1
|
Alahmad W, Hedhili F, Al-Shomar SM, Albaqawi HS, Al-Shammari NA, Abdelrahman S. Modeling sustainable photocatalytic degradation of acidic dyes using Jordanian nano-Kaolin-TiO 2 and solar energy: Synergetic mechanistic insights. Heliyon 2024; 10:e36978. [PMID: 39296132 PMCID: PMC11409014 DOI: 10.1016/j.heliyon.2024.e36978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
The abstract highlights the global issue of environmental contamination caused by organic compounds and the exploration of various methods for its resolution. One such approach involves the utilization of titanium dioxide (TiO2) as a photocatalyst in conjunction with natural adsorption materials like kaolin. The study employed a modeling-based approach to investigate the sustainable photocatalytic degradation of acidic dyes using a Jordanian nano-kaolin-TiO2 composite material and solar energy. Mechanistic insights were gained through the identification of the dominant reactive oxygen species (ROS) involved in the degradation process, as well as the synergetic effect between adsorption and photocatalysis. The Jordanian nano-kaolin-TiO2 composite was synthesized using the sol-gel method and characterized. The nanocomposite photocatalyst exhibited particle sizes ranging from 27 to 41 nm, with the TiO2 nanoparticles well-dispersed within the kaolin matrix. The efficacy of this nanocomposite in removing Congo-red dye was investigated under various conditions, including pH, initial dye concentration, and photocatalyst amount. The optimal conditions for dye removal were found to be at pH 5, with an initial dye concentration of 20 ppm, and using 0.1 g of photocatalyst, resulting in a 95 % removal efficiency. The mechanistic insights gained from this study indicate that the hydroxyl radicals (•OH) generated during the photocatalytic process play a dominant role in the degradation of the acidic dye. Furthermore, the synergetic effect between the adsorption of the dye molecules onto the photocatalyst surface and the subsequent photocatalytic degradation by the ROS was found to enhance the overall removal efficiency. These findings contribute to the fundamental understanding of the photodegradation mechanisms and guide the development of more efficient photocatalytic systems for the treatment of acidic dye-containing wastewater. The use of solar power during the purification procedure also leads to cost reduction and strengthens sustainability efforts.
Collapse
Affiliation(s)
- Waed Alahmad
- Department of Chemistry, Faculty of Science, Applied Science Private University, P. O. Box 166, Amman, 11931, Jordan
| | - Fekhra Hedhili
- Department of Physics, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
- Department of Physics, Faculty of Science, Al Manar University, 1060, Tunis, Tunisia
| | - S M Al-Shomar
- Department of Physics, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Hissah Saedoon Albaqawi
- Department of Physics, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Nwuyer A Al-Shammari
- Department of Physics, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Selma Abdelrahman
- Department of Physics, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| |
Collapse
|
2
|
Zhang C, Yuan R, Chen H, Zhou B, Cui Z, Zhu B. Advancements in Inorganic Membrane Filtration Coupled with Advanced Oxidation Processes for Wastewater Treatment. Molecules 2024; 29:4267. [PMID: 39275114 PMCID: PMC11397059 DOI: 10.3390/molecules29174267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Membrane filtration is an effective water recycling and purification technology to remove various pollutants in water. Inorganic membrane filtration (IMF) technology has received widespread attention because of its unique high temperature and corrosion resistance. Commonly used inorganic membranes include ceramic membranes and carbon-based membranes. As novel catalytic inorganic membrane processes, IMF coupled with advanced oxidation processes (AOPs), can realize the separation and in situ degradation of pollutants, thus mitigating membrane contamination. In this paper, the types and performance of IMF are discussed. The influencing factors of inorganic membranes in practical wastewater treatment are summarized. The applications, advantages, and disadvantages of the coupled process of IMF and AOPs are summarized and outlined. Finally, the challenges and prospects of IMF and IMF coupled with AOPs are presented, respectively. This contributes to the design and development of coupled systems of membrane filtration with inorganic materials and IMF coupled with AOPs for practical wastewater treatment.
Collapse
Affiliation(s)
- Chaoying Zhang
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zexin Cui
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Boyun Zhu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Paz CV, Fereidooni M, Hamd W, Daher EA, Praserthdam P, Praserthdam S. Analysis of Ag-DP25/PET plasmonic nano-composites as a visible-light photocatalyst for wastewater treatment: Experimental/theoretical studies, and the DFT-MB degradation mechanism. ENVIRONMENTAL RESEARCH 2024; 252:119081. [PMID: 38714221 DOI: 10.1016/j.envres.2024.119081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/06/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
The development of polymeric-composites Agx%DP25-PET (x = 0,1,2,3) may significantly boost the potential application of Agx%DP25 (x = 0,1,2,3) photocatalytic powders. Producing large-scale nano-composites with hybrid-surfaces, that are also flexible materials and easy to employ in a variety of environments. A set of photocatalytic nan-composites embedded with the polymeric binder poly (acrylonitrile-co-butadiene)-dicarboxy terminated (C7H9N) were performed and evaluated for wastewater treatment applications. The results reveal that the flexible polymeric composites (Agx%DP25-PET, x = 0,1,2,3) have photocatalytic activity in aqua media to degrade methylene blue (MB) under visible-light. The addition of C7H9N to immobilize photocatalytic powders on the PET surface reduces photo-generated electron-hole recombination. The materials were characterized by HR-TEM, SEM/EDX, XRD, FT-IR, UV-Vis DRS and PL. The Agx%DP25-PET (x = 0,1,2,3) photocatalytic reactions exhibited productive discoloration/degradation rates, in both aerobic (AE) and anaerobic (AN) environments. The superior photodegradation of Ag2%DP25-PET was attributed to a combination of two effects: LSPR (localized surface plasmon resonance) and Ag-TiO2/environment affinities. The findings of molecular dynamics (MD) simulation and Fukui Function (FF) based on density functional theory (DFT) provide significant insight into the photocatalytic requirements for MB discoloration/degradation. The experimental/theoretical analysis aimed to offer an in-depth understanding of medium/surface interactions on decorated TiO2 materials, as well as how these interactions affect overall degradation behavior.
Collapse
Affiliation(s)
- C V Paz
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| | - M Fereidooni
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| | - W Hamd
- Chemical Engineering Department, Faculty of Engineering, University of Balamand, P.O. Box 33, 1355, El-Koura, Lebanon.
| | - E A Daher
- Petrochemical Engineering Department, Faculty of Engineering III, CRSI, Lebanese University, Rafic Hariri Campus, 1533, Hadat, Lebanon; Laboratoire Chimie de la Matière Condensée de Paris LCMCP, Sorbonne Université, UPMC Paris 06, 4 Place Jussieu, 75005, Paris, France.
| | - P Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| | - S Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10300, Thailand.
| |
Collapse
|
4
|
Khan AU, Tahir K, Shah MZU, Albaqawi HS, Almarhoon ZM, Alanazi AA, Alkudaisi NA, Althagafi TM, Badi N, Zaki MEA. The Hydrothermal-Assisted Approach Improves the Photocatalytic and Energy Storage Performance of Novel CuSe-TiO 2-GO Composite. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1136. [PMID: 38998741 PMCID: PMC11243438 DOI: 10.3390/nano14131136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
This study reports a novel CuSe-TiO2-GO composite, synthesized by a facile hydrothermal method at a controlled temperature, and investigates its electrochemical performance for supercapacitors (SCs) and photocatalytic behavior for degrading methylene blue (MB) dye. The compositional phase structure and chemical bond interaction were thoroughly investigated. The as-fabricated pristine, binary, and ternary composites underwent comprehensive characterization employing spectroscopic techniques and electrochemical analysis. Compared with pure and binary compounds (CuSe, TiO2, and binary CuSe-TiO2 composites), the ternary CuSe-TiO2-GO composites demonstrated a high degradation efficiency while degrading MB in less than just 80 min (240 min, 100 min, and 140 min, respectively). The photocatalytic activity of the ternary CuSe-TiO2-GO composites is enhanced due to the highly positive conduction band of CuSe, leading to the quick excitation of electrons to the conduction band of CuSe. Subsequently, graphene oxide (GO) left holes on the photocatalyst surface for MB, as GO assisted the photoexcited electron-hole pairs, resulting in enhanced photocatalytic performance. The CuSe-TiO2-GO electrode for the supercapacitor indicates a 310.6 F/g and 135.2 F/g capacitance when the discharge current upsurges from 1 to 12 A/g. The good photocatalytic and energy storage performance is due to the smaller charge transfer resistance, which promotes efficient separation of electron-hole pairs.
Collapse
Affiliation(s)
- Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 24551, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zia Ullah Shah
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Hissah Saedoon Albaqawi
- Department of Physics, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Zainab M. Almarhoon
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nora Awad Alkudaisi
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Talal M. Althagafi
- Department of Physics, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Nacer Badi
- Thermal Management and Sustainability Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| |
Collapse
|
5
|
Shee NK, Lee GS, Kim HJ. Sn(IV)porphyrin-Incorporated TiO 2 Nanotubes for Visible Light-Active Photocatalysis. Molecules 2024; 29:1612. [PMID: 38611891 PMCID: PMC11013583 DOI: 10.3390/molecules29071612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and characterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal reaction of NaOH with TiO2 (P-25) nanospheres in the presence of Sn(IV)porphyrin (SnP), resulting in a transformation into Sn(IV)porphyrin-imbedded nanotubes. In contrast, under similar reaction conditions but in the absence of SnP, TiO2 (P-25) nanospheres evolved into nanofibers (TNFs). Comparative analysis revealed that SnP-TNTs exhibited a remarkable enhancement in the visible light photodegradation of model pollutants compared to SnP, TiO2 (P-25), or TNFs. The superior photodegradation activity of SnP-TNTs was primarily attributed to synergistic effects between TiO2 (P-25) and SnP, leading to altered conformational frameworks, increased surface area, enhanced thermo-chemical stability, unique morphology, and outstanding visible light photodegradation of cationic methylene blue dye (MB dye). With a rapid removal rate of 95% within 100 min (rate constant = 0.0277 min-1), SnP-TNTs demonstrated excellent dye degradation capacity, high reusability, and low catalyst loading, positioning them as more efficient than conventional catalysts. This report introduces a novel direction for porphyrin-incorporated catalytic systems, holding significance for future applications in environmental remediation.
Collapse
Affiliation(s)
| | | | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
6
|
Veisi P, Seyed Dorraji MS, Rasoulifard MH, Vatanpour V. Preparation of mixed matrix self-cleaning membrane incorporated by Z-scheme heterostructure via robust engineering in terms of dimension for decreasing cake fouling in a cross-flow reactor. CHEMOSPHERE 2024; 352:141526. [PMID: 38401863 DOI: 10.1016/j.chemosphere.2024.141526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Reducing irreversible fouling in polymer membranes by integrating photocatalytic and membrane processes as the self-cleaning photocatalytic membrane is a promising candidate for improving membrane filtration performance. In this study, mixed matrix photocatalytic membranes were prepared from the combination of different morphologies ZnO-g-C3N4 heterostructure in the polymer matrix by the phase-separation method. To investigate the self-cleaning and performance properties of mixed matrix photocatalytic membranes prepared from different morphologies heterostructures, the photocatalytic membrane reactor with a visible-light source was applied. Nanoflower/nanosheet (NF/NS) ZnO-g-C3N4 photocatalytic membrane showed good self-cleaning performance owing to the high photocatalytic performance of NF/NS ZnO-g-C3N4 heterostructure by the reduction of irreversible membrane fouling, thus improving the antifouling and filtration performance of the membrane. Also, the morphology and the uniform distribution of the NF/NS ZnO-g-C3N4 heterostructure in the membrane matrix caused good hydrophilic properties, high porosity, and a more symmetrical structure in the (NF/NS) ZnO-g-C3N4 photocatalytic membrane (F4). For the F4 membrane, the permeability and rejection values increased from 40.35 L m-2 h-1 and 90.9% in the dark environment to 84.37 L m-2 h-1 and 97.4% under visible-light for dye pollutants. Accordingly, F4 had the best filtration and self-cleaning performance, which can be used as a promising visible-light photocatalytic membrane in wastewater treatment processes.
Collapse
Affiliation(s)
- Payam Veisi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mir Saeed Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| |
Collapse
|
7
|
Liang Y, Yu T, Lang M, Chen F, Cao M, Chen B, Wang P, Liang Y, Wang Y. In situ growth of BiOBr on copper foam conductive substrate with enhanced photocatalytic performance. Heliyon 2024; 10:e25929. [PMID: 38404782 PMCID: PMC10884819 DOI: 10.1016/j.heliyon.2024.e25929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Photocatalysis technology based on solar-powered semiconductors is widely recognized as a promising approach for achieving eco-friendly, secure, and sustainable degradation of organic contaminants. Nevertheless, conventional photocatalysts exhibit drawbacks such as a wide bandgap, and rapid recombination of photoinduced electron/hole pairs, in addition to complicated separation and recovery procedures. In this research, we cultivated BiOBr in situ on the surface of copper foam to fabricate a functional photocatalyst (denoted as BiOBr/Cu foam), which was subsequently employed for the photodegradation of Methylene Blue. Based on photodegradation experiments, the 0.3 BiOBr/Cu foam demonstrates superior photocatalytic efficacy compared to other photocatalysts under solar light irradiation. Furthermore, its ease of separation from the solution enhances its potential for reuse. The analysis of charge transfer revealed that the copper foam functions as an effective electron scavenger within the BiOBr/Cu foam, thereby facilitating charge separation and the generation of photo-induced holes. This phenomenon contributes to a significantly enhanced production of hydroxyl radicals. This study provides a valuable perspective on the design and synthesis of photocatalysts with heightened practicality, employing a conductive substrate.
Collapse
Affiliation(s)
- Ying Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ting Yu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Man Lang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Fengjie Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yawei Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
8
|
Samarasinghe LV, Muthukumaran S, Baskaran K. Recent advances in visible light-activated photocatalysts for degradation of dyes: A comprehensive review. CHEMOSPHERE 2024; 349:140818. [PMID: 38056717 DOI: 10.1016/j.chemosphere.2023.140818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
The rapid development in industrialization and urbanization coupled with an ever-increasing world population has caused a tremendous increase in contamination of water resources globally. Synthetic dyes have emerged as a major contributor to environmental pollution due to their release in large quantities into the environment, especially owing to their high demand in textile, cosmetics, clothing, food, paper, rubber, printing, and plastic industries. Photocatalytic treatment technology has gained immense research attention for dye contaminated wastewater treatment due to its environment-friendliness, ability to completely degrade dye molecules using light irradiation, high efficiency, and no generation of secondary waste. Photocatalytic technology is evolving rapidly, and the foremost goal is to synthesize highly efficient photocatalysts with solar energy harvesting abilities. The current review provides a comprehensive overview of the most recent advances in highly efficient visible light-activated photocatalysts for dye degradation, including methods of synthesis, strategies for improving photocatalytic activity, regeneration and their performance in real industrial effluent. The influence of various operational parameters on photocatalytic activity are critically evaluated in this article. Finally, this review briefly discusses the current challenges and prospects of visible-light driven photocatalysts. This review serves as a convenient and comprehensive resource for comparing and studying the fundamentals and recent advancements in visible light photocatalysts and will facilitate further research in this direction.
Collapse
Affiliation(s)
| | - Shobha Muthukumaran
- Institute for Sustainability Industries and Liveable Cities, College of Sport, Health & Engineering, Victoria University, Melbourne, VIC, 8001, Australia
| | - Kanagaratnam Baskaran
- Faculty of Science, Engineering and Built Environment, Deakin University, Victoria, 3216, Australia
| |
Collapse
|
9
|
Ye Q, Wu H, Li J, Huang Y, Zhang M, Yi Q, Yan B. Preparation of 1,8-dichloroanthraquinone/graphene oxide/poly (vinylidene fluoride) (1,8-AQ/GO/PVDF) mediator membrane and its application to catalyzing biodegradation of azo dyes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115681. [PMID: 37976925 DOI: 10.1016/j.ecoenv.2023.115681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Anthraquinone is a redox mediator that can effectively catalyze the degradation of azo dyes by promoting the electron transfer. In this study, a mediator membrane with poly (vinylidene fluoride) (PVDF) as the membrane support and 1,8-dichloroanthraquinone (1,8-AQ) and graphene oxide (GO) as the additives was prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), atomic force microscopy (AFM) and water contact angle. The introduction of GO increases the pure water flux of the membrane to 258.56±12.93 L/(m2·h). Its catalytic performances for the biodegradation of azo dyes were evaluated. Under the optimized conditions, the 1,8-AQ/GO/PVDF composite membrane is able to improve the dye degradation efficiency 2.2 times for reactive red X-3B and 1.1 times for acid red B, as compared with PVDF membrane. In addition, the mediator membrane maintains stable and high catalytic efficiency in the cyclic test and over 90 % dye degradation efficiency is still obtained after 5 cycles of decolorization. These results suggest the great application potentials of the 1,8-AQ/GO/PVDF membrane in the dye wastewater treatment.
Collapse
Affiliation(s)
- Qian Ye
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China.
| | - Hanbin Wu
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Jin Li
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yinyin Huang
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Mingliang Zhang
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Qianqian Yi
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Bin Yan
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China
| |
Collapse
|
10
|
Popa A, Stefan M, Macavei S, Perhaita I, Tudoran LB, Toloman D. Facile Preparation of PVDF/CoFe 2O 4-ZnO Hybrid Membranes for Water Depollution. Polymers (Basel) 2023; 15:4547. [PMID: 38231983 PMCID: PMC10708052 DOI: 10.3390/polym15234547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
In this investigation, CoFe2O4-PVDF and CoFe2O4-ZnO-PVDF hybrid membranes were prepared using a modified phase inversion method in which a magnetic field was applied during the casting process to ensure a uniform distribution of nanomaterials on the membrane surface. Thus, better absorption of light and increased participation of nanoparticles in the photodegradation process is ensured. The influence of nanomaterials on the crystalline structure, surface morphology, and hydrophilicity properties of the PVDF membrane was investigated. The obtained results indicated that the hybrid membrane exhibited significant differences in its intrinsic properties due to the nanomaterials addition. The hydrophilicity properties of the PVDF membrane were improved by the presence of nanoparticles. The photocatalytic decomposition of aqueous Rhodamine B solution in the presence of the prepared membrane and under visible light irradiation was tested. The hybrid membrane containing CoFe2O4-ZnO on its surface exhibited a high removal rate.
Collapse
Affiliation(s)
- Adriana Popa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Maria Stefan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Ioana Perhaita
- Raluca Ripan Institute for Research in Chemistry, Babes Bolyai University, 30 Fantanele, 400294 Cluj-Napoca, Romania;
| | - Lucian Barbu Tudoran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| | - Dana Toloman
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania; (A.P.); (M.S.); (S.M.); (L.B.T.)
| |
Collapse
|
11
|
Melinte V, Culica ME, Chibac-Scutaru AL. Cellulose acetate/polyurethane blend as support matrix with high optical transparency and improved mechanical properties for photocatalyst CeO 2 nanoparticles immobilization. Int J Biol Macromol 2023; 251:126210. [PMID: 37579894 DOI: 10.1016/j.ijbiomac.2023.126210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Advanced manufacturing technologies for efficient catalytic materials have triggered the rational design of catalysts as well as extensive investigation into preparative methodologies. Herein, we report the preparation of new versatile cellulose acetate/polyurethane (CA/PU) blends for efficient immobilization of CeO2 nanoparticles, the appropriate composition of polymer mixture being chosen after rigorous analysis (SEM, FTIR, optical, mechanical). The band gap energy for hybrid films ranged between 3.02 eV and 2.05 eV, the lowest value being measured for the film with Co-doped CeO2 NPs (B3 film). The best results in photodegradation of methylene blue under visible-light irradiation was attained after 50 min for B3 film (rate constant k = 45.34× 10-3 min-1), while the total mineralization of MB in the same conditions as evaluated by HPLC-ESI MS and TOC analyses was achieved after 90 min. Effect of co-ions (SO42-, Cl- or NO3-) on photocatalytic performance was studied, and scavenger tests were used to identify the active species involved in the photocatalytic mechanism. Also, the photocatalytic efficiency of B3 sample was tested for rhodamine B, metronidazole and 4-nitrophenol degradation. Evaluation of the stability and integrity of hybrid film after 5 catalysis cycles reveal that the photocatalytic potential is retained with no substantial structural changes.
Collapse
Affiliation(s)
- Violeta Melinte
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Madalina Elena Culica
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Andreea Laura Chibac-Scutaru
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
12
|
Eddy NO, Ukpe RA, Ameh P, Ogbodo R, Garg R, Garg R. Theoretical and experimental studies on photocatalytic removal of methylene blue (MetB) from aqueous solution using oyster shell synthesized CaO nanoparticles (CaONP-O). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81417-81432. [PMID: 36057067 DOI: 10.1007/s11356-022-22747-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The development of technologies for the removal of dye from aqueous solution is most desirable if the end product is relatively green (i.e., environmentally friendly). Photodegradation (as one of such technology) and photolysis (without the catalyst) was applied to investigate the role of sol-gel synthesized calcium oxide nanoparticle (using the oyster shell as the precursor). The results obtained gave substantial evidence that calcium oxide nanoparticles catalyzed the degradation of the methylene blue dye up to a maximum percentage of 98 % removal. Degradation efficiency displayed a strong dependency on time, initial dye concentration, catalyst load, pH, and ionic strength. Chi-square and sum of square error analysis indicated that the photodegradation kinetics fitted the Langmuir-Hinshelwood, first order, and pseudo first-order models best. The half-life of the dye was significantly reduced from hours to minutes due to photocatalysis. Quantum chemical calculations indicated that the degradation proceeded through adsorption, deformation/degradation, and desorption through the chloride end of the molecule linked to the calcium active center of the catalyst. Results from Fukui functions and molecular descriptors analysis confirmed the mechanism of photocatalysis.
Collapse
Affiliation(s)
- Nnabuk Okon Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | | | - Paul Ameh
- Department of Chemistry, Nigerian Police Academy, Wudi, Kano State, Nigeria
| | - Rapheal Ogbodo
- Department of Chemistry, The University of Iowa, Iowa, USA
| | - Rajni Garg
- R&D Department, Institute of Sci-Tech Affairs, Mohali, India
| | - Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Greater Noida, India
| |
Collapse
|
13
|
Elshahawy MF, Ahmed NA, Mohammed RD, Ali AEH, Raafat AI. Radiation synthesis and photocatalytic performance of floated graphene oxide decorated ZnO/ alginate-based beads for methylene blue degradation under visible light irradiation. Int J Biol Macromol 2023:125121. [PMID: 37263325 DOI: 10.1016/j.ijbiomac.2023.125121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Organic dye contamination, emanating from pharmaceutical, paper, and textile industries into water resources, severely threatens marine and human life even at low concentrations. Photocatalysis is one of the most important remediation techniques that decolorize water by employing the power of light. In this work, the development of floated beads of Sodium Alginate/hydroxyethyl methacrylate (Alg-g-HEMA) encompass graphene oxide (GO) decorated Zinc oxide (ZnO) utilizing ionizing radiation was designed to function as a photocatalyst when exposed to visible light. Floatability was induced using calcium carbonate. GO was sonochemically decorated with ZnO nanoparticles and the yield was characterized using XRD, FTIR, TEM, SEM, and EDX techniques. Optical characteristics of the developed nanostructure were performed using UV-Vis spectrophotometry. The photocatalytic activity of the floated (Alg-g-HEMA)-ZnO@GO beads was assessed for the photo decolorization of methylene blue dye (MB) under visible light. The upshot of operational factors such as photocatalyst dose, pH, initial dye concentration, and irradiation time on the decolorization of MB was examined. It was observed that 1 g of the developed (Alg-g-HEMA)-ZnO@GO photocatalyst was able to decolorize 1000 ml of 20 ppm of MB within 150 min at pH 9. In terms of kinetics, photo-decolorization follows Langmuir Hinshelwood pseudo-first order.
Collapse
Affiliation(s)
- Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nehad A Ahmed
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Randa D Mohammed
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amr El-Hag Ali
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
14
|
Ghobadi Moghadam A, Hemmati A. Improved water purification by PVDF ultrafiltration membrane modified with GO-PVA-NaAlg hydrogel. Sci Rep 2023; 13:8076. [PMID: 37202452 DOI: 10.1038/s41598-023-35027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
This work presents a modified polyvinylidene fluoride (PVDF) ultrafiltration membrane blended with graphene oxide-polyvinyl alcohol-sodium alginate (GO-PVA-NaAlg) hydrogel (HG) and polyvinylpyrrolidone (PVP) prepared by the immersion precipitation induced phase inversion approach. Characteristics of the membranes with different HG and PVP concentrations were analyzed by field emission scanning electron microscopy (FESEM), Atomic force microscopy (AFM), contact angle measurement (CA), and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The FESEM images showed an asymmetric structure of the fabricated membranes, and possessing a thin dense layer over the top and a layer finger-like. With increasing HG content, membrane surface roughness increases so that highest surface roughness for the membrane containing 1wt% HG is with a Ra value of 281.4 nm. Also, the contact angle of the membrane reaches from 82.5° in bare PVDF membrane to 65.1° in the membrane containing 1wt% HG. The influences of adding HG and PVP to the casting solution on pure water flux (PWF), hydrophilicity, anti-fouling ability, and dye rejection efficiency were evaluated. The highest water flux reached 103.2 L/m2 h at 3 bar for the modified PVDF membranes containing 0.3 wt% HG and 1.0wt% PVP. This membrane exhibited a rejection efficiency of higher than 92%, 95%, and 98% for Methyl Orange (MO), Conge Red (CR), and Bovine Serum Albumin (BSA), respectively. All nanocomposite membranes possessed a flux recovery ratio (FRR) higher than bare PVDF membranes, and the best anti-fouling performance of 90.1% was relevant to the membrane containing 0.3 wt% HG. The improved filtration performance of the HG-modified membranes was due to the enhanced hydrophilicity, porosity, mean pore size, and surface roughness after introducing HG.
Collapse
Affiliation(s)
- Armin Ghobadi Moghadam
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Alireza Hemmati
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
15
|
Suresh R, Rajendran S, Gnanasekaran L, Show PL, Chen WH, Soto-Moscoso M. Modified poly(vinylidene fluoride) nanomembranes for dye removal from water - A review. CHEMOSPHERE 2023; 322:138152. [PMID: 36791812 DOI: 10.1016/j.chemosphere.2023.138152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/26/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | | |
Collapse
|
16
|
Photo-Oxidation of Organic Dye by Fe2O3 Nanoparticles: Catalyst, Electron Acceptor, and Polyurethane Membrane (PU-Fe2O3) Effects. JOURNAL OF NANOTECHNOLOGY 2023. [DOI: 10.1155/2023/1292762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
The textile industry’s discharges have long been regarded as severe water pollution. The photocatalytic degradation of dyes using semiconductors is one of the crucial methods. The present study efficiently used the mechanical method to synthesize Iron oxide Nanoparticles. XRD, FT-IR, UV-Vis DRS, and Raman analyses were performed to analyze the structural and optical. From the data provided by XRD and Raman data, we believed that the as-synthesized Iron oxide was pure hematite (α-Fe2O3) with a hexagonal structure. Additionally, the EDS results show that the synthesized material is pure. By adjusting specific parameters, including the dye concentration, the catalyst dosage, the pH, and the oxidizing agent such as H2O2 and K2S2O8, the degradation of eosin yellowish using Fe2O3 as a photocatalyst has been discussed. Additionally, the kinetics of eosin yellowish degradation has been studied. A study was also conducted using Fe2O3 nanoparticles attached to polyurethane polymer (PU) to investigate its photocatalytic activity on methylene blue, methyl orange, and indigo carmine. In 30 minutes, nearly 90% of the dyes had degraded. The total organic carbon (TOC) analysis confirmed this result.
Collapse
|
17
|
Rabadanova A, Abdurakhmanov M, Gulakhmedov R, Shuaibov A, Selimov D, Sobola D, Částková K, Ramazanov S, Orudzhev F. Piezo-, photo- and piezophotocatalytic activity of electrospun fibrous PVDF/CTAB membrane. CHIMICA TECHNO ACTA 2022. [DOI: 10.15826/chimtech.2022.9.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A composite material based on polyvinylidene fluoride (PVDF) nanofibers modified with cetyltrimethylammonium bromide (CTAB) was synthesized by coaxial electrospinning. The morphology and structure of the material were studied by SEM, FTIR spectroscopy, X-ray diffraction analysis, XPS, and the piezo-photo- and piezo-photocatalytic activity during the decomposition of the organic dye Methylene blue (MB) was studied. It is shown that the addition of CTAB promotes additional polarization of the PVDF structure due to ion-dipole interaction. It has been shown for the first time that the addition of CTAB promotes the photosensitivity of the wide-gap dielectric polymer PVDF (the band gap is more than 6 eV). It was demonstrated that the photocatalytic decomposition efficiency was 91% in 60 minutes. The material exhibits piezocatalytic activity – 73% in 60 minutes. Experiments on trapping active oxidizing forms have established that OH hydroxyl radicals play the main role in the photocatalytic process.
Collapse
|
18
|
Manojkumar P, Pranav S, Premchand C, Lokeshkumar E, Rameshbabu N. Development of surface-modified galvanised steel as an immobilised photocatalyst for textile wastewater treatment. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Al-Maliki RM, Alsalhy QF, Al-Jubouri S, Salih IK, AbdulRazak AA, Shehab MA, Németh Z, Hernadi K. Classification of Nanomaterials and the Effect of Graphene Oxide (GO) and Recently Developed Nanoparticles on the Ultrafiltration Membrane and Their Applications: A Review. MEMBRANES 2022; 12:1043. [PMID: 36363598 PMCID: PMC9696631 DOI: 10.3390/membranes12111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 05/12/2023]
Abstract
The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal-organic framework (MOFs), covalent organic frameworks (COFs) and carbon-based nanomaterials (such as carbon nanotubes and graphene oxide (GO)). The influence of these nanoparticles on the surface and structural changes in the membrane is thoroughly discussed, in addition to the performance efficiency and antifouling resistance of the developed membranes. Recently, GO has shown a considerable capacity in wastewater treatment. This is due to its nanometer-sized holes, ultrathin layer and light and sturdy nature. Therefore, we discuss the effect of the addition of hydrophilic GO in neat form or hyper with other nanoparticles on the properties of different polymeric membranes. A hybrid composite of various NPs has a distinctive style and high-quality products can be designed to allow membrane technology to grow and develop. Hybrid composite NPs could be used on a large scale in the future due to their superior mechanical qualities. A summary and future prospects are offered based on the current discoveries in the field of mixed matrix membranes. This review presents the current progress of mixed matrix membranes, the challenges that affect membrane performance and recent applications for wastewater treatment systems.
Collapse
Affiliation(s)
- Raghad M. Al-Maliki
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Sama Al-Jubouri
- Department of Chemical Engineering, College of Engineering, University of Baghdad, Aljadria, Baghdad 10071, Iraq
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babil 51001, Iraq
| | - Adnan A. AbdulRazak
- Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street 52, Baghdad 10066, Iraq
| | - Mohammed Ahmed Shehab
- Faculty of Materials and Chemical Engineering, University of Miskolc, H-3515 Miskolc, Hungary
- Polymers and Petrochemicals Engineering Department, Basrah University for Oil and Gas, Basrah 61004, Iraq
| | - Zoltán Németh
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, H-3515 Miskolc, Hungary
| | - Klara Hernadi
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary
| |
Collapse
|
20
|
Ahmed FU, Upadhaya D, Dhar Purkayastha D, Krishna MG. Stable hydrophilic and underwater superoleophobic ZnO nanorod decorated nanofibrous membrane and its application in wastewater treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Manpetch P, Singhapong W, Jaroenworaluck A. Synthesis and characterization of a novel composite of rice husk-derived graphene oxide with titania microspheres (GO-RH/TiO 2) for effective treatment of cationic dye methylene blue in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63917-63935. [PMID: 35467189 DOI: 10.1007/s11356-022-20176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) was synthesized utilizing rice husk (RH) as the starting raw material via a modified Hummers' method. Ground pencil leads were used as a control powder of the starting raw material to monitor the consistency of the synthesis method. TiO2 microspheres were synthesized via a precipitated method using the pluronic F127 solution as the pore template. GO derived from RH (GO-RH) was composited with TiO2 microspheres as GO-RH/TiO2 composites by an impregnation method with weight ratios of 3:1, 2:2, and 1:3. Characterized results revealed GO-RH formed a ternary phase material of graphene oxide, graphite oxide, and silica. A typical microstructure of the calcined TiO2 microspheres was found as the agglomerated anatase nanoparticles. Furthermore, the composites belong to large surface areas and numerous oxygen-containing functionalities on their surfaces. Removal efficiencies of cationic dye methylene blue (MB) from aqueous solutions by the composites, GO-RH and TiO2, were studied under UV illumination for 180 min. Due to the effective combination of adsorption and photodegradation for the MB removal, the composites provided the higher efficiencies (99-100%) faster than those of GO-RH and TiO2 and could be reused at least 4 times. Finally, a mechanism of the MB removal by the composites was proposed.
Collapse
Affiliation(s)
- Panlekha Manpetch
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wadwan Singhapong
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Angkhana Jaroenworaluck
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
22
|
Statistical optimization modeling of organic dye photodegradation process using slag nanocomposite. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Javed M, Qamar MA, Iqbal S, Aljazzar SO, Iqbal S, Khan H, Abourehab MAS, Elkaeed EB, Alharthi AI, Awwad NS, Ibrahium HA. Synergistic Influences of Doping Techniques and Well‐Defined Heterointerface Formation to Improve the Photocatalytic Ability of the S‐ZnO/GO Nanocomposite. ChemistrySelect 2022. [DOI: 10.1002/slct.202201913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohsin Javed
- Department of Chemistry School of Science University of Management and Technology Lahore
| | - Muhammad Azam Qamar
- Department of Chemistry School of Science University of Management and Technology Lahore
| | - Shahid Iqbal
- Department of Chemistry School of Natural Sciences (SNS) National University of Science and Technology (NUST), H-12 Islamabad 46000 Pakistan
| | - Samar O. Aljazzar
- Department of Chemistry College of Science Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Sadia Iqbal
- Department of Chemistry School of Science University of Management and Technology Lahore
| | - Humaira Khan
- Department of Chemistry School of Science University of Management and Technology Lahore
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics College of Pharmacy Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Minia University Minia 61519 Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences College of Pharmacy AlMaarefa University Riyadh 13713 Saudi Arabia
| | - Abdulrahman I. Alharthi
- Department of Chemistry College of Science and Humanities Prince Sattam bin Abdulaziz University Al- Kharj 11942 Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Semi Pilot Plant Nuclear Materials Authority P.O. Box 530 El Maadi Egypt
| |
Collapse
|
24
|
Patel RV, Raj GB, Chaubey S, Yadav A. Investigation on the feasibility of recycled polyvinylidene difluoride polymer from used membranes for removal of methylene blue: experimental and DFT studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:194-210. [PMID: 35838291 DOI: 10.2166/wst.2022.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study reports the feasibility of recycled polyvinylidene difluoride (PVDF) beads to decolourize methylene blue (MB) from aqueous streams. The beads were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) for its morphological and structural analysis. The effect of various process parameters such as adsorbent dose, initial concentration, contact time, and pH was studied. The first principle density functional theory (DFT) calculations were performed to investigate the underlying mechanism behind the adsorption process. The MB dye adsorption on recycled PVDF beads followed the pseudo-second-order kinetics and Langmuir isotherm, indicating the adsorption was chemical and monolayer. The maximum adsorption capacity obtained was 27.86 mg g-1. The adsorption energy of MB-PVDF predicted from the DFT study was -64.7 kJ mol-1. The HOMO-LUMO energy gap of PVDF decreased from 9.42 eV to 0.50 eV upon interaction with MB dye due to the mixing of molecular orbitals. The DFT simulations showed that the interaction of the MB dye molecule was from the electronegative N atom of the MB dye molecule, implying that electrostatic interactions occurred between the recycled PVDF beads and the positively charged quaternary ammonium groups in MB dye. The present study demonstrates the potential of recycled PVDF beads for a low-cost dye removal technique from textile wastewater.
Collapse
Affiliation(s)
- Raj Vardhan Patel
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India E-mail:
| | - Gopika B Raj
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India E-mail: ; Centre for Bio-Polymer Science and Technology (unit of CIPET), Kochi 683501, India
| | - Shweta Chaubey
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India E-mail:
| | - Anshul Yadav
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India E-mail:
| |
Collapse
|
25
|
Homocianu M, Pascariu P. High-performance photocatalytic membranes for water purification in relation to environmental and operational parameters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114817. [PMID: 35276562 DOI: 10.1016/j.jenvman.2022.114817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Growing technologies, increasing population and environmental pollution lead to severe contamination of water and require advanced water treatment technologies. These aspects lead to the need to purify water with advanced smart materials. This paper reviews the recent advances (during the last 5 years) in photocatalytic composite membranes used for water treatment. For this purpose, the authors have reviewed the main materials used in the development of (photocatalytic membranes) PMs, environmental and operational factors affecting the performance of photocatalytic membranes, and the latest developments and applications of PMs in water purifications. The composite photocatalytic membranes show good performance in the removal and degradation of pollutants from water.
Collapse
Affiliation(s)
- Mihaela Homocianu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Petronela Pascariu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
26
|
Bin Mobarak M, Hossain MS, Yeasmin Z, Mahmud M, Rahman MM, Sultana S, Masum SM, Ahmed S. Probing the photocatalytic competency of hydroxyapatite synthesized by solid state and wet chemical precipitation method. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Seoane R, Santaeufemia S, Abalde J, Torres E. Efficient Removal of Methylene Blue Using Living Biomass of the Microalga Chlamydomonas moewusii: Kinetics and Equilibrium Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052653. [PMID: 35270343 PMCID: PMC8909845 DOI: 10.3390/ijerph19052653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
Abstract
The efficiency of the living biomass of the microalga Chlamydomonas moewusii in removing methylene blue dye is determined. The kinetics, equilibrium isotherms, and the effects on this process of the pH, contact time, and initial concentration of the dye are studied. Fourier transform infrared spectrometry and point of zero charge are used to characterize the biomass and explore the process. The maximum removal capacity derived from the Langmuir isotherm is 212.41 ± 4.55 mg/g after 7 h of contact time at pH 7. The removal process is rapid because kinetic studies revealed that the best fit of the data is with pseudo-third-order kinetics. The removal efficiency is dependent on the pH; as the pH increased, the efficiency is higher. These results show that the living biomass of this microalga is a very efficient biosorbent and therefore very suitable for the removal of methylene blue from aqueous solutions.
Collapse
|
28
|
Photocatalytic Filtration of Zinc Oxide-Based Membrane with Enhanced Visible Light Responsiveness for Ibuprofen Removal. Catalysts 2022. [DOI: 10.3390/catal12020209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The growing interest in mixed matrix membranes (MMMs) for developing photocatalytic membranes has provided a new direction in the search for efficient methods to concurrently separate and degrade contaminants. In this study, a visible light-responsive photocatalyst was blended into a polyvinylidene fluoride (PVDF) membrane casting solution to prepare PVDF-ZnO/Ag2CO3/Ag2O MMMs using the wet phase inversion method. The potential of ZnO/Ag2CO3/Ag2O as a photocatalytic component that is incorporated into the membrane was explored in detail under various loadings (0.5–2.91 wt%). The membranes were tested under ibuprofen (IBF) aqueous solution to analyze the membrane behavior in the synergistic combination of membrane filtration and photodegradation. The resulting PVDF-ZnO/Ag2CO3/Ag2O membrane with a rougher membrane surface area and excellent light harvesting capability showed higher photocatalytic filtration activity in removing IBF under visible light irradiations. The MMM fluxes demonstrated higher IBF fluxes than their initial fluxes at certain durations. This indicates that the membrane actively responds to light irradiation. The increase in the positive flux could be attributed to the photoinduced hydrophilicity generated by the ZnO/Ag2CO3/Ag2O photocatalyst, resulting in easier water layer formation and rapid transport through membranes. The highest IBF removal was demonstrated by the PVDF‑ZAA2 membrane (1.96 wt% loading), with 49.96% of IBF removal within 180 min upon visible light irradiation. The reason for this lower IBF removal is that the UF membrane pores exceed the size of IBF molecules, thereby preventing the size exclusion mechanism. Thus, charge repulsion, hydrophobic adsorption, and photocatalytic activity were considered along with the IBF removal of the photocatalytic membranes. However, the recyclability of the PVDF‑ZAA2 photocatalytic membrane showed a great improvement, with 99.01% of IBF removal recovery after three cycles. These results highlight the potential of such hybrid membranes in mitigating membrane fouling by providing a platform for photocatalysts to continuously degrade pollutants present in such wastewaters. Therefore, the hybridization of a photocatalyst and membrane provides insight that could be utilized to improve and retrofit current water effluent treatment methods.
Collapse
|
29
|
Pekgenc E, Yavuzturk Gul B, Vatanpour V, Koyuncu I. Biocatalytic membranes in anti-fouling and emerging pollutant degradation applications: Current state and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Composite PVDF ultrafiltration membrane tailored by sandwich-like GO@UiO-66 nanoparticles for breaking the trade-off between permeability and selectivity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119308] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Thakre KG, Barai DP, Bhanvase BA. A review of graphene-TiO 2 and graphene-ZnO nanocomposite photocatalysts for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2414-2460. [PMID: 34378264 DOI: 10.1002/wer.1623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Technologies for wastewater remediation have been growing ever since the environmental and health concern is realized. Development of nanomaterials has enabled mankind to have different methods to treat the various kinds of inorganic and organic pollutants present in wastewater from many resources. Among the many materials, semiconductor materials have found many environmental applications due to their outstanding photocatalytic activities. TiO2 and ZnO are more effectively used as photocatalyst or adsorbents in the withdrawal of inorganic as well as organic wastes from the wastewater. On the other hand, graphene is tremendously being investigated for applications in environmental remediation in view of the superior physical, optical, thermal, and electronic properties of graphene nanocomposites. In this work, graphene-TiO2 and graphene-ZnO nanocomposites have been reviewed for photocatalytic wastewater treatment. The various preparation techniques of these nanocomposites have been discussed. Also, different design strategies for graphene-based photocatalyst have been revealed. These nanocomposites exhibit promising applications in most of the water purification processes which are reviewed in this work. Along with this, the development of these nanocomposites using biomass-derived graphene has also been introduced. PRACTITIONER POINTS: Graphene-TiO2 and graphene-ZnO nanocomposites are effective for wastewater treatment through photocatalysis. These nanocomposite photocatalysts have been used in the form of membrane as well as antibacterial agents. Synthetic strategies and design considerations of graphene-based photocatalyst play a major role. Biomass-derived graphene-TiO2 and graphene-ZnO nanocomposites have also found application in wastewater treatment.
Collapse
Affiliation(s)
- Kunal G Thakre
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Divya P Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
32
|
Khurram R, Javed A, Ke R, Lena C, Wang Z. Visible Light-Driven GO/TiO 2-CA Nano-Photocatalytic Membranes: Assessment of Photocatalytic Response, Antifouling Character and Self-Cleaning Ability. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2021. [PMID: 34443852 PMCID: PMC8401995 DOI: 10.3390/nano11082021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/07/2022]
Abstract
Photocatalysis and membrane technology in a single unit is an ideal strategy for the development of wastewater treatment systems. In this work, novel GO (x wt%)/TiO2-CA hybrid membranes have been synthesized via a facile non-solvent induced phase inversion technique. The strategy aimed to address the following dilemmas: (1) Effective utilization of visible light and minimize e-/h+ recombination; (2) Enhanced separation capability and superior anti-fouling and self-cleaning ability. The experimental results reveal that the integration of nano-composite (GO/TiO2) boosts the membrane properties when compared to pristine CA and single photocatalyst employed membrane (GO-CA and TiO2-CA). The effect of GO content on the properties of the photocatalytic membrane has been determined by utilizing three different ratios of GO, viz. 0.5 wt%, 1 wt%, and 2 wt% designated as NC(1)-CA, NC(2)-CA, and NC(3)-CA, respectively. Amongst them, NC(3)-CA membrane showed state-of-the-art performance with an elevated photocatalytic response (four times higher than pristine CA membrane) toward methyl orange. Moreover, the water flux of NC(3)-CA membrane is 613 L/m2h, approximately three times higher than bare CA membrane (297 L/m2h), while keeping the MO rejection high (96.6%). Besides, fouling experiments presented the lowest total and fouling resistance ratios and a higher flux recovery ratio (91.78%) for the NC(3)-CA membrane, which endows the membrane with higher anti-fouling and self-cleaning properties. Thus, NC(3)-CA membrane outperforms the other as synthesized membranes in terms of separation efficiency, visible light photo-degradation of pollutant, anti-fouling and self-cleaning ability. Therefore, NC(3)-CA membrane is considered as the next generation membrane for exhibiting great potential for the wastewater treatment applications.
Collapse
Affiliation(s)
- Rooha Khurram
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China; (R.K.); (C.L.)
| | - Aroosa Javed
- Department of Chemistry, School of Natural Sciences (S.N.S.), NUST, H-12, Islamabad 44000, Pakistan;
| | - Ruihua Ke
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China; (R.K.); (C.L.)
- School of Ecological Construction and Environmental Protection, Jiangxi Environmental Engineering Vocational College, Ganzhou 341002, China
| | - Cheng Lena
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China; (R.K.); (C.L.)
| | - Zhan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China; (R.K.); (C.L.)
| |
Collapse
|
33
|
Russo F, Marino T, Galiano F, Gzara L, Gordano A, Organji H, Figoli A. Tamisolve ® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene Fluoride) Membranes. Polymers (Basel) 2021; 13:polym13152579. [PMID: 34372182 PMCID: PMC8347625 DOI: 10.3390/polym13152579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023] Open
Abstract
Tamisolve® NxG, a well-known non-toxic solvent, was used for poly(vinylidene fluoride) (PVDF) membranes preparation via a non-solvent-induced phase separation (NIPS) procedure with water as a coagulation bath. Preliminary investigations, related to the study of the physical/chemical properties of the solvent, the solubility parameters, the gel transition temperature and the viscosity of the polymer-solvent system, confirmed the power of the solvent to solubilize PVDF polymer for membranes preparation. The role of polyvinylpyrrolidone (PVP) and/or poly(ethylene glycol) (PEG), as pore former agents in the dope solution, was studied along with different polymer concentrations (10 wt%, 15 wt% and 18 wt%). The produced membranes were then characterized in terms of morphology, thickness, porosity, contact angle, atomic force microscopy (AFM) and infrared spectroscopy (ATR-FTIR). Pore size measurements, pore size distribution and water permeability (PWP) tests placed the developed membranes in the ultrafiltration (UF) and microfiltration (MF) range. Finally, PVDF membrane performances were investigated in terms of rejection (%) and permeability recovery ratio (PRR) using methylene blue (MB) in water solution to assess their potential application in separation and purification processes.
Collapse
Affiliation(s)
- Francesca Russo
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
| | - Tiziana Marino
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
- Correspondence: (T.M.); (A.F.)
| | - Francesco Galiano
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (L.G.); (H.O.)
| | - Amalia Gordano
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
| | - Hussam Organji
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (L.G.); (H.O.)
| | - Alberto Figoli
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17c, 87036 Rende, CS, Italy; (F.R.); (F.G.); (A.G.)
- Correspondence: (T.M.); (A.F.)
| |
Collapse
|
34
|
Kayani ABA, Kuriakose S, Monshipouri M, Khalid FA, Walia S, Sriram S, Bhaskaran M. UV Photochromism in Transition Metal Oxides and Hybrid Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100621. [PMID: 34105241 DOI: 10.1002/smll.202100621] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Limited levels of UV exposure can be beneficial to the human body. However, the UV radiation present in the atmosphere can be damaging if levels of exposure exceed safe limits which depend on the individual the skin color. Hence, UV photochromic materials that respond to UV light by changing their color are powerful tools to sense radiation safety limits. Photochromic materials comprise either organic materials, inorganic transition metal oxides, or a hybrid combination of both. The photochromic behavior largely relies on charge transfer mechanisms and electronic band structures. These factors can be influenced by the structure and morphology, fabrication, composition, hybridization, and preparation of the photochromic materials, among others. Significant challenges are involved in realizing rapid photochromic change, which is repeatable, reversible with low fatigue, and behaving according to the desired application requirements. These challenges also relate to finding the right synergy between the photochromic materials used, the environment it is being used for, and the objectives that need to be achieved. In this review, the principles and applications of photochromic processes for transition metal oxides and hybrid materials, photocatalytic applications, and the outlook in the context of commercialized sensors in this field are presented.
Collapse
Affiliation(s)
- Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Mahta Monshipouri
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | | | - Sumeet Walia
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| |
Collapse
|
35
|
Xie HY, Chen Z, Li YJ, Chen GE, Mao HF, Xu ZL. Photocatalytic self-cleaning properties of m-phenylene isophthalamide membranes enhanced by immobilization of GO-ZnO-Ag for dye wastewater disposal. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211028876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Drawing self-cleaning technology into polymer membranes offers an extensive solution to overcome the membrane fouling obstacle. Herein, the GO-ZnO-Ag nano-hybrid particles with photocatalytic activity prepared via the microwave hydrothermal method were immobilized in poly(m-phenylene isophthalamide) (PMIA) membranes. Not only was the thorny issue in catalyst recovery avoided, but also the satisfactory photocatalytic self-cleaning performance of the polymer membrane was awarded. GO and noble metal silver nanoparticles (AgNPs) acted as a conductive electron transfer carrier and an electron host, respectively, which hindered the recombination rate of excited electrons and holes on ZnO under UV light. The UV-driven PMIA membrane photodegradation rates of MB and Cr(VI) were up to 97.2% and 94.3%, respectively, at 150 min on photodegradation kinetics. Also, MB was completely degraded at 180 min. For MB and Cr(VI) mix solutions, their degradation efficiencies were 78.1% and 71%, respectively. The BSA rejection rate of the modified polymer membrane was 93.8%, and the water flux was 408.8 (L·m−2·h−1). Permeability was maintained at a high level after repeated use. Therefore, the newly designed PMIA/GO-ZnO-Ag series membranes could expand the application of polymers in wastewater disposal industry.
Collapse
Affiliation(s)
- Huan-Yin Xie
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zhen Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Yi-Jing Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Gui-E Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Hai-Fang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
36
|
Oyewo OA, Nevondo NG, Onwudiwe DC, Onyango MS. Photocatalytic degradation of methyl blue in water using sawdust-derived cellulose nanocrystals-metal oxide nanocomposite. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01847-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Zhang J, Tong H, Pei W, Liu W, Shi F, Li Y, Huo Y. Integrated photocatalysis-adsorption-membrane separation in rotating reactor for synergistic removal of RhB. CHEMOSPHERE 2021; 270:129424. [PMID: 33387845 DOI: 10.1016/j.chemosphere.2020.129424] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
A synergistic system of integrated photocatalysis-adsorption-membrane separation in a rotating reactor was designed. The composite membrane was prepared via filtration process under vacuum, and it was composed of graphene oxide (GO) acted as the separation membrane, activated carbon (AC) as the adsorbent and Ag@BiOBr as the photocatalyst, respectively. In this Ag@BiOBr/AC/GO membrane system, rotation of the membrane could avoid the light-shielding effect from organic color pollutants to achieve the complete removal of pollutants. More importantly, the synergistic effect among photocatalysis, adsorption and membrane separation in rotating reactor was significant for the efficient removal of rhodamine B (RhB). In the Ag@BiOBr/AC/GO composite membrane, GO membrane layer could reject the organic molecular by the assistance of AC layer with efficient adsorption capacity, and Ag@BiOBr at outer layer could photodegrade the organics under visible light irradiation. The photocatalysis process could solve the problem of membrane fouling and adsorption could assist GO membrane for stopping the permeation of pollutants. Meanwhile, GO membrane was not only beneficial for catalyst recovery, but also could concentrate the pollutants via the membrane separation to accelerate the photocatalytic degradation. At the same time, both the photocatalysis degradation and membrane separation could promote the adsorption ability of AC. This synergistic system showed the significant potential for the practical application in the future.
Collapse
Affiliation(s)
- Junyang Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Haijian Tong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Wenkai Pei
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Wenhua Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Fengyan Shi
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Yuning Huo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
38
|
Wang Y, Dai L, Qu K, Qin L, Zhuang L, Yang H, Xu Z. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2011-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Hong W, Li C, Tang T, Xu H, Yu Y, Liu G, Wang F, Lei C, Zhu H. The photocatalytic activity of the SnO 2/TiO 2/PVDF composite membrane in rhodamine B degradation. NEW J CHEM 2021. [DOI: 10.1039/d0nj04764c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immobilization of photocatalysts is considered an effective approach to solve the problem of the difficult recycling of powdered nanocatalysts after photocatalytic degradation.
Collapse
Affiliation(s)
- Wei Hong
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Chengcai Li
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Tao Tang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Huan Xu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yuan Yu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Guojin Liu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Feng Wang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
- Zhejiang Kertice Hi-Tech Fluor-Material Co., Ltd
| | - Caihong Lei
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Hailin Zhu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
- Zhejiang Kertice Hi-Tech Fluor-Material Co., Ltd
| |
Collapse
|
40
|
Wang H, Wang J, Xiang X, Zhou Y, Li Q, Tang A, Liao D, Liu Y, Liu HB. Preparation of PVDF/CdS/Bi 2WO 6/ZnO hybrid membrane with enhanced visible-light photocatalytic activity for degrading nitrite in water. ENVIRONMENTAL RESEARCH 2020; 191:110036. [PMID: 32810498 DOI: 10.1016/j.envres.2020.110036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
In this work, a visible light-driven ternary heterojunction photocatalyst, CdS/Bi2WO6/ZnO, was synthesized using hydrothermal, ultrasonic dispersion, and deposition precipitation methods. The results show that photocatalysts with flower-like heterostructures were obtained, which could efficiently separate electron-hole pairs, and the photocatalytic activity was thereby significantly enhanced. Furthermore, CdS/Bi2WO6/ZnO and polyvinylidene fluoride (PVDF) were used to fabricate hybrid membranes via a phase-conversion method. The samples were characterized using SEM, TEM, EDX, XRD, DRS, XPS, PL, and N2 adsorption-desorption isotherms, and the transient photocurrent response. The photocatalytic activity of the hybrid membrane was evaluated, and 92.58% of the nitrite was converted into non-toxic substances within 4 h under simulated sunlight irradiation. This result indicated that the photocatalyst exhibited a good photocatalytic activity after immobilization. The possible mechanism was elucidated by studying the product during the photocatalytic degradation, and the effects of different pH values, electron scavengers, and hole scavengers on the photocatalytic performance were further investigated.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Xin Xiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Yuanping Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Qingyun Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, GuangxiProvince, 530003, China
| | - Aixing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, GuangxiProvince, 530003, China
| | - Dankui Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China
| | - Youyan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, GuangxiProvince, 530003, China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi Province, 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, GuangxiProvince, 530003, China.
| |
Collapse
|
41
|
Mousa HM, Alfadhel H, Abouel Nasr E. Engineering and Characterization of Antibacterial Coaxial Nanofiber Membranes for Oil/Water Separation. Polymers (Basel) 2020; 12:E2597. [PMID: 33167337 PMCID: PMC7694370 DOI: 10.3390/polym12112597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, a coaxial nanofiber membrane was developed using the electrospinning technique. The developed membranes were fabricated from hydrophilic cellulose acetate (CA) polymer and hydrophobic polysulfone (PSf) polymer as a core and shell in an alternative way with addition of 0.1 wt.% of ZnO nanoparticles (NPs). The membranes were treated with a 2M NaOH solution to enhance hydrophilicity and thus increase water separation flux. Chemical and physical characterizations were performed, such as Fourier transform infrared (FTIR) spectroscopy, and surface wettability was measured by means of water contact angle (WCA), mechanical properties, surface morphology via field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and microscopy energy dispersive (EDS) mapping and point analysis. The results show higher mechanical properties for the coaxial nanofiber membranes which reached a tensile strength of 7.58 MPa, a Young's modulus of 0.2 MPa, and 23.4 M J.m-3 of toughness. However, treated mebranes show lower mechanical properties (tensile strength of 0.25 MPa, Young's modulus of 0.01 MPa, and 0.4 M J.m-3 of toughness). In addition, the core and shell nanofiber membranes showed a uniform distribution of coaxial nanofibers. Membranes with ZnO NPs showed a porous structure and elimination of nanofibers after treatment due to the formation of nanosheets. Interestingly, membranes changed from hydrophobic to hydrophilic (the WCA changed from 90 ± 8° to 14 ± 2°). Besides that, composite nanofiber membranes with ZnO NPs showed antibacterial activity against Escherichia coli. Furthermore, the water flux for the modified membranes was improved by 1.6 times compared to the untreated membranes.
Collapse
Affiliation(s)
- Hamouda M. Mousa
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Husain Alfadhel
- Department of Mechanical Engineering, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Emad Abouel Nasr
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
- Department of Mechanical Engineering, Faculty of Engineering, Helwan University, Cairo 11732, Egypt
| |
Collapse
|
42
|
Popa A, Toloman D, Stan M, Stefan M, Radu T, Vlad G, Ulinici S, Baisan G, Macavei S, Barbu-Tudoran L, Pana O. Tailoring the RhB removal rate by modifying the PVDF membrane surface through ZnO particles deposition. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01795-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Facile fabrication of ZnO nanorods modified with RGO for enhanced photodecomposition of dyes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Wang Q, Cui J, Xie A, Lang J, Li C, Yan Y. PVDF composite membrane with robust UV-induced self-cleaning performance for durable oil/water emulsions separation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Mengting Z, Kurniawan TA, Yanping Y, Avtar R, Othman MHD. 2D Graphene oxide (GO) doped p-n type BiOI/Bi2WO6 as a novel composite for photodegradation of bisphenol A (BPA) in aqueous solutions under UV-vis irradiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110420. [DOI: 10.1016/j.msec.2019.110420] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 11/10/2019] [Indexed: 12/26/2022]
|
46
|
Wang W, Sun H. Effect of different forms of nano‐ZnO on the properties of PVDF/ZnO hybrid membranes. J Appl Polym Sci 2020. [DOI: 10.1002/app.49070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Separation Membranes and Membrane ProcessesTiangong University Tianjin China
- School of Material Science and EngineeringTiangong University Tianjin China
| | - Hanshu Sun
- State Key Laboratory of Separation Membranes and Membrane ProcessesTiangong University Tianjin China
- School of Material Science and EngineeringTiangong University Tianjin China
| |
Collapse
|
47
|
Beygmohammdi F, Nourizadeh Kazerouni H, Jafarzadeh Y, Hazrati H, Yegani R. Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Ayyaru S, Dinh TTL, Ahn YH. Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle. CHEMOSPHERE 2020; 241:125068. [PMID: 31629244 DOI: 10.1016/j.chemosphere.2019.125068] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 05/26/2023]
Abstract
This paper reports a novel nanocomposite additive for a polyvinylidene fluoride (PVDF) membrane with high hydrophilicity through the association of graphene oxide (GO) and ZnO. The influence of the hydrophilicity of GO-ZnO on the PVDF membrane was examined on different GO-ZnO loadings. The porosity and wettability (or hydrophilicity) of the membrane were improved significantly by blending GO-ZnO nanocomposite. In addition, the water flux of the GO-ZnO/PVDF membrane was 48% higher than that of bare PVDF, and the anti-fouling properties of this modified membrane were also improved. The irreversible fouling ratio (Rir) of bovine serum albumin (BSA) was reduced substantially with increasing the loading of GO-ZnO nanocomposite. The lowest irreversible fouling ratio (7.21%) was obtained for the membrane containing 0.2 wt % GO-ZnO of the nanocomposite (M6). GO-ZnO modification PVDF membranes were assumed to reduce the affinity between membrane and BSA foulant, which improved the anti-fouling properties PVDF membrane. In the activated sludge flux test, the membrane containing GO-ZnO in the polymer matrix had a higher flux than that of the bare PVDF membrane. The effluent quality after the composite membrane (0.6 NTU) was stable, indicating that the composite membrane can be used for practical applications Overall, the properties of the PVDF membrane were improved after modification due to hydrogen bonding or the hydrophilicity of the GO-ZnO nanocomposite.
Collapse
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Ta Tuan Linh Dinh
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
49
|
Prasad C, Liu Q, Tang H, Yuvaraja G, Long J, Rammohan A, Zyryanov GV. An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111826] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Zhang R, Wang Y, Ma D, Ahmed S, Qin W, Liu Y. Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. ULTRASONICS SONOCHEMISTRY 2019; 59:104731. [PMID: 31442767 DOI: 10.1016/j.ultsonch.2019.104731] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 08/11/2019] [Indexed: 05/04/2023]
Abstract
Nanofibrous composite membranes consisting of polyvinyl alcohol (PVA), graphene oxide (GO), and zinc oxide nanoparticles (ZnO NPs) were prepared by and ultrasonic processing, and electrospinning. The performance of the membranes containing different GO-to-ZnO NP mass ratios was comprehensively investigated in terms of density, mechanical properties, water vapor permeability, optical property, biodegradability and antimicrobial properties. The results showed that an appropriate sonication time (30 min) improved the membrane performance; the composite nanofibrous membrane with a GO-to-ZnO NP mass ratio of 3:7 and 30 min sonication exhibited the best performance with a water vapor permeability of (0.62 ± 0.01) × 10-2 g·h-1 m-2 pa-1, and strain and stress values of 307.84 ± 2.96% and 12.82 ± 0.56 MPa, respectively. Particularly, the UV barrier property of the composite nanofibrous membrane was enhanced. Furthermore, the membrane exhibited strong antibacterial activity against foodborne pathogenic and spoilage bacteria. Thu, it can thus be used as an active food packaging material to ensure the safety of food products and to extend their shelf-life.
Collapse
Affiliation(s)
- Rong Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yihao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Donghui Ma
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|