1
|
George VPJ, Zhao K, Chen P, Hu J. Chitosan-nanoclay embolic material for catheter-directed arterial embolization. J Biomed Mater Res A 2024; 112:914-930. [PMID: 38229508 PMCID: PMC10984788 DOI: 10.1002/jbm.a.37670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology. It is used for the deliberate occlusion of blood vessels for the treatment of disease or injured vasculature, including vascular malformation and malignant/benign tumors. Here, we introduce a gel embolic agent comprising chitosan nanofibers and nanoclay with excellent catheter injectability and tunable mechanical properties for embolization. The properties of the gel were optimized by varying the ratio between each individual component and also adjusting the total solid content. The rheological studies confirm the shear thinning property and gel nature of the developed gel as well as their recoverability. Injection force was measured to record the force required to pass the embolic gel through a clinically relevant catheter, evaluating for practicality of hand-injection. Theoretical predicted injection force was calculated to reduce the development time and to enhance the physician's experience. The stability of occlusion was also tested in vitro by monitoring the pressure required to displace the gel. The engineered gels exhibited sterility, hemocompatibility and cell biocompatibility, highlighting their potential for transcatheter embolization.
Collapse
Affiliation(s)
- Varghese P J George
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Keren Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Peng Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jingjie Hu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
3
|
Garrido MP, Hernandez A, Vega M, Araya E, Romero C. Conventional and new proposals of GnRH therapy for ovarian, breast, and prostatic cancers. Front Endocrinol (Lausanne) 2023; 14:1143261. [PMID: 37056674 PMCID: PMC10086188 DOI: 10.3389/fendo.2023.1143261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
For many years, luteinizing hormone-releasing hormone or gonadotropin-releasing hormone (GnRH) analogs have been used to treat androgen or estrogen-dependent tumors. However, emerging evidence shows that the GnRH receptor (GnRH-R) is overexpressed in several cancer cells, including ovarian, endometrial, and prostate cancer cells, suggesting that GnRH analogs could exert direct antitumoral actions in tumoral tissues that express GnRH-R. Another recent approach based on this knowledge was the use of GnRH peptides for developing specific targeted therapies, improving the delivery and accumulation of drugs in tumoral cells, and decreasing most side effects of current treatments. In this review, we discuss the conventional uses of GnRH analogs, together with the recent advances in GnRH-based drug delivery for ovarian, breast, and prostatic cancer cells.
Collapse
Affiliation(s)
- Maritza P. Garrido
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Hernandez
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Margarita Vega
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Carmen Romero
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
The Increased Release Kinetics of Quercetin from Superparamagnetic Nanocarriers in Dialysis. Antioxidants (Basel) 2023; 12:antiox12030732. [PMID: 36978980 PMCID: PMC10045069 DOI: 10.3390/antiox12030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The actual cumulative mass of released quercetin from nanoparticles within the dialysis membrane was determined under the influence of external stationary and alternating magnetic fields. We have shown that the control of the release kinetics of quercetin from MNPs, i.e., the distribution of quercetin between the nanoparticles and the suspension within the membrane, can be tuned by the simple combination of stationary and alternating magnetic fields. Under non-sink conditions, the proportion of quercetin in the suspension inside the membrane is increased toward the nanoparticles, resulting in the increased release of quercetin. The results obtained could be applied to the release of insoluble flavonoids in aqueous suspensions in general.
Collapse
|
5
|
Ezenwafor T, Anye V, Madukwe J, Amin S, Obayemi J, Odusanya O, Soboyejo W. Nanoindentation study of the viscoelastic properties of human triple negative breast cancer tissues: Implications for mechanical biomarkers. Acta Biomater 2023; 158:374-392. [PMID: 36640950 DOI: 10.1016/j.actbio.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
This paper presents the results of a combined experimental and theoretical study of the structure and viscoelastic properties of human non-tumorigenic mammary breast tissues and triple negative breast cancer (TNBC) tissues of different histological grades. A combination of immunofluorescence and confocal microscopy, and atomic force microscopy is used to study the actin cytoskeletal structures of non-tumorigenic and tumorigenic breast tissues (grade I to grade III). A combination of nanoindentation and statistical techniques is then used to measure viscoelastic properties of non-tumorigenic and human TNBC of different histological grades. A Standard Fluid Model/Anti-Zener Model II is also used to characterize the viscoelastic properties of the non-tumorigenic and tumorigenic TNBC tissues of different grades. The implications of the results are discussed for the potential application of nanoindentation and statistical deconvolution techniques to the development of mechanical biomarkers for TNBC detection/cancer diagnosis. STATEMENT OF SIGNIFICANCE: There is increasing interest in the development of mechanical biomarkers for cancer diagnosis. Here, we show that nanoindentation techniques can be used to characterize the viscoelastic properties of normal breast tissue and TNBC tissues of different histological grades. The Standard Fluid Model (Anti-Zener Model II) is used to classify the viscoelastic properties of breast tissues of different TNBC histological grades. Our results suggest that breast tissue and TNBC tissue viscoelastic properties can be used as mechanical biomarkers for the detection of TNBC at different stages.
Collapse
Affiliation(s)
- Theresa Ezenwafor
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; NASENI Centre of Excellence in Nanotechnology and Advanced Materials, Km 4, Ondo Road, Akure, Ondo State, Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, United States; Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, MA 01609, United States
| | - Vitalis Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria
| | - Jonathan Madukwe
- Department of Histopathology, National Hospital Abuja, Federal Capital Territory (FCT), Nigeria
| | - Said Amin
- Department of Histopathology, National Hospital Abuja, Federal Capital Territory (FCT), Nigeria
| | - John Obayemi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, United States; Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, MA 01609, United States
| | - Olushola Odusanya
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Kwale, Federal Capital Territory, Abuja, Nigeria
| | - Winston Soboyejo
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, United States; Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Gateway Park Life Sciences and Bioengineering Centre, Worcester, MA 01609, United States.
| |
Collapse
|
6
|
Uzonwanne VO, Navabi A, Obayemi JD, Hu J, Salifu AA, Ghahremani S, Ndahiro N, Rahbar N, Soboyejo W. Triptorelin-functionalized PEG-coated biosynthesized gold nanoparticles: Effects of receptor-ligand interactions on adhesion to triple negative breast cancer cells. BIOMATERIALS ADVANCES 2022; 136:212801. [PMID: 35929297 DOI: 10.1016/j.bioadv.2022.212801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/09/2022] [Indexed: 11/29/2022]
Abstract
This paper presents the results of an experimental and computational study of the adhesion of triptorelin-conjugated PEG-coated biosynthesized gold nanoparticles (GNP-PEG-TRP) to triple-negative breast cancer (TNBC) cells. The adhesion is studied at the nanoscale using a combination of atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. The AFM measurements showed that the triptorelin-functionalized gold nanoparticles (GNP-TRP and GNP-PEG-TRP) have higher adhesion to triple-negative breast cancer cells (TNBC) than non-tumorigenic breast cells. The increased adhesion of GNP-TRP and GNP-PEG-TRP to TNBC is also attributed to the overexpression of LHRH receptors on the surfaces of both TNBC. Finally, the molecular dynamics model reveals insights into the effects of receptor density, molecular configuration, and receptor-ligand docking characteristics on the interactions of triptorelin-functionalized PEG-coated gold nanoparticles with TNBC. A three to nine-fold increase in the adhesion is predicted between triptorelin-functionalized PEG-coated gold nanoparticles and TNBC cells. The implications of the results are then discussed for the specific targeting of TNBC.
Collapse
Affiliation(s)
- Vanessa O Uzonwanne
- Department of Materials Science and Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA
| | - Arvand Navabi
- Department of Civil Engineering, Worcester Polytechnic Institute (WPI), Kaven Hall, 100 Institute Road, Worcester, MA 01609, USA
| | - John D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute (WPI), Gateway Park, Life Sciences and Bioengineering Center, 60 Prescott Street, Worcester, MA 01605, USA
| | - Jingjie Hu
- Division of Vascular and Interventional Radiology, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, AZ 85259, USA
| | - Ali A Salifu
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute (WPI), Gateway Park, Life Sciences and Bioengineering Center, 60 Prescott Street, Worcester, MA 01605, USA
| | - Shahnaz Ghahremani
- Department of Biomedical Engineering, Worcester Polytechnic Institute (WPI), Gateway Park, Life Sciences and Bioengineering Center, 60 Prescott Street, Worcester, MA 01605, USA
| | - Nelson Ndahiro
- Department of Chemical Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA
| | - Nima Rahbar
- Department of Civil Engineering, Worcester Polytechnic Institute (WPI), Kaven Hall, 100 Institute Road, Worcester, MA 01609, USA
| | - Winston Soboyejo
- Department of Materials Science and Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA; Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute (WPI), Gateway Park, Life Sciences and Bioengineering Center, 60 Prescott Street, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Rizwanullah M, Ahmad MZ, Ghoneim MM, Alshehri S, Imam SS, Md S, Alhakamy NA, Jain K, Ahmad J. Receptor-Mediated Targeted Delivery of Surface-ModifiedNanomedicine in Breast Cancer: Recent Update and Challenges. Pharmaceutics 2021; 13:2039. [PMID: 34959321 PMCID: PMC8708551 DOI: 10.3390/pharmaceutics13122039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer therapeutic intervention continues to be ambiguous owing to the lack of strategies for targeted transport and receptor-mediated uptake of drugs by cancer cells. In addition to this, sporadic tumor microenvironment, prominent restrictions with conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells possess a big challenge to even otherwise optimal and efficacious breast cancer treatment strategies. Surface-modified nanomedicines can expedite the cellular uptake and delivery of drug-loaded nanoparticulate constructs through binding with specific receptors overexpressed aberrantly on the tumor cell. The present review elucidates the interesting yet challenging concept of targeted delivery approaches by exploiting different types of nanoparticulate systems with multiple targeting ligands to target overexpressed receptors of breast cancer cells. The therapeutic efficacy of these novel approaches in preclinical models is also comprehensively discussed in this review. It is concluded from critical analysis of related literature that insight into the translational gap between laboratories and clinical settings would provide the possible future directions to plug the loopholes in the process of development of these receptor-targeted nanomedicines for the treatment of breast cancer.
Collapse
Affiliation(s)
- Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| |
Collapse
|
8
|
Jelonek K, Zajdel A, Wilczok A, Kaczmarczyk B, Musiał-Kulik M, Hercog A, Foryś A, Pastusiak M, Kasperczyk J. Comparison of PLA-Based Micelles and Microspheres as Carriers of Epothilone B and Rapamycin. The Effect of Delivery System and Polymer Composition on Drug Release and Cytotoxicity against MDA-MB-231 Breast Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13111881. [PMID: 34834296 PMCID: PMC8624627 DOI: 10.3390/pharmaceutics13111881] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/05/2022] Open
Abstract
Co-delivery of epothilone B (EpoB) and rapamycin (Rap) increases cytotoxicity against various kinds of cancers. However, the current challenge is to develop a drug delivery system (DDS) for the simultaneous delivery and release of these two drugs. Additionally, it is important to understand the release mechanism, as well as the factors that affect drug release, in order to tailor this process. The aim of this study was to analyze PLA–PEG micelles along with several types of microspheres obtained from PLA or a mixture of PLA and PLA–PEG as carriers of EpoB and Rap for their drug release properties and cytotoxicity against breast cancer cells. The study showed that the release process of EpoB and Rap from a PLA-based injectable delivery systems depends on the type of DDS, morphology, and polymeric composition (PLA to PLA–PEG ratio). These factors also affect the biological activity of the DDS, because the cytotoxic effect of the drugs against MDA-MB-231 cells depends on the release rate. The release process from all kinds of DDS was well-characterized by the Peppas–Sahlin model and was mainly controlled by Fickian diffusion. The conducted analysis allowed also for the selection of PLA 50/PLA–PEG 50 microspheres and PLA–PEG micelles as a promising co-delivery system of EpoB and Rap.
Collapse
Affiliation(s)
- Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Alicja Zajdel
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.Z.); (A.W.)
| | - Adam Wilczok
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.Z.); (A.W.)
| | - Bożena Kaczmarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Anna Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.Z.); (A.W.)
- Correspondence:
| |
Collapse
|
9
|
Kandasamy K, Selvaprakash K, Chen YC. Functional magnetic nanoparticle-based affinity probe for MALDI mass spectrometric detection of ricin B. Mikrochim Acta 2021; 188:339. [PMID: 34510288 DOI: 10.1007/s00604-021-04991-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
The use of lactosylated Fe3O4 magnetic nanoparticles (MNP@LAC) has been explored as affinity probes against ricin B based on galactose-ricin B binding interactions. Lactose was bound onto the surface of aminated MNPs through the Maillard reaction. The enrichment of ricin B took ~1 h by incubating MNP@LAC with samples under shaking at room temperature, followed by magnetic isolation. The resultant MNP@LAC-ricin B conjugates were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The limit of detection toward ricin B was ~3 nM by using the developed method. It was possible to detect the peptides derived from the tryptic digest of trace ricin B (~0.39 nM) enriched by the MNP@LAC probes followed by tryptic digestion and MALDI-MS analysis. The feasibility of using the developed method for detection of ricin B from complex white corn starch samples spiked with trace ricin B was demonstrated.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Karuppuchamy Selvaprakash
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
10
|
Mandić L, Sadžak A, Erceg I, Baranović G, Šegota S. The Fine-Tuned Release of Antioxidant from Superparamagnetic Nanocarriers under the Combination of Stationary and Alternating Magnetic Fields. Antioxidants (Basel) 2021; 10:antiox10081212. [PMID: 34439459 PMCID: PMC8389039 DOI: 10.3390/antiox10081212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Superparamagnetic magnetite nanoparticles (MNPs) with excellent biocompatibility and negligible toxicity were prepared by solvothermal method and stabilized by widely used and biocompatible polymer poly(ethylene glycol) PEG-4000 Da. The unique properties of the synthesized MNPs enable them to host the unstable and water-insoluble quercetin as well as deliver and localize quercetin directly to the desired site. The chemical and physical properties were validated by X-ray powder diffraction (XRPD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), superconducting quantum interference device (SQUID) magnetometer, FTIR spectroscopy and dynamic light scattering (DLS). The kinetics of in vitro quercetin release from MNPs followed by UV/VIS spectroscopy was controlled by employing combined stationary and alternating magnetic fields. The obtained results have shown an increased response of quercetin from superparamagnetic MNPs under a lower stationary magnetic field and s higher frequency of alternating magnetic field. The achieved findings suggested that we designed promising targeted quercetin delivery with fine-tuning drug release from magnetic MNPs.
Collapse
|
11
|
Oliveira ALCDSL, Zerillo L, Cruz LJ, Schomann T, Chan AB, de Carvalho TG, Souza SVDP, Araújo AA, de Geus-Oei LF, de Araújo Júnior RF. Maximizing the potency of oxaliplatin coated nanoparticles with folic acid for modulating tumor progression in colorectal cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111678. [PMID: 33545840 DOI: 10.1016/j.msec.2020.111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
One of the challenges of nanotechnology is to improve the efficacy of treatments for diseases, in order to reduce morbidity and mortality rates. Following this line of study, we made a nanoparticle formulation with a small size, uniform surfaces, and a satisfactory encapsulation coefficient as a target for colorectal cancer cells. The results of binding and uptake prove that using the target system with folic acid works: Using this system, cytotoxicity and cell death are increased when compared to using free oxaliplatin. The data show that the system maximized the efficiency of oxaliplatin in modulating tumor progression, increasing apoptosis and decreasing resistance to the drug. Thus, for the first time, our findings suggest that PLGA-PEG-FA increases the antitumor effectiveness of oxaliplatin by functioning as a facilitator of drug delivery in colorectal cancer.
Collapse
Affiliation(s)
- Ana Luiza C de S L Oliveira
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | - Luana Zerillo
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands.
| | - Timo Schomann
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | | | - Thaís Gomes de Carvalho
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands
| | - Shirley Vitória de P Souza
- Graduation Student at Biomedical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Aurigena A Araújo
- Postgraduate Program in Public Health and Pharmaceutical Science and Pharmacology, Department of Biophysics and Farmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Raimundo F de Araújo Júnior
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Centrum, Leiden, the Netherlands; Percuros B. V, Leiden, the Netherlands; Graduation Student at Biomedical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, 59064 741 Natal, RN, Brazil.
| |
Collapse
|
12
|
Jusu SM, Obayemi JD, Salifu AA, Nwazojie CC, Uzonwanne V, Odusanya OS, Soboyejo WO. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci Rep 2020; 10:14188. [PMID: 32843673 PMCID: PMC7447811 DOI: 10.1038/s41598-020-71129-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive and difficult to treat using conventional bulk chemotherapy that is often associated with increased toxicity and side effects. In this study, we encapsulated targeted drugs [A bacteria-synthesized anticancer drug (prodigiosin) and paclitaxel] using single solvent evaporation technique with a blend of FDA-approved poly lactic-co-glycolic acid-polyethylene glycol (PLGA_PEG) polymer microspheres. These drugs were functionalized with Luteinizing Hormone-Releasing hormone (LHRH) ligands whose receptors are shown to overexpressed on surfaces of TNBC. The physicochemical, structural, morphological and thermal properties of the drug-loaded microspheres were then characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Nuclear Magnetic Resonance Spectroscopy (NMR), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Results obtained from in vitro kinetics drug release at human body temperature (37 °C) and hyperthermic temperatures (41 and 44 °C) reveal a non-Fickian sustained drug release that is well-characterized by Korsmeyer-Peppas model with thermodynamically non-spontaneous release of drug. Clearly, the in vitro and in vivo drug release from conjugated drug-loaded microspheres (PLGA-PEG_PGS-LHRH, PLGA-PEG_PTX-LHRH) is shown to result in greater reductions of cell/tissue viability in the treatment of TNBC. The in vivo animal studies also showed that all the drug-loaded PLGA-PEG microspheres for the localized and targeted treatment of TNBC did not caused any noticeable toxicity and thus significantly extended the survival of the treated mice post tumor resection. The implications of this work are discussed for developing targeted drug systems to treat and prevent local recurred triple negative breast tumors after surgical resection.
Collapse
Affiliation(s)
- S M Jusu
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - J D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA
| | - A A Salifu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA
| | - C C Nwazojie
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - V Uzonwanne
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - O S Odusanya
- Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Abuja, Nigeria
| | - W O Soboyejo
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
- Department of Biomedical Engineering, Gateway Park Life Sciences Center, Worcester Polytechnic Institute (WPI), 60 Prescott Street, Worcester, MA, 01605, USA.
- Department of Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
13
|
Roacho-Pérez JA, Ruiz-Hernandez FG, Chapa-Gonzalez C, Martínez-Rodríguez HG, Flores-Urquizo IA, Pedroza-Montoya FE, Garza-Treviño EN, Bautista-Villareal M, García-Casillas PE, Sánchez-Domínguez CN. Magnetite Nanoparticles Coated with PEG 3350-Tween 80: In Vitro Characterization Using Primary Cell Cultures. Polymers (Basel) 2020; 12:polym12020300. [PMID: 32024291 PMCID: PMC7077372 DOI: 10.3390/polym12020300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Some medical applications of magnetic nanoparticles require direct contact with healthy tissues and blood. If nanoparticles are not designed properly, they can cause several problems, such as cytotoxicity or hemolysis. A strategy for improvement the biological proprieties of magnetic nanoparticles is their functionalization with biocompatible polymers and nonionic surfactants. In this study we compared bare magnetite nanoparticles against magnetite nanoparticles coated with a combination of polyethylene glycol 3350 (PEG 3350) and polysorbate 80 (Tween 80). Physical characteristics of nanoparticles were evaluated. A primary culture of sheep adipose mesenchymal stem cells was developed to measure nanoparticle cytotoxicity. A sample of erythrocytes from a healthy donor was used for the hemolysis assay. Results showed the successful obtention of magnetite nanoparticles coated with PEG 3350-Tween 80, with a spherical shape, average size of 119.2 nm and a zeta potential of +5.61 mV. Interaction with mesenchymal stem cells showed a non-cytotoxic propriety at doses lower than 1000 µg/mL. Interaction with erythrocytes showed a non-hemolytic propriety at doses lower than 100 µg/mL. In vitro information obtained from this work concludes that the use of magnetite nanoparticles coated with PEG 3350-Tween 80 is safe for a biological system at low doses.
Collapse
Affiliation(s)
- Jorge A Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico; (J.A.R.-P.); (F.G.R.-H.); (H.G.M.-R.); (F.E.P.-M.); (E.N.G.-T.)
| | - Fernando G Ruiz-Hernandez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico; (J.A.R.-P.); (F.G.R.-H.); (H.G.M.-R.); (F.E.P.-M.); (E.N.G.-T.)
| | - Christian Chapa-Gonzalez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico;
| | - Herminia G Martínez-Rodríguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico; (J.A.R.-P.); (F.G.R.-H.); (H.G.M.-R.); (F.E.P.-M.); (E.N.G.-T.)
| | - Israel A Flores-Urquizo
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León 66455, Mexico;
| | - Florencia E Pedroza-Montoya
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico; (J.A.R.-P.); (F.G.R.-H.); (H.G.M.-R.); (F.E.P.-M.); (E.N.G.-T.)
| | - Elsa N Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico; (J.A.R.-P.); (F.G.R.-H.); (H.G.M.-R.); (F.E.P.-M.); (E.N.G.-T.)
| | - Minerva Bautista-Villareal
- Departamento de Ciencias de los Alimentos, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León 66455, Mexico;
| | - Perla E García-Casillas
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico;
- Correspondence: (P.E.G.-C.); (C.N.S.-D.)
| | - Celia N Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico; (J.A.R.-P.); (F.G.R.-H.); (H.G.M.-R.); (F.E.P.-M.); (E.N.G.-T.)
- Correspondence: (P.E.G.-C.); (C.N.S.-D.)
| |
Collapse
|
14
|
Alqaraghuli HGJ, Kashanian S, Rafipour R. A Review on Targeting Nanoparticles for Breast Cancer. Curr Pharm Biotechnol 2020; 20:1087-1107. [PMID: 31364513 DOI: 10.2174/1389201020666190731130001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic agents have been used extensively in breast cancer remedy. However, most anticancer drugs cannot differentiate between cancer cells and normal cells, leading to toxic side effects. Also, the resulted drug resistance during chemotherapy reduces treatment efficacy. The development of targeted drug delivery offers great promise in breast cancer treatment both in clinical applications and in pharmaceutical research. Conjugation of nanocarriers with targeting ligands is an effective therapeutic strategy to treat cancer diseases. In this review, we focus on active targeting methods for breast cancer cells through the use of chemical ligands such as antibodies, peptides, aptamers, vitamins, hormones, and carbohydrates. Also, this review covers all information related to these targeting ligands, such as their subtypes, advantages, disadvantages, chemical modification methods with nanoparticles and recent published studies (from 2015 to present). We have discussed 28 different targeting methods utilized for targeted drug delivery to breast cancer cells with different nanocarriers delivering anticancer drugs to the tumors. These different targeting methods give researchers in the field of drug delivery all the information and techniques they need to develop modern drug delivery systems.
Collapse
Affiliation(s)
- Hasanain Gomhor J Alqaraghuli
- Faculty of Chemistry, Razi University, Kermanshah, Iran.,Department of Sciences, College of Basic Education, Al- Muthanna University, Al-Muthanna, Iraq
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran.,Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| |
Collapse
|
15
|
Adrienn J. Szalai, Kaptay G, Barany S. Electrokinetic Potential and Size Distribution of Magnetite Nanoparticles Stabilized by Poly(vinyl Pyrrolidone). COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
Szalai AJ, Manivannan N, Kaptay G. Super-paramagnetic magnetite nanoparticles obtained by different synthesis and separation methods stabilized by biocompatible coatings. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Hu J, Zhou Y, Obayemi JD, Du J, Soboyejo WO. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells. J Mech Behav Biomed Mater 2018; 86:1-13. [DOI: 10.1016/j.jmbbm.2018.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/30/2022]
|