1
|
Huang L, Zhou Y, Hu X, Yang Z. Emerging Combination of Hydrogel and Electrochemical Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409711. [PMID: 39679847 DOI: 10.1002/smll.202409711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Electrochemical sensors are among the most promising technologies for biomarker research, with outstanding sensitivity, selectivity, and rapid response capabilities that make them important in medical diagnostics and prognosis. Recently, hydrogels have gained attention in the domain of electrochemical biosensors because of their superior biocompatibility, excellent adhesion, and ability to form conformal contact with diverse surfaces. These features provide distinct advantages, particularly in the advancement of wearable biosensors. This review examines the contemporary utilization of hydrogels in electrochemical sensing, explores strategies for optimization and prospective development trajectories, and highlights their distinctive advantages. The objective is to provide an exhaustive overview of the foundational principles of electrochemical sensing systems, analyze the compatibility of hydrogel properties with electrochemical methodologies, and propose potential healthcare applications to further illustrate their applicability. Despite significant advances in the development of hydrogel-based electrochemical biosensors, challenges persist, such as improving material fatigue resistance, interfacial adhesion, and maintaining balanced water content across various environments. Overall, hydrogels have immense potential in flexible biosensors and provide exciting opportunities. However, resolving the current obstacles will necessitate additional research and development efforts.
Collapse
Affiliation(s)
- Lingting Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuyang Zhou
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
2
|
Lu W, Wang X, Kong C, Chen S, Hu C, Zhang J. Hemoadhican-Based Bioabsorbable Hydrogel for Preventing Postoperative Adhesions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17267-17284. [PMID: 38556996 DOI: 10.1021/acsami.4c01088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Postoperative peritoneal adhesions are a prevalent clinical issue following abdominal and pelvic surgery, frequently resulting in heightened personal and societal health burdens. Traditional biomedical barriers offer limited benefits because of practical challenges for doctors and their incompatibility with laparoscopic surgery. Hydrogel materials, represented by hyaluronic acid gels, are receiving increasing attention. However, existing antiadhesive gels still have limited effectiveness or carry the risk of complications in clinical applications. Herein, we developed a novel hydrogel using polysaccharide hemoadhican (HD) as the base material and polyethylene glycol diglycidyl ether (PEGDE) as the cross-linking agent. The HD hydrogels exhibit appropriate mechanical properties, injectability, and excellent cytocompatibility. We demonstrate resistance to protein adsorption and L929 fibroblast cell adhesion to the HD hydrogel. The biodegradability and efficacy against peritoneal adhesion are further evaluated in C57BL/6 mice. Our results suggest a potential strategy for anti-postoperative tissue adhesion barrier biomaterials.
Collapse
Affiliation(s)
- Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Li X, Zhao Z, Cui B, Li Y. Sanchi-mediated inactivation of IL1B accelerates wound healing through the NFκB pathway deficit. Heliyon 2024; 10:e26982. [PMID: 38468975 PMCID: PMC10926082 DOI: 10.1016/j.heliyon.2024.e26982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Context Sanchi promotes wound healing by repressing fibroblast proliferation. Objective This study examined the effect of Sanchi on keratinocytes (KCs) and microvascular endothelial cells (MECs) and rats with skin injury. Materials & methods Hydrogels containing different concentrations of Sanchi extract were prepared to observe wound closure over 10 days. SD rats were divided into the control, Hydrogel, 5% Hydrogel, 10% Hydrogel, 10% Hydrogel + Ad5-NC, and 10% Hydrogel + Ad5-IL1B groups. KCs and MECs were induced with H2O2 for 24 h. Cell viability, apoptosis, and the levels of inflammation- and oxidative stress-related factors were examined. The effect of IL1B on wound healing was also evaluated. Results Compared to the Control group (83% ± 7.4%) or Hydrogel without Sanchi extract (84% ± 8.5%), Hydrogel with 5% (95% closure ± 4.0%) or 10% Sanchi extract (98% ± 1.7%) accelerated wound healing in rats and attenuated inflammation and oxidative stress. Hydrogels containing Sanchi extract increased collagen deposition and CD31 expression in tissues. H2O2 (100 μM) induced injury in KCs and MECs, whereas Sanchi rescued the viability of KCs and MECs. Sanchi inhibited cell inflammation and oxidative stress and decreased apoptosis. As Sanchi blocked the NFκB pathway via IL1B, IL1B mitigated the therapeutic effect of Sanchi. Discussion and conclusion Sanchi demonstrated therapeutic effects on wound healing in rats by promoting KCs and MECs activity. These findings provide valuable information for the clinical application of Sanchi, which needs to be validated in future clinical trials.
Collapse
Affiliation(s)
- Xiaoling Li
- Health Control Department, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450016, Henan, PR China
| | - Zhiwei Zhao
- Department of Hand Surgery & Micro Orthopedics, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450016, Henan, PR China
| | - Bo Cui
- Department of Hand Surgery & Micro Orthopedics, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450016, Henan, PR China
| | - Yanfeng Li
- Department of Hand Surgery & Micro Orthopedics, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450016, Henan, PR China
| |
Collapse
|
4
|
Zhao J, Qiu P, Wang Y, Wang Y, Zhou J, Zhang B, Zhang L, Gou D. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol 2023:125250. [PMID: 37307982 DOI: 10.1016/j.ijbiomac.2023.125250] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
As promising biomaterials, hydrogels are widely used in the medical engineering field, especially in wound repairing. Compared with traditional wound dressings, such as gauze and bandage, hydrogel could absorb and retain more water without dissolving or losing its three-dimensional structure, thus avoiding secondary injury and promoting wound healing. Chitosan and its derivatives have become hot research topics for hydrogel wound dressing production due to their unique molecular structure and diverse biological activities. In this review, the mechanism of wound healing was introduced systematically. The mechanism of action of chitosan in the first three stages of wound repair (hemostasis, antimicrobial properties and progranulation), the effect of chitosan deacetylation and the molecular weight on its performance are analyzed. Additionally, the recent progress in intelligent and drug-loaded chitosan-based hydrogels and the features and advantages of chitosan were discussed. Finally, the challenges and prospects for the future development of chitosan-based hydrogels were discussed.
Collapse
Affiliation(s)
- Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jianing Zhou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Baochun Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
5
|
Fang Y, Huang S, Gong X, King JA, Wang Y, Zhang J, Yang X, Wang Q, Zhang Y, Zhai G, Ye L. Salt sensitive purely zwitterionic physical hydrogel for prevention of postoperative tissue adhesion. Acta Biomater 2023; 158:239-251. [PMID: 36581005 DOI: 10.1016/j.actbio.2022.12.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Abdominal adhesions are a class of serious complications following abdominal surgery, resulting in a complicated and severe syndrome and sometimes leading to a Gordian knot. Traditional therapies employ hydrogels synthesized using complicated chemical formulations-often with click chemistry or thermal responsive hydrogel. The complicated synthesis process and severe conditions limit the extent of the hydrogels' applications. In this work, poly 3-[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (PSBMA) polymer was synthesized to self-assemble into physical hydrogels due to the inter- and intramolecular ion interactions. The strong static interaction bonding density has a substantial impact on the gelation and physicochemical properties, which is beneficial to clinical applications and offers a novel way to obtain the desired hydrogel for a specific biomedical application. Intriguingly, this PSBMA polymer can be customized into a transient network with outstanding antifouling capability depending on the ion concentration. As ion concentration increases, the PSBMA hydrogel dissociated completely, endowing it as a candidate for adhesion prevention. In the cecum-sidewall model, the PSBMA hydrogel demonstrated superior anti-adhesion properties than commercial HA hydrogel. Furthermore, we have demonstrated that this PSBMA hydrogel could inhibit the inflammatory response and encourage anti-fibrosis resulting in adhesion prevention. Most surprisingly, the recovered skins of cecum and sidewall are as smooth as the control skin without any scar and damage. In conclusion, a practical hydrogel was synthesized using a facile method based on purely zwitterionic materials, and this ion-sensitive, antifouling adjustable supramolecular hydrogel with great clinic transform potential is a promising barrier for preventing postoperative tissue adhesion. STATEMENT OF SIGNIFICANCE: The development of hydrogels with satisfactory coverage, long retention time, facile synthetic method, and good biocompatibility is vital for preventing peritoneal adhesions. Herein, we developed a salt sensitive purely zwitterionic physical hydrogel poly 3-[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (PSBMA) hydrogel to effectively prevent postoperative and recurrent abdominal adhesions. The hydrogel was simple to synthesize and easy to use. In the cecum-sidewall model, PSBMA hydrogel could instantaneously adhere and fix on irregular surfaces and stay in the wound for more than 10 days. The PSBMA hydrogel could inhibit the inflammatory response, encourage anti-fibrosis, and restore smoothness to damaged surfaces resulting in adhesion prevention. Overall, the PSBMA hydrogel is a promising candidate for the next generation of anti-adhesion materials to meet clinical needs.
Collapse
Affiliation(s)
- Yuelin Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China
| | - Susu Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China
| | - Xin Gong
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Julia A King
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Jicheng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China
| | - Qiong Wang
- College of Chemistry, Shandong Normal University, Jinan 250014, China
| | - Yabin Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China.
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China.
| |
Collapse
|
6
|
Ensan B, Bathaei P, Nassiri M, Khazaei M, Hassanian SM, Abdollahi A, Ghorbani HR, Aliakbarian M, Ferns GA, Avan A. The Therapeutic Potential of Targeting Key Signaling Pathways as a Novel Approach to Ameliorating Post-Surgical Adhesions. Curr Pharm Des 2022; 28:3592-3617. [PMID: 35466868 DOI: 10.2174/1381612828666220422090238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Peritoneal adhesions (PA) are a common complication of abdominal operations. A growing body of evidence shows that inhibition of inflammation and fibrosis at sites of peritoneal damaging could prevent the development of intra-abdominal adhesions. METHODS A search of PubMed, Medline, CINAHL and Embase databases was performed using the keywords 'postsurgical adhesion', 'post-operative adhesion', 'peritoneal adhesion', 'surgery-induced adhesion' and 'abdominal adhesion'. Studies detailing the use of pharmacological and non-pharmacological agents for peritoneal adhesion prevention were identified, and their bibliographies were thoroughly reviewed to identify further related articles. RESULTS Several signaling pathways, such as tumor necrosis factor-alpha, tissue plasminogen activator, and type 1 plasminogen activator inhibitor, macrophages, fibroblasts, and mesothelial cells play a key part in the development of plasminogen activator. Several therapeutic approaches based on anti-PA drug barriers and traditional herbal medicines have been developed to prevent and treat adhesion formation. In recent years, the most promising method to prevent PA is treatment using biomaterial-based barriers. CONCLUSION In this review, we provide an overview of the pathophysiology of adhesion formation and various agents targeting different pathways, including chemical agents, herbal agents, physical barriers, and clinical trials concerning this matter.
Collapse
Affiliation(s)
- Behzad Ensan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parsa Bathaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Abdollahi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Ghorbani
- Orology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Aliakbarian
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Akhlaghi S, Rabbani S, Karimi H, Haeri A. Hyaluronic acid gel incorporating curcumin-phospholipid complex nanoparticles prevents postoperative peritoneal adhesion. J Pharm Sci 2022. [DOI: 10.1016/j.xphs.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Gan J, Sun L, Guan C, Ren T, Zhang Q, Pan S, Zhang Q, Chen H. Preparation and Properties of Salecan-Soy Protein Isolate Composite Hydrogel Induced by Thermal Treatment and Transglutaminase. Int J Mol Sci 2022; 23:9383. [PMID: 36012648 PMCID: PMC9409434 DOI: 10.3390/ijms23169383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022] Open
Abstract
Salecan (Sal) is a novel marine microbial polysaccharide. In the present research, Sal and soy protein isolate (SPI) were adopted to fabricate Sal-SPI composite hydrogel based on a stepwise process (thermal treatment and transglutaminase induction). The effect of Sal concentration on morphology, texture properties, and the microstructure of the hydrogel was evaluated. As Sal concentration varied from 0.4 to 0.6 wt%, hydrogel elasticity increased from 0.49 to 0.85 mm. Furthermore, the internal network structure of Sal-SPI composite hydrogel also became denser and more uniform as Sal concentration increased. Rheological studies showed that Sal-SPI elastic hydrogel formed under the gelation process. Additionally, FTIR and XRD results demonstrated that hydrogen bonds formed between Sal and SPI molecules, inferring the formation of the interpenetrating network structure. This research supplied a green and simple method to fabricate Sal-SPI double network hydrogels.
Collapse
Affiliation(s)
- Jing Gan
- College of Life Science, Yantai University, No. 30 Qingquan Road, Laishan Strict, Yantai 264000, China
| | - Lirong Sun
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Chenxia Guan
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Teng Ren
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Qinling Zhang
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Shihui Pan
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Qian Zhang
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
9
|
Waldron MG, Judge C, Farina L, O’Shaughnessy A, O’Halloran M. Barrier materials for prevention of surgical adhesions: systematic review. BJS Open 2022; 6:6602139. [PMID: 35661871 PMCID: PMC9167938 DOI: 10.1093/bjsopen/zrac075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Postoperative surgical adhesions constitute a major health burden internationally. A wide range of materials have been evaluated, but despite constructive efforts and the obvious necessity, there remains no specific barrier widely utilized to prevent postoperative adhesion formation. The aim of this study was to highlight and characterize materials used for prevention of postoperative surgical adhesions in both animal and human studies. METHODS A systematic review was performed of all original research articles presenting data related to the prevention of postoperative adhesions using a barrier agent. All available observational studies and randomized trials using animal models or human participants were included, with no restrictions related to type of surgery. PubMed and Embase databases were searched using key terms from inception to August 2019. Standardized data collection forms were used to extract details for each study and assess desirable characteristics of each barrier and success in animal and/or human studies. RESULTS A total of 185 articles were identified for inclusion in the review, with a total of 67 unique adhesion barrier agents (37 natural and 30 synthetic materials). Desirable barrier characteristics of an ideal barrier were identified on review of the literature. Ten barriers achieved the primary outcome of reducing the incidence of postoperative adhesions in animal studies followed with positive outputs in human participants. A further 48 materials had successful results from animal studies, but with no human study performed to date. DISCUSSION Multiple barriers showed promise in animal studies, with several progressing to success, and fulfilment of desirable qualities, in human trials. No barrier is currently utilized commonly worldwide, but potential barriers have been identified to reduce the burden of postoperative adhesions and associated sequelae.
Collapse
Affiliation(s)
- Michael Gerard Waldron
- Correspondence to: Michael Gerard Waldron, Translational Medical Device Lab, Galway University Hospital, Newcastle Road, Galway, Ireland H91YR71 (e-mail: )
| | - Conor Judge
- Translational Medical Device Laboratory, National University of Ireland Galway, Galway, Ireland
| | - Laura Farina
- Translational Medical Device Laboratory, National University of Ireland Galway, Galway, Ireland
| | - Aoife O’Shaughnessy
- Translational Medical Device Laboratory, National University of Ireland Galway, Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Laboratory, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
10
|
Alavarse AC, Frachini ECG, da Silva RLCG, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 2022; 202:558-596. [PMID: 35038469 DOI: 10.1016/j.ijbiomac.2022.01.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Polysaccharides and proteins are important macromolecules for developing hydrogels devoted to biomedical applications. Chemical hydrogels offer chemical, mechanical, and dimensional stability than physical hydrogels due to the chemical bonds among the chains mediated by crosslinkers. There are many crosslinkers to synthesize polysaccharides and proteins based on hydrogels. In this review, we revisited the crosslinking reaction mechanisms between synthetic or natural crosslinkers and polysaccharides or proteins. The selected synthetic crosslinkers were glutaraldehyde, carbodiimide, boric acid, sodium trimetaphosphate, N,N'-methylene bisacrylamide, and polycarboxylic acid, whereas the selected natural crosslinkers included transglutaminase, tyrosinase, horseradish peroxidase, laccase, sortase A, genipin, vanillin, tannic acid, and phytic acid. No less important are the reactions involving click chemistry and the macromolecular crosslinkers for polysaccharides and proteins. Literature examples of polysaccharides or proteins crosslinked by the different strategies were presented along with the corresponding highlights. The general mechanism involved in chemical crosslinking mediated by gamma and UV radiation was discussed, with particular attention to materials commonly used in digital light processing. The evaluation of crosslinking efficiency by gravimetric measurements, rheology, and spectroscopic techniques was presented. Finally, we presented the challenges and opportunities to create safe chemical hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Emilli Caroline Garcia Frachini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | - Vitoria Hashimoto Lima
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
11
|
Li M, Pan G, Zhang H, Guo B. Hydrogel adhesives for generalized wound treatment: Design and applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meng Li
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an China
| | - Guoying Pan
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University Xi'an China
| |
Collapse
|
12
|
Liu J, Hou J, Liu S, Li J, Zhou M, Sun J, Wang R. Graphene Oxide Functionalized Double-Layered Patch with Anti-Adhesion Ability for Abdominal Wall Defects. Int J Nanomedicine 2021; 16:3803-3818. [PMID: 34113101 PMCID: PMC8184254 DOI: 10.2147/ijn.s312074] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Background Effective repair of full-thickness abdominal wall defects requires a patch with sufficient mechanical strength and anti-adhesion characteristics to avoid the formation of hernias and intra-abdominal complications such as intestinal obstruction and fistula. However, patches made from polymers or bio-derived materials may not meet these requirements and lack the bionic characteristics of the abdominal wall. Materials and Methods In this study, we report a consecutive electrospun method for preparing a double-layer structured nanofiber membrane (GO-PCL/CS-PCL) using polycaprolactone (PCL), graphene oxide (GO) and chitosan (CS). To expand the bio-functions (angiogenesis/reducing reactive oxygen species) of the patch (GO-PCL/NAC-CS-PCL), N-acetylcysteine (NAC) was loaded for the repair of full-thickness abdominal wall defects (2×1.5cm) in rat model. Results The double-layered patch (GO-PCL/NAC-CS-PCL) showed excellent mechanical strength and biocompatibility. After 2 months, rats treated with the patch exhibited the desired repair effect with no hernia formation, less adhesion (adhesion score: 1.50±0.50, P<0.001) and more collagen deposition (percentage of collagen deposition: 34.94%±3.31%, P<0.001). Conclusion The double-layered nanomembranes presented in this study have good anti-hernia and anti-adhesion effects, as well as improve the microenvironment in vivo. It, therefore, holds good prospects for the repair of abdominal wall defects and provides a promising key as a postoperative anti-adhesion agent.
Collapse
Affiliation(s)
- Jian Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Jinfei Hou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Shaokai Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| | - Rongrong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People's Republic of China
| |
Collapse
|
13
|
Kheilnezhad B, Hadjizadeh A. A review: progress in preventing tissue adhesions from a biomaterial perspective. Biomater Sci 2021; 9:2850-2873. [PMID: 33710194 DOI: 10.1039/d0bm02023k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Postoperative adhesions (POA) are one of the main problems suffered by patients and are a common complaint. It is considered to be closely associated with the healing mechanism of damaged tissues. Tissue adhesions accompany other symptoms such as inflammation, pain, and even dyskinesia under certain conditions, compromising the patients' quality of life. On the other hand, common treatments involve high costs, re-surgery or long-term hospital stays. Therefore, alternative approaches need to be formulated so that aforementioned problems can be resolved. To this end, a review of recent advances in this context is imperative. In this review, we have highlighted the mechanism of adhesion formation, advances in common therapeutic approaches, and prospective treatments in preventing tissue adhesions. Based on the literature, it can be determined that the disadvantages of available commercial products in the treatment of tissue adhesion have led researchers to utilize alternative methods for designing anti-adhesive products with different structures such as electrospun fibrous mats, hydrogels, and nanospheres. These studies are on the fast track in producing optimal anti-adhesion materials. We hope that this article can attract attention by showing various mechanisms and solutions involved in adhesion problems and inspire the further development of anti-adhesion biomaterials.
Collapse
Affiliation(s)
| | - Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University, Tehran, Iran.
| |
Collapse
|
14
|
Chandel AKS, Shimizu A, Hasegawa K, Ito T. Advancement of Biomaterial-Based Postoperative Adhesion Barriers. Macromol Biosci 2021; 21:e2000395. [PMID: 33463888 DOI: 10.1002/mabi.202000395] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Indexed: 01/16/2023]
Abstract
Postoperative peritoneal adhesion (PPA) is a prevalent incidence that generally happens during the healing process of traumatized tissues. It causes multiple severe complications such as intestinal obstruction, chronic abdominal pain, and female infertility. To prevent PPA, several antiadhesion materials and drug delivery systems composed of biomaterials are used clinically, and clinical antiadhesive is one of the important applications nowadays. In addition to several commercially available materials, like film, spray, injectable hydrogel, powder, or solution type have been energetically studied based on natural and synthetic biomaterials such as alginate, hyaluronan, cellulose, starch, chondroitin sulfate, polyethylene glycol, polylactic acid, etc. Moreover, many kinds of animal adhesion models, such as cecum abrasion models and unitary horn models, are developed to evaluate new materials' efficacy. A new animal adhesion model based on hepatectomy and conventional animal adhesion models is recently developed and a new adhesion barrier by this new model is also developed. In summary, many kinds of materials and animal models are studied; thus, it is quite important to overview this field's current progress. Here, PPA is reviewed in terms of the species of biomaterials and animal models and several problems to be solved to develop better antiadhesion materials in the future are discussed.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Shimizu
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
15
|
Zhang E, Song B, Shi Y, Zhu H, Han X, Du H, Yang C, Cao Z. Fouling-resistant zwitterionic polymers for complete prevention of postoperative adhesion. Proc Natl Acad Sci U S A 2020; 117:32046-32055. [PMID: 33257542 PMCID: PMC7749340 DOI: 10.1073/pnas.2012491117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Postoperative adhesions are most common issues for almost any types of abdominal and pelvic surgery, leading to adverse consequences. Pharmacological treatments and physical barrier devices are two main approaches to address postoperative adhesions but can only alleviate or reduce adhesions to some extent. There is an urgent need for a reliable approach to completely prevent postoperative adhesions and to significantly improve the clinical outcomes, which, however, is unmet with current technologies. Here we report that by applying a viscous, cream-like yet injectable zwitterionic polymer solution to the traumatized surface, postoperative adhesion was completely and reliably prevented in three clinically relevant but increasingly challenging models in rats. The success rate of full prevention is over 93% among 42 animals tested, which is a major leap in antiadhesion performance. Clinically used Interceed film can hardly prevent the adhesion in any of these models. Unlike current antiadhesion materials serving solely as physical barriers, the "nonfouling" zwitterionic polymer functioned as a protective layer for antiadhesion applications with the inherent benefit of resisting protein/cell adhesions. The nonfouling nature of the polymer prevented the absorption of fibronectins and fibroblasts, which contribute to the initial and late-stage development of the adhesion, respectively. This is the key working mechanism that differentiated our "complete prevention" approach from current underperforming antiadhesion materials. This work implies a safe, effective, and convenient way to fully prevent postoperative adhesions suffered by current surgical patients.
Collapse
Affiliation(s)
- Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - Hong Du
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - Chengbiao Yang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202
| |
Collapse
|
16
|
Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomater 2020; 116:84-104. [PMID: 32871282 DOI: 10.1016/j.actbio.2020.08.036] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Peritoneal adhesions (PA) are a postoperative syndrome with high incidence rate, which can cause chronic abdominal pain, intestinal obstruction, and female infertility. Previous studies have identified that PA are caused by a disordered feedback of blood coagulation, inflammation, and fibrinolysis. Monocytes, macrophages, fibroblasts, and mesothelial cells are involved in this process, and secreted signaling molecules, such as tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), tissue plasminogen activator (tPA), and type 1 plasminogen activator inhibitor (PAI-1), play a key role in PA development. There have been many attempts to prevent PA formation by anti-PA drugs, barriers, and other therapeutic methods, but their effectiveness has not been widely accepted. Treatment by biomaterial-based barriers is believed to be the most promising method to prevent PA formation in recent years. In this review, the pathogenesis, treatment approaches, and animal models of PA are summarized and discussed to understand the challenges faced in the biomaterial-based anti-PA treatments.
Collapse
|
17
|
Yu H, Zhong H, Chen J, Sun J, Huang P, Xu X, Huang S, Zhong Y. Efficacy, Drug Sensitivity, and Safety of a Chronic Ocular Hypertension Rat Model Established Using a Single Intracameral Injection of Hydrogel into the Anterior Chamber. Med Sci Monit 2020; 26:e925852. [PMID: 32997651 PMCID: PMC7534505 DOI: 10.12659/msm.925852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Chronic ocular hypertension (COH) models mostly focus on changes in intraocular pressure (IOP) and loss of retinal ganglion cells (RGCs). The present study evaluated important glaucoma-related changes in visual function, response to common ocular hypotensive drugs, and safety for our previously developed rat model. Material/Methods The model was established through a single injection of hydrogel into the anterior chambers. Efficacy was assessed through F-VEP by measuring latency and amplitude of P1. We evenly divided 112 rats into 4 groups: control and COH at 2, 4, and 8 weeks. Response to 5 common drugs (brimonidine, timolol, benzamide, pilocarpine, and bimatoprost) were each tested on 6 rats and assessed using difference in IOP. Safety assessment was conducted through histological analysis of 24 rats evenly divided into 4 groups of control and COH at 2, 4, and 8 weeks. Corneal endothelial cells (CECs) of 24 additional rats were used to determine toxic effects through TUNEL and CCK-8 assays. Results P1 latency and amplitude of VEP demonstrated the model is effective in inducing optic nerve function impairment. Only the drug pilocarpine failed to have an obvious hypotensive effect, while the other 4 were effective. CECs at 2, 4, and 8 weeks showed no significant differences from control groups in results of histological analysis, TUNEL, and CCK-8 assays. Conclusions A single injection of hydrogel into the anterior chamber is effective for modeling COH, can respond to most commonly used hypotensive drugs, and is non-toxic to the eyes.
Collapse
Affiliation(s)
- Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Huimin Zhong
- Shanghai Jiaotong University School of Medicine, Shanghai, China (mainland)
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| |
Collapse
|
18
|
Luo J, Liu C, Wu J, Zhao D, Lin L, Fan H, Sun Y. In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis. J Biomed Mater Res B Appl Biomater 2019; 108:790-797. [PMID: 31225694 DOI: 10.1002/jbm.b.34433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jing‐Wan Luo
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Chang Liu
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | | | | | - Long‐Xiang Lin
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Hai‐Ming Fan
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Yu‐Long Sun
- Shenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| |
Collapse
|
19
|
Luo JW, Liu C, Wu JH, Lin LX, Fan HM, Zhao DH, Zhuang YQ, Sun YL. In situ injectable hyaluronic acid/gelatin hydrogel for hemorrhage control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:628-634. [DOI: 10.1016/j.msec.2019.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
|
20
|
Song Z, Zhang Y, Shao H, Ying Y, Chen X, Mei L, Ma X, Chen L, Ling P, Liu F. Effect of xanthan gum on the prevention of intra-abdominal adhesion in rats. Int J Biol Macromol 2019; 126:531-538. [DOI: 10.1016/j.ijbiomac.2018.12.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
|
21
|
Liang M, Chen Z, Wang F, Liu L, Wei R, Zhang M. Preparation of self‐regulating/anti‐adhesive hydrogels and their ability to promote healing in burn wounds. J Biomed Mater Res B Appl Biomater 2018; 107:1471-1482. [DOI: 10.1002/jbm.b.34239] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/20/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Min Liang
- School of Pharmacy and Biological EngineeringChongqing University of Technology Chongqing 400054 China
| | - Zhongmin Chen
- School of Pharmacy and Biological EngineeringChongqing University of Technology Chongqing 400054 China
| | - Fuping Wang
- School of Pharmacy and Biological EngineeringChongqing University of Technology Chongqing 400054 China
| | - Lan Liu
- School of Pharmacy and Biological EngineeringChongqing University of Technology Chongqing 400054 China
| | - Runan Wei
- School of Pharmacy and Biological EngineeringChongqing University of Technology Chongqing 400054 China
| | - Mei Zhang
- School of Pharmacy and Biological EngineeringChongqing University of Technology Chongqing 400054 China
| |
Collapse
|
22
|
The preparation of pH-sensitive hydrogel based on host-guest and electrostatic interactions and its drug release studies in vitro. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1608-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Duquette D, Dumont MJ. Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2516-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Maity S, Ray SS, Chatterjee A, Chakraborty N, Ganguly J. Sugar‐Based Self‐Assembly of Hydrogel Nanotubes Manifesting ESIPT: Theoretical Insight and Application in Live Cell Imaging. ChemistrySelect 2018. [DOI: 10.1002/slct.201800604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Santu Maity
- Department of ChemistryIndian Institute of Engineering Science and Technology Howrah- 711103 India
| | - Suvonil Sinha Ray
- Department of ChemistryIndian Institute of Engineering Science and Technology Howrah- 711103 India
| | | | | | - Jhuma Ganguly
- Department of ChemistryIndian Institute of Engineering Science and Technology Howrah- 711103 India
| |
Collapse
|
25
|
Qu X, Liu H, Zhang C, Lei Y, Lei M, Xu M, Jin D, Li P, Yin M, Payne GF, Liu C. Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. Acta Biomater 2018; 73:190-203. [PMID: 29505893 DOI: 10.1016/j.actbio.2018.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022]
Abstract
Electrical signals can be imposed with exquisite spatiotemporal control and provide exciting opportunities to create structure and confer function. Here, we report the use of electrical signals to program the fabrication of a chloramine wound dressing with high antimicrobial activity. This method involves two electrofabrication steps: (i) a cathodic electrodeposition of an aminopolysaccharide chitosan triggered by a localized region of high pH; and (ii) an anodic chlorination of the deposited film in the presence of chloride. This electrofabrication process is completed within several minutes and the chlorinated chitosan can be peeled from the electrode to yield a free-standing film. The presence of active NCl species in this electrofabricated film was confirmed with chlorination occurring first on the amine groups and then on the amide groups when large anodic charges were used. Electrofabrication is quantitatively controllable as the cathodic input controls film growth during deposition and the anodic input controls film chlorination. In vitro studies demonstrate that the chlorinated chitosan film has antimicrobial activities that depend on the chlorination degree. In vivo studies with a MRSA infected wound healing model indicate that the chlorinated chitosan film inhibited bacterial growth, induced less inflammation, developed reorganized epithelial and dermis structures, and thus promoted wound healing compared to a bare wound or wound treated with unmodified chitosan. These results demonstrate the fabrication of advanced functional materials (i.e., antimicrobial wound dressings) using controllable electrical signals to both organize structure through non-covalent interactions (i.e., induce chitosan's reversible self-assembly) and to initiate function-conferring covalent modifications (i.e., generate chloramine bonds). Potentially, electrofabrication may provide a simple, low cost and sustainable alternative for materials fabrication. STATEMENT OF SIGNIFICANCE We believe this work is novel because this is the first report (to our knowledge) that electronic signals enable the fabrication of advanced antimicrobial dressings with controlled structure and biological performance. We believe this work is significant because electrofabrication enables rapid, controllable and sustainable materials construction with reduced adverse environmental impacts while generating high performance materials for healthcare applications. More specifically, we report an electrofbrication of antimicrobial film that can promote wound healing.
Collapse
|
26
|
Hu W, Zhang Z, Lu S, Zhang T, Zhou N, Ren P, Wang F, Yang Y, Ji Z. Assembled anti-adhesion polypropylene mesh with self-fixable and degradable in situ mussel-inspired hydrogel coating for abdominal wall defect repair. Biomater Sci 2018; 6:3030-3041. [DOI: 10.1039/c8bm00824h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Construction of assembled anti-adhesion polypropylene mesh through in situ coating with self-fixable and degradable hydrogels.
Collapse
Affiliation(s)
- Wanjun Hu
- State Key Lab of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Zhigang Zhang
- Department of General Surgery
- Zhongda Hospital
- School of Medicine
- Southeast University
- Nanjing 210009
| | - Shenglin Lu
- Department of General Surgery
- Zhongda Hospital
- School of Medicine
- Southeast University
- Nanjing 210009
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Naizhen Zhou
- State Key Lab of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Pengfei Ren
- State Key Lab of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Faming Wang
- State Key Lab of Bioelectronics
- National Demonstration Center for Experimental Biomedical Engineering Education
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
| | - Yang Yang
- College of clinical medicine
- Panzhihua University
- Panzhihua 617000
- China
| | - Zhenling Ji
- Department of General Surgery
- Zhongda Hospital
- School of Medicine
- Southeast University
- Nanjing 210009
| |
Collapse
|