in English. Results: We found 17 medicinal plants and 13 phytochemicals, which have demonstrated their beneficial effects against endometriosis. Several of their biological activities consist of antiangiogenic, anti-inflammatory effects, and oxidative-stress reduction. Conclusion: Medicinal herbs and their bioactive compounds exhibit antiangiogenic, antioxidant, sedative and pain-alleviating properties and the effects recorded until now encourage their use for the conservative management of endometriosis.
Collapse
|
28
|
Bidian C, Filip GA, David L, Florea A, Moldovan B, Robu DP, Olteanu D, Radu T, Clichici S, Mitrea DR, Baldea I. The impact of silver nanoparticles phytosynthesized with Viburnum opulus L. extract on the ultrastrastructure and cell death in the testis of offspring rats. Food Chem Toxicol 2021; 150:112053. [PMID: 33577941 DOI: 10.1016/j.fct.2021.112053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
AIM To investigate the effects of prenatal exposure to AgNPs obtained by green synthesis with Viburnum opulus L. extract on the testis in male offspring rats. MATERIAL AND METHODS Two different doses of AgNPs (0.8 and 1.5 mg/kg b.w.) and vehicle (PBS) were administered to Wistar female rats on days 3-14 of gestation. At 6 weeks after birth, the ultrastructural changes in correlation with the amount of silver as well as the parameters of oxidative stress, inflammation and cell death mechanisms in the testis of male offspring were evaluated. RESULTS AgNPs administered during pregnancy crossed the placental and testicular barriers and induced oxidative stress, DNA damage and autophagy as mechanism of cell toxicity. The markers of inflammation and apoptosis decreased after AgNPs exposure while the NFkB activation increased. TEM examination revealed important ultrastructural changes of Sertoli cells, numerous vacuoles and cytoplasmic changes suggestive of the cell's evolution towards necrosis. CONCLUSION Phytoreduced silver nanoparticles with polyphenols from Viburnum opulus L. fruit extract, administered during the embryological development of the male gonad, have testicular toxic effects in offspring even at 6 weeks after birth.
Collapse
Affiliation(s)
- Cristina Bidian
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania.
| | - Luminita David
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering "Babes-Bolyai" University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349, Cluj Napoca, Romania
| | - Bianca Moldovan
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering "Babes-Bolyai" University, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Daniela Popa Robu
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Teodora Radu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293, Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Daniela-Rodica Mitrea
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, ''Iuliu Hatieganu'' University of Medicine and Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
29
|
Mi Z, Guo L, Liu P, Qi Y, Feng Z, Liu J, He Z, Yang X, Jiang S, Wu J, Ding J, Zhou W, Rong P. "Trojan Horse" Salmonella Enabling Tumor Homing of Silver Nanoparticles via Neutrophil Infiltration for Synergistic Tumor Therapy and Enhanced Biosafety. NANO LETTERS 2021; 21:414-423. [PMID: 33356313 DOI: 10.1021/acs.nanolett.0c03811] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salmonella selectively colonizes into the hypoxic tumor region and exerts antitumor effects via multiple mechanisms, while the tumor colonized Salmonella recruits host neutrophils into the tumor, presenting a key immunological restraint to compromise the Salmonella efficacy. Here, we develop a combinatorial strategy by employing silver nanoparticles (AgNPs) to improve the efficacy and biosafety of Salmonella. The AgNPs were decorated with sialic acid (SA) to allow selective recognition of L-selectin on neutrophil surfaces, based on which the tumor-homing of AgNPs was achieved by neutrophil infiltration in the Salmonella colonized tumor. The tumor-targeting AgNPs exert the functions of (1) local depletion of neutrophils in tumors to boost the efficacy of Salmonella, (2) direct killing tumor cells via L-selectin-mediated intracellular delivery, and (3) clearing the residual Salmonella after complete tumor eradication to minimize the side effects. With a single tail vein injection of such combination treatment, the tumor was eliminated with high biosafety, resulting in a superior therapeutic outcome.
Collapse
Affiliation(s)
- Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lina Guo
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Peng Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Zhichao Feng
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiao Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shengnan Jiang
- Department of Radiology, Xiangya School of Medicine Affiliated Haikou Hospital, Central South University, Hunan 410013, China
| | - Jianzhen Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
- Molecular Imaging Research Center, Central South University, Hunan 410013, China
| |
Collapse
|
30
|
Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent Advances in Antiinflammatory Material Design. Adv Healthc Mater 2021; 10:e2001373. [PMID: 33052031 DOI: 10.1002/adhm.202001373] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Implants and prostheses are widely used to replace damaged tissues or to treat various diseases. However, besides the risk of bacterial or fungal infection, an inflammatory response usually occurs. Here, recent progress in the field of anti-inflammatory biomaterials is described. Different materials and approaches are used to decrease the inflammatory response, including hydrogels, nanoparticles, implant surface coating by polymers, and a variety of systems for anti-inflammatory drug delivery. Complex multifunctional systems dealing with inflammation, microbial infection, bone regeneration, or angiogenesis are also described. New promising stimuli-responsive systems, such as pH- and temperature-responsive materials, are also being developed that would enable an "intelligent" antiinflammatory response when the inflammation occurs. Together, different approaches hold promise for creation of novel multifunctional smart materials allowing better implant integration and tissue regeneration.
Collapse
Affiliation(s)
- Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Sylvie Fournel
- Université de Strasbourg CNRS 3Bio team Laboratoire de Conception et Application de Molécules Bioactives UMR 7199 Faculté de Pharmacie 74 route du Rhin Illkirch Cedex 67401 France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| | | | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| |
Collapse
|
31
|
Yadav S, Prakash J, Shekhar H, Dwivedy A, Patel V, Tiwari S, Vishwakarma N. Green synthesis of silver nanoparticles using Eranthemum Pulchellum (Blue Sage) aqueous leaves extract: Characterization, evaluation of antifungal and antioxidant properties. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2021. [DOI: 10.4103/bbrj.bbrj_63_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Mikhailova EO. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J Funct Biomater 2020; 11:E84. [PMID: 33255874 PMCID: PMC7711612 DOI: 10.3390/jfb11040084] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/08/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
This review is devoted to the medical application of silver nanoparticles produced as a result of "green" synthesis using various living organisms (bacteria, fungi, plants). The proposed mechanisms of AgNPs synthesis and the action mechanisms on target cells are highlighted.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of innovation management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
33
|
Natural polysaccharide derived carbon dot based in situ facile green synthesis of silver nanoparticles: Synergistic effect on breast cancer. Int J Biol Macromol 2020; 162:1605-1615. [DOI: 10.1016/j.ijbiomac.2020.07.315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023]
|
34
|
Karakurt S, AbuŞoĞlu G, Arituluk ZC. Comparison of anticarcinogenic properties of Viburnum opulus and its active compound p-coumaric acid on human colorectal carcinoma. ACTA ACUST UNITED AC 2020; 44:252-263. [PMID: 33110363 PMCID: PMC7585157 DOI: 10.3906/biy-2002-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Resistance to therapeutic agents and the highly toxic side effects of synthetic drugs has spurred new research in the treatment of colon cancer, which has high morbidity and mortality ratios. This study aims to clarify the molecular mechanisms of the anticarcinogenic properties of methanol extract of Viburnum opulus L. (EVO)and its main active compound, trans-p -coumaric acid ( p -CA), on human colon cancer cells (DLD-1, HT-29, SW-620, Caco-2) and healthy colon epithelial cells (CCD-18Co). The effects of EVO on controlled cell death (apoptosis) and the cell division cycle were determined by flow cytometry. Alteration in mRNA and protein expressions of switch genes in colorectal carcinoma (APC, MLH1, TP53, SMAD4, KRAS, and BRAF) were determined by qRT-PCR and Western blot, respectively. Our results show that EVO possesses a strong reducing capacity and free-radical scavenging activity. HPLC analyses prove that p -CAis the main compound of EVO. EVO and p -CA inhibit the proliferation of human colon cancer cells DLD-1 and HT-29 in a dose-dependent manner. EVO increases apoptosis of DLD-1 cells and halts the cell cycle in the G2 stage in HT-29 cells. mRNA and protein expressions of p53 and SMAD-4 are upregulated, while BRAFs are downregulated. The results were directly proportional to p -CA. EVO and p -CA up- and downregulate switch genes and protein expressions of DLD-1 cells, which alter the expression of 186 other genes. This is the first study of pharmacological exploration of V.opulus in human colon cancer. Its antiproliferative effects may be due to the presence of p -CA.
Collapse
Affiliation(s)
- Serdar Karakurt
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya Turkey
| | - Gülsüm AbuŞoĞlu
- Department of Medical Laboratory Techniques, Vocational School of Health, Selçuk University, Konya Turkey
| | - Zekiye Ceren Arituluk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara Turkey
| |
Collapse
|
35
|
Adeleye OA, Badru AO, Oyinloye OE, Fagbohun AB, Bakre LG, Bamiro OA, Babalola CO, Lateef A. Green synthesized silver nanoparticles for cream formulation: its anti-inflammatory and healing activities. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/805/1/012016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Carrola J, Bastos V, Daniel‐da‐Silva AL, Gil AM, Santos C, Oliveira H, Duarte IF. Macrophage Metabolomics Reveals Differential Metabolic Responses to Subtoxic Levels of Silver Nanoparticles and Ionic Silver. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joana Carrola
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810‐193 Aveiro Portugal
| | - Verónica Bastos
- CESAM & Department of Biology University of Aveiro 3810‐193 Aveiro Portugal
| | - Ana L. Daniel‐da‐Silva
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810‐193 Aveiro Portugal
| | - Ana M. Gil
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810‐193 Aveiro Portugal
| | - Conceição Santos
- CESAM & Department of Biology University of Aveiro 3810‐193 Aveiro Portugal
- Department of Biology Faculty of Sciences University of Porto 4169‐007 Porto Portugal
| | - Helena Oliveira
- CESAM & Department of Biology University of Aveiro 3810‐193 Aveiro Portugal
| | - Iola F. Duarte
- CICECO Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810‐193 Aveiro Portugal
| |
Collapse
|
37
|
The Impact of Engineered Silver Nanomaterials on the Immune System. NANOMATERIALS 2020; 10:nano10050967. [PMID: 32443602 PMCID: PMC7712063 DOI: 10.3390/nano10050967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Over the last decades there has been a tremendous volume of research efforts focused on engineering silver-based (nano)materials. The interest in silver has been mostly driven by the element capacity to kill pathogenic bacteria. In this context, the main area of application has been medical devices that are at significant risk of becoming colonized by bacteria and subsequently infected. However, silver nanomaterials have been incorporated in a number of other commercial products which may or may not benefit from antibacterial protection. The rapid expansion of such products raises important questions about a possible adverse influence on human health. This review focuses on examining currently available literature and summarizing the current state of knowledge of the impact of silver (nano)materials on the immune system. The review also looks at various surface modification strategies used to generate silver-based nanomaterials and the immunomodulatory potential of these materials. It also highlights the immune response triggered by various silver-coated implantable devices and provides guidance and perspective towards engineering silver nanomaterials for modulating immunological consequences.
Collapse
|
38
|
Green Synthesis of Ag-MnO 2 Nanoparticles using Chelidonium majus and Vinca minor Extracts and Their In Vitro Cytotoxicity. Molecules 2020; 25:molecules25040819. [PMID: 32070017 PMCID: PMC7070435 DOI: 10.3390/molecules25040819] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
Medicinal plants are often used as reducing agents to prepare metal nanoparticles through green-synthesis due to natural compounds and their potential as chemotherapeutic drugs. Thus, three types of eco-friendly Ag-MnO2 nanoparticles (Ag-MnO2NPs) were synthesized using C. majus (CmNPs), V. minor (VmNPs), and a 1:1 mixture of the two extracts (MNPs). These NPs were characterized using S/TEM, EDX, XRD, and FTIR methods, and their biological activity was assessed in vitro on normal keratinocytes (HaCaT) and skin melanoma cells (A375). All synthesized NPs had manganese oxide in the middle, and silver oxide and plant extract on the exterior. The NPs had different forms (polygonal, oval, and spherical), uniformly distributed, with crystalline structures and different sizes (9.3 nm for MNPs; 10 nm for VmNPs, and 32.4 nm for CmNPs). The best results were obtained with VmNPs, which reduced the viability of A375 cells up 38.8% and had a moderate cytotoxic effect on HaCaT (46.4%) at concentrations above 500 µg/mL. At the same concentrations, CmNPs had a rather proliferative effect, whereas MNPs negatively affected both cell lines. For the first time, this paper proved the synergistic action of the combined C. majus and V. minor extracts to form small and uniformly distributed Ag-MnO2NPs with high potential for selective treatments.
Collapse
|
39
|
David L, Moldovan B, Baldea I, Olteanu D, Bolfa P, Clichici S, Filip GA. Modulatory effects of Cornus sanguinea L. mediated green synthesized silver nanoparticles on oxidative stress, COX-2/NOS2 and NFkB/pNFkB expressions in experimental inflammation in Wistar rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110709. [PMID: 32204021 DOI: 10.1016/j.msec.2020.110709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
The present study presents a green, cost efficient and easy synthesis method of silver nanoparticles (AgNPs) using an aqueous extract of Cornus sanguinea L. fruits (CS). The phytosynthesized silver nanoparticles were characterized using various analytical techniques such as UV-Vis absorption spectroscopy, which confirmed the formation of AgNPs and FTIR spectroscopy, in order to certify the role of the biomolecules present in the fruit extract as reducing and capping agents of the AgNPs. The UV-Vis absorption spectrum showed a broad band at 407 nm characteristic for colloidal silver. Transmission electron microscopy was conducted to investigate the shape and size of the silver nanoparticles, revealing a spherical shape with an average particle size of 18 nm. The antioxidant and anti-inflammatory activities of the fruit extract and green synthesized silver nanoparticles were assessed in vivo on experimental inflammation. The obtained results showed that CS and AgNPs reduced oxidative stress in parallel with increasing of antioxidant defense and diminished the COX-2 expressions. CS extract had a dual effect on NFkB activation depending on the time of testing while AgNPs increased NFkB phosphorylation at 48 h. These results suggested that both AgNPs and CS extract exhibited antioxidant and anti-inflammatory activities but with a different dynamics of action.
Collapse
Affiliation(s)
- Luminita David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, "Babeş-Bolyai" University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Bianca Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, "Babeş-Bolyai" University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania.
| | - Ioana Baldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, Cluj-Napoca 400006, Romania
| | - Diana Olteanu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, Cluj-Napoca 400006, Romania
| | - Pompei Bolfa
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur Street, Cluj-Napoca 400372, Romania; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis
| | - Simona Clichici
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, Cluj-Napoca 400006, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 1-3 Clinicilor Street, Cluj-Napoca 400006, Romania.
| |
Collapse
|
40
|
David L, Moldovan B. Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E202. [PMID: 31991548 PMCID: PMC7074911 DOI: 10.3390/nano10020202] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
The present article reports an environmentally benign method for synthesizing silver nanoparticles using the fruit extract of Viburnum opulus L. as a source of bioactive compounds, which can act as reducing agents of the silver ions and also as stabilizing agents of the obtained nanoparticles. The catalytic ability of the synthesized silver nanoparticles (AgNPs) to remove toxic organic dyes was also evaluated. The biosynthesis of silver nanoparticles was firstly confirmed by UV-Vis spectral analysis, which revealed the presence of the characteristic absorption peak at 415 nm corresponding to the surface plasmon vibration of colloidal silver. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) studies were conducted to confirm the presence of bioactive phytocompounds, especially phenolics, as capping and stabilizing agents of the AgNPs. The size, morphology and crystalline nature of the synthesized AgNPs were investigated by transmission electron microscopy and X-ray diffraction techniques revealing that the obtained nanoparticles were spherical shaped, with an average diameter of 16 nm, monodispersed, face centered cubic nanoparticles. Further, the catalytic ability in the degradation of tartrazine, carmoisine and brilliant blue FCF dyes by NaBH4 was evaluated. The results demonstrated an efficient activity against all the investigated dyes being an outstanding catalyst for the degradation of brilliant blue FCF. This eco-friendly synthetic approach can generate new tools useful in environmental pollution control.
Collapse
Affiliation(s)
| | - Bianca Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj-Napoca, Romania;
| |
Collapse
|
41
|
Hussain Z, Thu HE, Sohail M, Khan S. Hybridization and functionalization with biological macromolecules synergistically improve biomedical efficacy of silver nanoparticles: Reconceptualization of in-vitro, in-vivo and clinical studies. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Kumari R, Saini AK, Kumar A, Saini RV. Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. J Biol Inorg Chem 2019; 25:23-37. [PMID: 31641851 DOI: 10.1007/s00775-019-01729-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 12/09/2022]
Abstract
The current study was carried out to synthesize silver nanoparticles (AgNPs) via bioactive fraction of Pinus roxburghii needles using a simple, cost-effective, and eco-friendly green chemistry method. As butanol fraction of P. roxburghii exhibited maximum anticancer activity on lung adenocarcinomas (A549) as compared to other fractions therefore, butanol fraction was used to synthesize silver nanoparticles (PNb-AgNPs). The characterization studies by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED) confirmed the synthesis of the nanoparticles. The field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) analysis showed the spherical structure of nanoparticles with an average diameter of approximately 80 nm. Interestingly, PNb-AgNPs exhibited significant cytotoxicity towards both A549 and prostatic small cell carcinomas (PC-3) with IC50 values of 11.28 ± 1.28 μg/ml and 56.27 ± 1.17 μg/ml, respectively, while lacking toxicity against normal human breast epithelial cells (fR2) and human peripheral blood lymphocytes (PBL). Further, enhanced reactive oxygen species generation, mitochondrial depolarization, apoptotic cell population (sub-G1) and DNA fragmentation observed in cancer cells were treated with PNb-AgNPs. Apoptosis was demonstrated by caspase-3 and PARP-1 activation in PNb-AgNPs-pretreated cancer cells. These results strongly suggest that PNb-AgNPs are capable of inducing cancer cell death and could act as a therapeutic nanoformulation for cancer.
Collapse
Affiliation(s)
- Reena Kumari
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Adesh K Saini
- Faculty of Basic Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Amit Kumar
- Faculty of Basic Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Reena V Saini
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
43
|
Characterization of cellulose acetate/gum Arabic fibers loaded with extract of Viburnum opulus L. fruit. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.085] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Bazana MT, Codevilla CF, de Menezes CR. Nanoencapsulation of bioactive compounds: challenges and perspectives. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Barbinta-Patrascu ME, Badea N, Bacalum M, Ungureanu C, Suica-Bunghez IR, Iordache SM, Pirvu C, Zgura I, Maraloiu VA. 3D hybrid structures based on biomimetic membranes and Caryophyllus aromaticus - "green" synthesized nano-silver with improved bioperformances. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:120-137. [PMID: 31029305 DOI: 10.1016/j.msec.2019.03.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
The paper describes an innovative bio-design of some hybrid nanoarchitectures containing bioartificial membranes and silver nanoparticles phytogenerated by using a natural extract Caryophyllus aromaticus (cloves) that contains many bioactive compounds. Two kinds of liposomes with and without chlorophyll a (Chla) obtained through thin film hydration method were used to achieve bio-green-generated hybrids by a simple, cost effective bottom-up approach. The characteristic peaks of CE-nAg monitored by UV-Vis absorption have firstly demonstrated the biohybrids formation. The slightly blue shift and fluorescence quenching observed by fluorescence emission spectra highlighted the formation of hybrid systems by biointeraction between lipid vesicles and silver nanoparticles. The incorporation of silver nanoparticles in lipid vesicles resulted in significant changes of FT-IR spectra of liposomes, indicating a reorganization of biomimetic membranes. All the microscopic methods (SEM, AFM and TEM) confirmed the biosynthesis of "green" AgNPs together with associated biohybrids, their spherical and quasi-spherical shapes with nano-scaled size. By TEM assay it was shown that CE-nAg are surrounded by petal like cloud structures that consist of biopolymers like proteins or polysaccharides and other phytochemicals arising from clove extract. EDS spectra confirmed the formation of phyto-nanoAg and also the presence of silver in the biohybrids. In addition, Selected Area Electron Diffraction showed characteristic polycrystalline ring patterns for a cubic structure of the clove-generated AgNPs. The hybrid materials showed efficient physical stability,i.e. ξ value of -28.0 mV (for biohybrids without Chla, BH) and of -31.7 mV (for biohybrids labelled with Chla, Chla-BH), assured by strong electrostatic repulsive forces between particles. The "green" nano-silver particles (CE-nAg) showed remarkable antioxidant activity (AA = 90.2%). The biohybrids loaded with clove-AgNPs proved to be more effective, scavenging about 98.8% of free radicals (in case of Chla-BH), and of 92.6% (in case of BH). The antibacterial effectiveness showed that green AgNPs combine in a synergistic manner the antibacterial properties of clove extract with those of silver, resulting in an enhancement of inhibition diameter, by 20%. Chla-BH proved to be more potent against Escherichia coli, than BH, exhibiting an inhibition diameter of 42 mm. Regarding the in vitro cytotoxicity against tumour cells, the CE-nAg concentration significantly influenced the cell viability, i.e. IC50 was 3.6% (v/v) for HT-29 cells. Chla-BH was more effective against HT-29 cancer cells at the concentrations ranging from 0 to 18% (v/v), when the normal cells were not affected. Clove-generated AgNPs exhibited haemolytic activity against hRBCs, while the biohybrids were haemocompatible. The action mechanism on the two cell lines (mouse fibroblast L929 cells and human colorectal adenocarcinoma HT-29 cells) investigated by fluorescence microscopy demonstrated that CE-nAg killed almost all the cells (94%) through necrosis at a concentration of 33.4% (v/v). The treatment of HT-29 cells with BH resulted in: 71.5% viable cells, 19.5% apoptotic and only 9% necrotic cells, while in the case of Chla-BH treatment, only 77.5% cells were viable, 16% cells were apoptotic and 6.5% were necrotic. In this way, the developed silver-based nanoparticles can represent viable promoters to develop new biohybrids with improved features, e.g. antioxidant and antibacterial effectiveness, haemolytic activity and greater specificity towards tumour cells.
Collapse
Affiliation(s)
- Marcela Elisabeta Barbinta-Patrascu
- University of Bucharest, Faculty of Physics, Department of Electricity, Solid-State Physics and Biophysics, 405 Atomistilor Street, PO Box MG-11, Bucharest, Magurele 077125, Romania
| | - Nicoleta Badea
- University "Politehnica" of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7, Polizu Str., 011061 Bucharest, Romania.
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului, 30, Magurele, Romania.
| | - Camelia Ungureanu
- University "Politehnica" of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7, Polizu Str., 011061 Bucharest, Romania
| | | | - Stefan Marian Iordache
- University of Bucharest, Faculty of Physics, 3Nano-SAE Research Centre, PO Box MG-38, Bucharest, Magurele 077125, Romania
| | - Cristian Pirvu
- University "Politehnica" of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7, Polizu Str., 011061 Bucharest, Romania
| | - Irina Zgura
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, Bucharest, Magurele 077125, Romania
| | - Valentin Adrian Maraloiu
- National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, Bucharest, Magurele 077125, Romania
| |
Collapse
|
46
|
Opris R, Toma V, Olteanu D, Baldea I, Baciu AM, Lucaci FI, Berghian-Sevastre A, Tatomir C, Moldovan B, Clichici S, David L, Florea A, Filip GA. Effects of silver nanoparticles functionalized with Cornus mas L. extract on architecture and apoptosis in rat testicle. Nanomedicine (Lond) 2019; 14:275-299. [DOI: 10.2217/nnm-2018-0193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess ultrastructural changes, alterations in matrix metalloproteinase activity and apoptosis induced by silver nanoparticles (AgNPs) in the rat testicle. Materials & methods: For 45 days, two groups of animals received different doses of AgNPs (0.8 and 1.5 mg/kg b.w.), and a control group was given the buffer used as vehicle for AgNPs. At 7 and 15 days post-treatment, transmission electron microscopy, TUNEL assay, evaluation of NFkB, pNFkB, p53, Bcl-2 and Nrf2 expressions were performed on the removed testes. Results: Transmission electron microscopy revealed severe ultrastructural changes of interstitial tissue and seminiferous epithelium sustained by positive signal for apoptosis. The promatrix metalloproteinase-2 activity and NFkB, Bcl-2 expressions were increased, mainly at 7 days. Conclusion: AgNPs induced severe cell lesions identified even a long time after the exposure.
Collapse
Affiliation(s)
- Razvan Opris
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Vlad Toma
- Department of Molecular Biology & Biotechnology, Faculty of Biology & Geology, ‘Babes-Bolyai’ University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Department of Biochemistry & Experimental Biology, Institute of Biological Research, 48 Republicii Street, branch of NIRDBS Bucharest, 400015 Cluj-Napoca, Romania
- Department of Molecular & Biomolecular Physics, NIRD for Isotopic & Molecular Technologies, 101 Donath Street, 400293 Cluj-Napoca, Romania
| | - Diana Olteanu
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Alina Mihaela Baciu
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Florica Imre Lucaci
- Physico-Chemical Analysis Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, ‘Babes-Bolyai’ University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Alexandra Berghian-Sevastre
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Corina Tatomir
- Departments of Radiobiology & Tumour Biology, ‘Ion Chiricuta’ Oncology Institute, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Bianca Moldovan
- Department of Chemistry, Faculty of Chemistry & Chemical Engineering, ‘Babes-Bolyai’ University, 11. Arany Janos, 400028 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| | - Luminita David
- Department of Chemistry, Faculty of Chemistry & Chemical Engineering, ‘Babes-Bolyai’ University, 11. Arany Janos, 400028 Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell & Molecular Biology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy 6, Louis Pasteur Street, 400349, Cluj Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, ‘Iuliu Hatieganu’ University of Medicine & Pharmacy, 1–3 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
47
|
Rajkumar T, Sapi A, Das G, Debnath T, Ansari A, Patra JK. Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:1-7. [PMID: 30776484 DOI: 10.1016/j.jphotobiol.2019.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 02/08/2023]
Abstract
Silver nanoparticles (AgNPs) possesses a number of exceptional pharmaceutical properties and applications as compared with other types of metallic nanoparticles. Currently, AgNPs was biosynthesized using an aqueous extract of Zea mays L. (corn flour) powder. Further, the effect of concentration of reagents, extract, temperature and time of synthesis was also studied along with the cytotoxicity and radical scavenging potential. UV-vis spectra of AgNPs gave a surface plasmon resonance at ~420 nm. The absorption peak became sharp with the increase in time. AgNPs with monodispersed and aggregated spherical shape was observed by SEM image followed by its confirmation via strong signal in silver region of EDX spectrum. The XRD spectra confirmed its crystallinity and face-centered cubic structure. FT-IR spectra reveal the presence of phytocompounds in the synthesis of AgNPs. Further, the AgNPs exhibited strong cytotoxicity potential against HepG2 cells and its viability declined with an increase in the concentration of AgNP with respect to the control cells. It also demonstrated reasonable radical scavenging potential in terms of DPPH and ABTS scavenging, and reducing power tests. Taken together, these results of the current investigation stated that AgNPs could be beneficial in biomedical applications particularly for treatment of cancer disease along with its applications in pharmaceutical industries for the formulation of new drugs.
Collapse
Affiliation(s)
- T Rajkumar
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Andras Sapi
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Republic of Korea
| | - Trishna Debnath
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Republic of Korea
| | - AbuZar Ansari
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Ilsandong-gu, Gyeonggi-do 10326, Republic of Korea; College of Pharmacy, Dongguk University, Ilsandong-gu, Gyeonggi-do 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
48
|
Agarwal H, Nakara A, Shanmugam VK. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed Pharmacother 2019; 109:2561-2572. [DOI: 10.1016/j.biopha.2018.11.116] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/14/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022] Open
|
49
|
Tri Handok C, Huda A, Gulo F. Synthesis Pathway and Powerful Antimicrobial Properties of Silver Nanoparticle: A Critical Review. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ajsr.2019.1.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Suwan T, Khongkhunthian S, Sirithunyalug J, Okonogi S. Effect of rice variety and reaction parameters on synthesis and antibacterial activity of silver nanoparticles. Drug Discov Ther 2018; 12:267-274. [PMID: 30464157 DOI: 10.5582/ddt.2018.01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the present study, three different rice varieties; Jasmine (JM), Niaw Koko-6 (NKK), and Saohai (SH) were determined for reducing power using ferric reducing antioxidant power (FRAP) assay. SH showed the highest reducing property followed by JM and NKK, respectively. All modified rice samples were used to fabricate silver nanoparticles (AgNPs) by reducing silver nitrate (AgNO3) to metallic Ag. The obtained AgNPs from JM, NKK, and SH namely JM-AgNPs, NKK-AgNPs, and SH-AgNPs, respectively, showed maximum absorption at 410, 408, and 409 nm, respectively, which confirmed the spectra of AgNPs. Reaction parameters such as AgNO3 and modified rice concentration as well as the reaction period were investigated. It was found that increasing of these parameters gave better AgNPs until the concentration of modified rice and AgNO3 reached to 0.3% and 10 mM, respectively and the reaction period reached to 60 min, the most suitable AgNPs were obtained. Among the three rice varieties, SH showed the most potential for synthesis of AgNPs. SH-AgNPs showed the smallest size of 80.4 ± 2.8 nm and the highest zeta potential of - 45.9 ± 1.4 mV. The AgNPs obtained from all three rice varieties showed effective against Escherichia coli than Staphylococcus aureus and SH-AgNPs showed significantly higher antibacterial activity than JM- AgNPs and NKK-AgNPs.
Collapse
Affiliation(s)
- Temsiri Suwan
- Interdisciplinary Program in Nanoscience and Nanotechnology, Chiang Mai University
| | - Sakornrat Khongkhunthian
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University
| | - Jakkapan Sirithunyalug
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University
| | - Siriporn Okonogi
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University
| |
Collapse
|