1
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
2
|
García L, Braccini S, Pagliarini E, Del Gronchio V, Di Gioia D, Peniche H, Peniche C, Puppi D. Ionically-crosslinked carboxymethyl chitosan scaffolds by additive manufacturing for antimicrobial wound dressing applications. Carbohydr Polym 2024; 346:122640. [PMID: 39245504 DOI: 10.1016/j.carbpol.2024.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Chitosan chemical functionalization is a powerful tool to provide novel materials for additive manufacturing strategies. The main aim of this study was the employment of computer-aided wet spinning (CAWS) for the first time to design and fabricate carboxymethyl chitosan (CMCS) scaffolds. For this purpose, the synthesis of a chitosan derivative with a high degree of O-substitution (1.07) and water soluble in a large pH range allowed the fabrication of scaffolds with a 3D interconnected porous structure. In particular, the developed scaffolds were composed of CMCS fibers with a small diameter (< 60 μm) and a hollow structure due to a fast non solvent-induced coagulation. Zn2+ ionotropic crosslinking endowed the CMCS scaffolds with stability in aqueous solutions, pH-sensitive water uptake capability, and antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, post-printing functionalization through collagen grafting resulted in a decreased stiffness (1.6 ± 0.3 kPa) and a higher elongation at break (101 ± 9 %) of CMCS scaffolds, as well as in their improved ability to support in vitro fibroblast viability and wound healing process. The obtained results encourage therefore further investigation of the developed scaffolds as antimicrobial wound dressing hydrogels for skin regeneration.
Collapse
Affiliation(s)
- Lorenzo García
- Biopolymers Department, Biomaterials Center, University of Havana, Havana 10400, Cuba
| | - Simona Braccini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elia Pagliarini
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 44, Bologna, Italy
| | - Viola Del Gronchio
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 44, Bologna, Italy
| | - Hazel Peniche
- Biopolymers Department, Biomaterials Center, University of Havana, Havana 10400, Cuba
| | - Carlos Peniche
- Physical Chemistry Department, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
3
|
Elahi N, Astaneh ME, Ai J, Rizwan M. Atopic dermatitis treatment: A comprehensive review of conventional and novel bioengineered approaches. Int J Biol Macromol 2024; 282:137083. [PMID: 39515724 DOI: 10.1016/j.ijbiomac.2024.137083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Atopic dermatitis (AD) remains a challenging condition, with conventional treatments often leading to adverse effects and limited efficacy. This review explores the diverse landscape of AD treatments, encompassing conventional methods, novel topical and systemic therapies, and emerging bioengineered strategies. While conventional drug administration often requires high dosages or frequent administration, leading to adverse effects, targeted biologics have shown promise. Phototherapy and wet wrap therapy, while helpful, have limitations. Given these factors, the need for modern and effective therapeutic strategies for AD is pressing. Complementary or alternative therapies have garnered significant attention in recent years as a compelling treatment for AD. Among these, functionalized biomaterials and textiles with physicochemical, nanotechnology-based characteristics, or bioengineered features are some of the most common typical adjuvant therapies. The multifunctional-engineered biomaterials, as a new generation of biomedical materials, and stem cells, seem to hold tremendous promise for the treatment of dermatological diseases like AD. Biomaterials have seen great success, especially in various medical fields, due to their unique and adaptable characteristics. These materials, including collagen, PCL, and PLGA, offer unique advantages, such as biocompatibility, biodegradability, controlled drug release, and enhanced drug retention.
Collapse
Affiliation(s)
- Narges Elahi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohammad Ebrahim Astaneh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran; Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Rizwan
- Department of Biomedical Engineering, The University of Texas Southwestern Medical center, Dallas, TX, USA
| |
Collapse
|
4
|
Zhang Y, Fu R, Zhu C, Yuwen W, Zhang J, Duan Z, Fan D. Preparation of recombinant type I collagen (PF-I-80) and its functional characterization and biomedical applications in wound healing. Int J Biol Macromol 2024; 282:136679. [PMID: 39437939 DOI: 10.1016/j.ijbiomac.2024.136679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
This study evaluates the potential applications of recombinant PF-I-80 protein in regenerative medicine and the treatment of inflammatory diseases, focusing on its effects on cell migration, differentiation, and anti-inflammatory properties. Various in vitro assays were conducted, including scratch assays, Transwell experiments, RT-PCR and Western Blot to analyze gene and protein expression related to differentiation and inflammation, and immunofluorescence staining to observe cellular changes. The results indicated that PF-I-80 significantly promoted cell migration, highlighting its potential in tissue repair and regeneration. It also enhanced cell differentiation, demonstrating its applicability in tissue repair, and showed significant anti-inflammatory effects by reducing the expression of pro-inflammatory cytokines. In animal models, PF-I-80 notably reduced levels of inflammatory factors IL-1β and TNF-α, shortened the inflammatory phase, and accelerated wound healing. Additionally, PF-I-80 increased FGF-2 levels, which promoted the proliferation of endothelial and fibroblast cells and enhanced collagen synthesis. These in vitro and in vivo findings position PF-I-80 as a promising biomaterial for applications in regenerative medicine and inflammatory disease treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Weigang Yuwen
- Taibai Campus, Northwest University, Xi'an 710069, China
| | - Jiangrui Zhang
- Taibai Campus, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Zheng J, Chen R, Hao J, Yang Y, Xu S, Zhang F, Zhang F, Yao Y. Design and preparation of hydrogel microspheres for spinal cord injury repair. J Biomed Mater Res A 2024; 112:2358-2371. [PMID: 39169748 DOI: 10.1002/jbm.a.37788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/24/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
A severe disorder known as spinal cord damage causes both motor and sensory impairment in the limbs, significantly reducing the patients' quality of life. After a spinal cord injury, functional recovery and therapy have emerged as critical concerns. Hydrogel microspheres have garnered a lot of interest lately because of their enormous promise in the field of spinal cord injury rehabilitation. The material classification of hydrogel microspheres (natural and synthetic macromolecule polymers) and their synthesis methods are examined in this work. This work also covers the introduction of several kinds of hydrogel microspheres and their use as carriers in the realm of treating spinal cord injuries. Lastly, the study reviews the future prospects for hydrogel microspheres and highlights their limitations and problems. This paper can offer feasible ideas for researchers to advance the application of hydrogel microspheres in the field of spinal cord injury.
Collapse
Affiliation(s)
- Jian Zheng
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ruilin Chen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Hao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yang Yang
- Department of Emergency Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shaohu Xu
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feiyu Zhang
- Medical School of Nantong University, Nantong, Jiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yu Yao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
6
|
Feng X, Zhang J, Yang R, Lei H, Chen W, Bai J, Feng K, Gao F, Yang W, Jiang X, Zhang B. The novel peptide PEP-Z-2 potentially treats renal fibrosis in vivo and in vitro by regulating TGF-β/Smad/AKT/MAPK signaling. Eur J Pharmacol 2024; 982:176942. [PMID: 39182546 DOI: 10.1016/j.ejphar.2024.176942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Renal fibrosis is a process in which excessive deposition of extracellular matrix leads to an increase in tissue hardness and gradual destruction of the renal parenchyma. Chronic kidney disease (CKD) commonly progresses to end-stage renal disease (ESRD), ultimately leading to renal failure. This disease has high incidence and mortality rates, but to date, effective treatment options are lacking. PEP-Z-2 is a collagen peptide isolated from redlip croaker scales and may have potential fibroprotective activity. In this study, PEP-Z-2 was found to alleviate unilateral ureteral obstruction (UUO)- and folic acid (FA)-induced kidney injury in a mouse model, reduce collagen deposition in tissues, normalize renal function, reduce the expression of fibrosis markers, reduce reactive oxygen species (ROS) production, and restore the balance of the oxidant/antioxidant system. In vitro experiments also demonstrated that PEP-Z-2 inhibits the TGF-β-induced differentiation of fibroblasts and renal tubular epithelial cells into myofibroblasts and reduces the production of extracellular matrix (ECM) proteins such as fibronectin, Col I, and α-SMA, demonstrating notable therapeutic effects on renal fibrosis. This effect is achieved by regulating the TGF-β/Smad/AKT/MAPK pathway. Our research suggested that PEP-Z-2 is a potential therapeutic drug for renal fibrosis, and peptides from aquatic organisms may constitute a new class of candidate drugs for the treatment of renal fibrosis and even other types of organ fibrosis.
Collapse
Affiliation(s)
- Xiaocui Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jianfeng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Hong Lei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Wanru Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jingya Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China; Northwest Minzu University, Lanzhou, 730030, China.
| | - Kai Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Outer Ring Road, Guangzhou, 510006, China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
8
|
Yue C, Ding C, Xu M, Hu M, Zhang R. Self-Assembly Behavior of Collagen and Its Composite Materials: Preparation, Characterizations, and Biomedical Engineering and Allied Applications. Gels 2024; 10:642. [PMID: 39451295 PMCID: PMC11507467 DOI: 10.3390/gels10100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen is the oldest and most abundant extracellular matrix protein and has many applications in biomedical, food, cosmetic, and other industries. Previous reviews have already introduced collagen's sources, structures, and biosynthesis. The biological and mechanical properties of collagen-based composite materials, their modification and application forms, and their interactions with host tissues are pinpointed. It is worth noting that self-assembly behavior is the main characteristic of collagen molecules. However, there is currently relatively little review on collagen-based composite materials based on self-assembly. Herein, we briefly reviewed the biosynthesis, extraction, structure, and properties of collagen, systematically presented an overview of the various factors and corresponding characterization techniques that affect the collagen self-assembly process, and summarize and discuss the preparation methods and application progress of collagen-based composite materials in different fields. By combining the self-assembly behavior of collagen with preparation methods of collagen-based composite materials, collagen-based composite materials with various functional reactions can be selectively prepared, and these experiences and outcomes can provide inspiration and practical techniques for the future development directions and challenges of collagen-based composite biomaterials in related applications fields.
Collapse
Affiliation(s)
- Chengfei Yue
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changkun Ding
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Minjie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Min Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| |
Collapse
|
9
|
Verma R, Verma C, Gupta B, Mukhopadhyay S. Preparation and characterization of structural and antifouling properties of chitosan/polyethylene oxide membranes. Int J Biol Macromol 2024; 278:134693. [PMID: 39142485 DOI: 10.1016/j.ijbiomac.2024.134693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
It aims to prepare the chitosan (CS) and polyethylene oxide (PEO) hydrogel membranes with different CS/PEO blend ratios (100:0, 95:5, 90:10, 80:20 and 70:30) via solvent casting. The physicochemical properties of these membranes were investigated using various characterization techniques: Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray (EDX), contact angle, and tensile testing. The interaction of PEO and chitosan was investigated by DSC in terms of freezing bound, freezing free, and non-freezing PEO fraction. The cross-sectional surface morphology of membranes displayed a smoother surface with increasing PEO content up to 20 %, beyond which nonhomogeneity on the surface was visible. The antifouling behavior of membranes was investigated by bacterial adherence study, which showed an enhanced antifouling nature of membranes with the increase in the PEO content. The peeling strength of the membranes was measured using a 90° angle peeling test, and it was found that 20 % and more PEO content promotes easy removal from the gelatin slab. In addition to this, live/ dead assay of the CS was performed to visualize the presence of live and dead bacteria on the surface. The CS/PEO blend with 20 % PEO content has properties makes it suitable for use as a protective layer on wound dressings to prevent bacterial growth. It's use in wound dressings has the potential to reduce the pain during the time of dressing removal and improve patient outcomes. The present investigation leads to the development of a CS hydrogel matrix which exhibits very interesting interaction with the PEO moiety along with its innovative feature of antifouling and antimicrobial nature.
Collapse
Affiliation(s)
- Rohini Verma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India.
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi 110016, India.
| |
Collapse
|
10
|
Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Sushma SM, Tejaswini C, Roopini K, Rajashekara S. Collagen as the extracellular matrix biomaterials in the arena of medical sciences. Tissue Cell 2024; 90:102497. [PMID: 39059131 DOI: 10.1016/j.tice.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Collagen is a multipurpose material that has several applications in the health care, dental care, and pharmaceutical industries. Crosslinked compacted solids or lattice-like gels can be made from collagen. Biocompatibility, biodegradability, and wound-healing properties make collagen a popular scaffold material for cardiovascular, dentistry, and bone tissue engineering. Due to its essential role in the control of several of these processes, collagen has been employed as a wound-healing adjunct. It forms a major component of the extracellular matrix and regulates wound healing in its fibrillar or soluble forms. Collagen supports cardiovascular and other soft tissues. Oral wounds have been dressed with resorbable forms of collagen for closure of graft and extraction sites, and to aid healing. This present review is concentrated on the use of collagen in bone regeneration, wound healing, cardiovascular tissue engineering, and dentistry.
Collapse
Affiliation(s)
- Ramachandregowda Sowbhagya
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Harsha Muktha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Thippenahalli Narasimhaiah Ramakrishnaiah
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Adagur Sudarshan Surendra
- Department of Biochemistry, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Subhas Madinoor Sushma
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Chandrashekar Tejaswini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Karunakaran Roopini
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka 560054, India
| | - Somashekara Rajashekara
- Department of Studies in Zoology, Centre for Applied Genetics, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru, Karnataka 560056, India.
| |
Collapse
|
11
|
Park MJ, Ko SW, Cho JI, Lee SH, Shin HK. Effect of Intra-articular Atelocollagen Injections for Patients With Knee Osteoarthritis: A Retrospective Chart Review. Cureus 2024; 16:e68954. [PMID: 39252936 PMCID: PMC11381476 DOI: 10.7759/cureus.68954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/11/2024] Open
Abstract
Background Osteoarthritis (OA) is a prevalent and exhausting condition often requiring long-term management. While there is a steady growth in the use of collagen-based treatment for OA, there is a lack of studies assessing the safety and efficacy of repeated administration of injectable atelocollagen for OA. Objective This study aims to evaluate the clinical efficacy and safety of repeated administration of injectable atelocollagen in reducing knee pain for patients with knee OA. Methods Clinical records of 91 patients from five hospitals were reviewed for this retrospective study. All 91 patients had received repeated administration of injectable atelocollagen (CartiPRO®, Dalim Tissen Co., Ltd., South Korea) as a treatment for knee OA for seven months. The efficacy of injectable atelocollagen was evaluated by physicians at least 30 days after the last administration, with outcomes categorized as "effective", "moderately effective", or "not effective". For analysis purposes, both "effective" and "moderately effective" were grouped as "effective" while "not effective" was classified as "ineffective". Safety was assessed by monitoring the incidence of adverse events (AEs) reported within six months following the re-administration of atelocollagen. Results Among the 91 patients, 96.7% (88 patients) experienced effective pain relief following the re-administration of CartiPRO®, with 3.3% (three patients) reporting ineffectiveness. In terms of safety assessment, 35 patients reported AEs, totaling up to 44 events, with no serious or unexpected device-related AEs. Conclusion The repeated use of atelocollagen was found to be both safe and effective in managing knee pain for patients with knee OA. These findings support the repeated use of injectable atelocollagen as a reliable treatment option for managing knee OA pain in clinical practice.
Collapse
Affiliation(s)
- Man-Jun Park
- Department of Orthopedic Surgery, Himnaera Hospital, Busan, KOR
| | - Seung-Woo Ko
- Department of Orthopedic Surgery, Madi Clinic, Seogwipo, KOR
| | - Jae-Ik Cho
- Department of Neurology, Cho Jae-ik Neurology, Seogwipo, KOR
| | - Su-Hyun Lee
- Department of Orthopedic Surgery, Lee Chun-Taek Hospital, Suwon, KOR
| | - Hong-Kwan Shin
- Department of Orthopedic Surgery, Daegu Hanmi Hospital, Daegu, KOR
| |
Collapse
|
12
|
Rodriguez-Lejarraga P, Martin-Iglesias S, Moneo-Corcuera A, Colom A, Redondo-Morata L, Giannotti MI, Petrenko V, Monleón-Guinot I, Mata M, Silvan U, Lanceros-Mendez S. The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition. Acta Biomater 2024; 184:201-209. [PMID: 38950807 DOI: 10.1016/j.actbio.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. STATEMENT OF SIGNIFICANCE: The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies.
Collapse
Affiliation(s)
| | - Sara Martin-Iglesias
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Andrea Moneo-Corcuera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Adai Colom
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain; Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Campus Universitario, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; CIBER-BBN, ISCIII, 08028 Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 10, 08028 Barcelona, Spain
| | - Viktor Petrenko
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Irene Monleón-Guinot
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Unai Silvan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
13
|
Zhang Z, Zhao X, Song Z, Wang L, Gao J. Electrospun collagen/chitosan composite fibrous membranes for accelerating wound healing. Biomed Mater 2024; 19:055024. [PMID: 39025112 DOI: 10.1088/1748-605x/ad6545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The protein-polysaccharide nanofibers have attracted intensive attention in promoting wound healing, due to their components and nanoscale fibrous structure that mimics the native extracellular matrix (ECM). For the full-thickness wounds, in addition to promoting healing, hemostatic property and antibacterial activity are also of critical importance. However, currently, protein-polysaccharide-based nanofiber membranes exhibit poor mechanical properties, lack inherent hemostatic and antibacterial capabilities, as well as the ability to promote tissue repair. In this study, we developed composited membranes, which were composed of collagen (Col) and chitosan (Chs), through solvent alteration and post-processing, the membranes showed enhanced stability under physiological conditions, proper hydrophilic performance and improved mechanical property. Appropriated porosity and water vapor transmission rate, which benefit to wound healing, were detected among all the membranes except for Col membrane. Aimed at wound dressing, hemocompatibility, antibacterial activity and cell proliferation of the electrospun membranes were evaluated. The results indicated that the Col/Chs composited membranes exhibited superior blood clotting capacity, and the membranes with Chs exceeding 60% possessed sufficient antibacterial activity. Moreover, compared with Chs nanofibers, significant increase in cell grow was detected in Col/Chs (1:3) membrane. Taken together, the electrospun membrane with multiple properties favorable to wound healing, superior blood coagulation, sufficient antibacterial performance and promoting cell proliferation property make it favorable candidate for full-thickness skin wound healing.
Collapse
Affiliation(s)
- Zhan Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xinzhe Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Ziyu Song
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Lu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Jing Gao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
14
|
Deaconu M, Prelipcean AM, Brezoiu AM, Mitran RA, Seciu-Grama AM, Matei C, Berger D. Design of Scaffolds Based on Zinc-Modified Marine Collagen and Bilberry Leaves Extract-Loaded Silica Nanoparticles as Wound Dressings. Int J Nanomedicine 2024; 19:7673-7689. [PMID: 39099793 PMCID: PMC11296363 DOI: 10.2147/ijn.s466905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose In this study, wound dressings were designed using zinc-modified marine collagen porous scaffold as host for wild bilberry (WB) leaves extract immobilized in functionalized mesoporous silica nanoparticles (MSN). These new composites were developed as an alternative to conventional wound dressings. In addition to the antibacterial activity of classic antibiotics, a polyphenolic extract could act as an antioxidant and/or an anti-inflammatory agent as well. Methods Wild bilberry leaves extract was prepared by ultrasound-assisted extraction in ethanol and its properties were evaluated by UV-Vis spectroscopy (radical scavenging activity, total amount of polyphenols, flavonoids, anthocyanins, and condensed tannins). The extract components were identified by HPLC, and the antidiabetic properties of the extract were evaluated via α-glucosidase inhibitory activity. Spherical MSN were modified with propionic acid or proline moieties by post-synthesis method and used as carriers for the WB leaves extract. The textural and structural features of functionalized MSN were assessed by nitrogen adsorption/desorption isotherms, small-angle XRD, SEM, TEM, and FTIR spectroscopy. The composite porous scaffolds were prepared by freeze drying of the zinc-modified collagen suspension containing WB extract loaded silica nanoparticles. Results The properties of the new composites demonstrated enhanced properties in terms of thermal stability of the zinc-collagen scaffold, without altering the protein conformation, and stimulation of NCTC fibroblasts mobility. The results of the scratch assay showed contributions of both zinc ions from collagen and the polyphenolic extract incorporated in functionalized silica in the wound healing process. The extract encapsulated in functionalized MSN proved enhanced biological activities compared to the extract alone: better inhibition of P. aeruginosa and S. aureus strains, higher biocompatibility on HaCaT keratinocytes, and anti-inflammatory potential demonstrated by reduced IL-1β and TNF-α levels. Conclusion The experimental data shows that the novel composites can be used for the development of effective wound dressings.
Collapse
Affiliation(s)
- Mihaela Deaconu
- CAMPUS Research Institute, National University of Science and Technology Politehnica Bucharest, Bucharest, 060042, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| | | | - Ana-Maria Brezoiu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| | - Raul-Augustin Mitran
- ‘Ilie Murgulescu’ Institute of Physical Chemistry, Romanian Academy, Bucharest, 060021, Romania
| | - Ana-Maria Seciu-Grama
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| | - Cristian Matei
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| | - Daniela Berger
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Bucharest, 011061, Romania
| |
Collapse
|
15
|
Cao J, Xiang B, Dou B, Hu J, Zhang L, Kang X, Lyu M, Wang S. Novel Angiotensin-Converting Enzyme-Inhibitory Peptides Obtained from Trichiurus lepturus: Preparation, Identification and Potential Antihypertensive Mechanism. Biomolecules 2024; 14:581. [PMID: 38785988 PMCID: PMC11117660 DOI: 10.3390/biom14050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish) using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafiltration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH free-radical-scavenging abilities were isolated and subsequently purified via LC/MS-MS, leading to the identification of over 100 peptide components. In silico screening yielded five ACE inhibitory peptides: FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and GPTGPAGPR. Among these, IFPRNPP and AGFAGDDAPR were found to be allergenic, while FAGDDAPRR, QGPIGPR, and GPTGPAGP showed good ACE-inhibitory effects. IC50 values for the latter peptides were obtained from HUVEC cells: FAGDDAPRR (IC50 = 262.98 μM), QGPIGPR (IC50 = 81.09 μM), and GPTGPAGP (IC50 = 168.11 μM). Peptide constituents derived from ribbonfish proteins effectively modulated ACE activity, thus underscoring their therapeutic potential. Molecular docking and modeling corroborated these findings, emphasizing the utility of functional foods as a promising avenue for the treatment and prevention of hypertension, with potential ancillary health benefits and applications as substitutes for synthetic drugs.
Collapse
Affiliation(s)
- Jiaming Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Boyuan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Baojie Dou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingfei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxin Kang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (J.C.); (B.X.); (B.D.); (J.H.); (L.Z.); (X.K.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
16
|
Lan X, Luo M, Li M, Mu L, Li G, Chen G, He Z, Xiao J. Swim bladder-derived biomaterials: structures, compositions, properties, modifications, and biomedical applications. J Nanobiotechnology 2024; 22:186. [PMID: 38632585 PMCID: PMC11022367 DOI: 10.1186/s12951-024-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Animal-derived biomaterials have been extensively employed in clinical practice owing to their compositional and structural similarities with those of human tissues and organs, exhibiting good mechanical properties and biocompatibility, and extensive sources. However, there is an associated risk of infection with pathogenic microorganisms after the implantation of tissues from pigs, cattle, and other mammals in humans. Therefore, researchers have begun to explore the development of non-mammalian regenerative biomaterials. Among these is the swim bladder, a fish-derived biomaterial that is rapidly used in various fields of biomedicine because of its high collagen, elastin, and polysaccharide content. However, relevant reviews on the biomedical applications of swim bladders as effective biomaterials are lacking. Therefore, based on our previous research and in-depth understanding of this field, this review describes the structures and compositions, properties, and modifications of the swim bladder, with their direct (including soft tissue repair, dural repair, cardiovascular repair, and edible and pharmaceutical fish maw) and indirect applications (including extracted collagen peptides with smaller molecular weights, and collagen or gelatin with higher molecular weights used for hydrogels, and biological adhesives or glues) in the field of biomedicine in recent years. This review provides insights into the use of swim bladders as source of biomaterial; hence, it can aid biomedicine scholars by providing directions for advancements in this field.
Collapse
Affiliation(s)
- Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Meiling Li
- Southwest Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gong Chen
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jingang Xiao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
17
|
Zhang Y, Xu M, Ren Y, Ba Y, Liu S, Zuo A, Xu H, Weng S, Han X, Liu Z. Tertiary lymphoid structural heterogeneity determines tumour immunity and prospects for clinical application. Mol Cancer 2024; 23:75. [PMID: 38582847 PMCID: PMC10998345 DOI: 10.1186/s12943-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are clusters of immune cells that resemble and function similarly to secondary lymphoid organs (SLOs). While TLS is generally associated with an anti-tumour immune response in most cancer types, it has also been observed to act as a pro-tumour immune response. The heterogeneity of TLS function is largely determined by the composition of tumour-infiltrating lymphocytes (TILs) and the balance of cell subsets within the tumour-associated TLS (TA-TLS). TA-TLS of varying maturity, density, and location may have opposing effects on tumour immunity. Higher maturity and/or higher density TLS are often associated with favorable clinical outcomes and immunotherapeutic response, mainly due to crosstalk between different proportions of immune cell subpopulations in TA-TLS. Therefore, TLS can be used as a marker to predict the efficacy of immunotherapy in immune checkpoint blockade (ICB). Developing efficient imaging and induction methods to study TA-TLS is crucial for enhancing anti-tumour immunity. The integration of imaging techniques with biological materials, including nanoprobes and hydrogels, alongside artificial intelligence (AI), enables non-invasive in vivo visualization of TLS. In this review, we explore the dynamic interactions among T and B cell subpopulations of varying phenotypes that contribute to the structural and functional diversity of TLS, examining both existing and emerging techniques for TLS imaging and induction, focusing on cancer immunotherapies and biomaterials. We also highlight novel therapeutic approaches of TLS that are being explored with the aim of increasing ICB treatment efficacy and predicting prognosis.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengjun Xu
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
18
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
19
|
Yue C, Ding C, Hu M, Zhang R, Cheng B. Collagen/functionalized cellulose nanofibril composite aerogels with pH-responsive characteristics for drug delivery system. Int J Biol Macromol 2024; 261:129650. [PMID: 38286379 DOI: 10.1016/j.ijbiomac.2024.129650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
In this work, carboxylated and amination modified cellulose nanofibrils (CNFs) were fabricated via the TEMPO catalytic oxidation system and diethylenetriamine, and collagen composite aerogels were fabricated through a simple self-assembly pretreatment and directional freeze-drying technology. Morphology analysis showed that the collagen composite aerogels had distinct layered-oriented double network structures after the self-assembly pretreatment. The intermolecular interactions between the collagen fibrils and functionalized CNFs (fCNFs) on the structures and properties of the composite aerogels were also examined through various characterization techniques. Water contact angle tests demonstrated the pH-responsive characteristics of the collagen/fCNF composite aerogels. Using 5-fluorouracil as the model drug, the pH-response mechanism was revealed. These results indicated that the collagen/fCNF composite aerogels exhibited excellent pH-responsive drug release capacities. Therefore, these pH-responsive collagen composite aerogels might have potential applications in industrial production in the biomedical, drug delivery, and tissue engineering fields.
Collapse
Affiliation(s)
- Chengfei Yue
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China; Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Changkun Ding
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Min Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Bowen Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
20
|
Biancardi VR, da Silva Ferreira MV, Bigansolli AR, de Freitas KM, Zonta E, Barbosa MIMJ, Kurozawa LE, Barbosa Junior JL. A physicochemical evaluation of ossein-hydroxyapatite within the bovine bone matrix revealed demineralization and making type I collagen available as a result of processing and solubilization by acids. J Food Sci 2024; 89:1540-1553. [PMID: 38343300 DOI: 10.1111/1750-3841.16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 03/12/2024]
Abstract
Bovine bone is an animal-origin matrix rich in type I collagen (COL I) and it necessitates prior demineralization and makes COL I available. This study investigated the ossein-hydroxyapatite physicochemical properties evaluation as a result of processing and solubilization by acids and revealed the bone matrix demineralization and making COL I available. The tibia residue from bovine sources was processed, ground, and transformed into bone matrix powder. The bone matrix was solubilized in acetic acid followed by lactic acid. The bone matrix was evaluated as a result of processing and solubilization by acids: ossein and hydroxyapatite percentages by nitrogen and ash content, mineral content, particle size distribution, Fourier-transformation infrared spectroscopy, x-ray diffraction, and scanning electron microscope. For the obtained residual extracts, pH and mineral content were evaluated. The solubilization by acids affected the ossein-hydroxyapatite physicochemical properties, and the bone matrix solubilized by acetic and lactic acid showed the preservation of the ossein alongside the loss of hydroxyapatite. The processing and the solubilization by acids were revealed to be a alternative to bone matrix demineralization and enabling the accessibility of bone COL I. PRACTICAL APPLICATION: Bovine bone is an abundant type I collagen source, but processing maneuvers and demineralization effect present limitations due to the rigidity of the structural components. Exploring methodologies to process and demineralize will allow type I collagen to be obtained from the bone source, and direct and amplify the potentialities in the chemical and food industries. The research focused on bone sources and collagen availability holds paramount significance, and promotes repurposing agribusiness residues and development of protein-base products.
Collapse
Affiliation(s)
- Vanessa Ricas Biancardi
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Marcus Vinícius da Silva Ferreira
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Antônio Renato Bigansolli
- Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | | | - Everaldo Zonta
- Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Maria Ivone Martins Jacintho Barbosa
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Louise Emy Kurozawa
- Faculdade de Engenharia de Alimentos, Departamento de Engenharia e Tecnologia de Alimentos, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - José Lucena Barbosa Junior
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| |
Collapse
|
21
|
Rydz J, Sikorska W, Musioł M. Biosynthesis and Biodegradation-Eco-Concept for Polymer Materials. Int J Mol Sci 2024; 25:2674. [PMID: 38473920 DOI: 10.3390/ijms25052674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Polymers have become essential for various aspects of modern life, including packaging, transportation, and electronics [...].
Collapse
Affiliation(s)
- Joanna Rydz
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
22
|
He X, Guo C, Wang Y, Ma S, Liu X, Wei Y, Xu H, Liang Z, Hu Y, Zhao L, Lian X, Huang D. Enhancing osseointegration of titanium implants through MC3T3-E1 protein-gelatin polyelectrolyte multilayers. J Biomed Mater Res B Appl Biomater 2024; 112:e35373. [PMID: 38359169 DOI: 10.1002/jbm.b.35373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Titanium and its alloys have found extensive use in the biomedical field, however, implant loosening due to weak osseointegration remains a concern. Improved surface morphology and chemical composition can enhance the osseointegration of the implant. Bioactive molecules have been utilized to modify the surface of the titanium-based material to achieve rapid and efficient osseointegration between the implant and bone tissues. In this study, the bioactive substance MC3T3-E1 protein-gelatin polyelectrolyte multilayers were constructed on the surface of the titanium implants by means of layer-by-layer self-assembly to enhance the strength of the bond between the bone tissue and the implant. The findings of the study indicate that the layer-by-layer self-assembly technique can enhance surface roughness and hydrophilicity to a considerable extent. Compared to pure titanium, the hydrophilicity of TiOH LBL was significantly increased with a water contact angle of 75.0 ± $$ \pm $$ 2.4°. The modified titanium implant exhibits superior biocompatibility and wound healing ability upon co-culture with cells. MC3T3-E1 cells were co-cultured with TiOH LBL for 1, 3, and 5 days and their viability was higher than 85%. In addition, the wound healing results demonstrate that TiOH LBL exhibited the highest migratory ability (243 ± 10 μm). Furthermore, after 7 days of osteogenic induction, the modified titanium implant significantly promotes osteoblast differentiation.
Collapse
Affiliation(s)
- Xuhong He
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Chaiqiong Guo
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Shilong Ma
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Xuanyu Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Haofeng Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| |
Collapse
|
23
|
Kumar M, Banerjee P, Das A, Singh K, Guith T, Kacar S, Gourishetti K, Sen CK, Roy S, Khanna S. Hydrolyzed Collagen Powder Dressing Improves Wound Inflammation, Perfusion, and Breaking Strength of Repaired Tissue. Adv Wound Care (New Rochelle) 2024; 13:70-82. [PMID: 37534840 DOI: 10.1089/wound.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Objective: Hydrolyzed collagen-based matrices are widely used as wound care dressings. Information on the mechanism of action of such dressings is scanty. The objective of this study was to test the effect of a specific hydrolyzed collagen powder (HCP), which is extensively used for wound care management in the United States. Approach: The effects of HCP on resolution of wound inflammation, perfusion, closure, and breaking strength of the repaired skin were studied in an experimental murine model. Results: In early (day 7) inflammatory phase of wound macrophages, HCP treatment boosted phagocytosis and efferocytosis of wound-site macrophages. In these cells, inducible reactive oxygen species were also higher on day (d) 7. HCP treatment potentiated the expression of anti-inflammatory interleukin (IL)-10 cytokine and proangiogenic vascular endothelial growth factor (VEGF) production. Excisional wounds dressed with HCP showed complete closure on day 21, while the control wounds remained open. HCP treatment also demonstrated improved quality of wound healing as marked by the improved breaking strength of the closed wound tissue/repaired skin. Innovation: These data represent first evidence on the mechanism of action of clinically used HCP. Conclusion: HCP dressing favorably influenced both wound inflammation and vascularization. Improved breaking strength of HCP-treated repaired skin lays the rationale for future studies testing the hypothesis that HCP-treated closed wounds would show fewer recurrences.
Collapse
Affiliation(s)
- Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pradipta Banerjee
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amitava Das
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tanner Guith
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sedat Kacar
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Karthik Gourishetti
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Savita Khanna
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
Halder T, Barot H, Kumar B, Kaushik V, Patel H, Bhut H, Saha B, Poddar S, Acharya N. An Insight into Biodegradable Polymers and their Biomedical Applications for Wound Healing. Curr Pharm Des 2024; 30:2425-2444. [PMID: 38982925 DOI: 10.2174/0113816128295935240425101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/31/2024] [Indexed: 07/11/2024]
Abstract
Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle- loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in vitro experiments conducted using different cell lines, as well as the in vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.
Collapse
Affiliation(s)
- Tripti Halder
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Harshit Barot
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Vishakha Kaushik
- Department of Physics, School of Physical Sciences, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Hiren Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Hastik Bhut
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bijit Saha
- Jodas Expoim Pvt Ltd, Kukatpally, Telangana, Hyderabad 500072, India
| | - Sibani Poddar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
25
|
Salvatore L, Russo F, Natali ML, Rajabimashhadi Z, Bagheri S, Mele C, Lionetto F, Sannino A, Gallo N. On the effect of pepsin incubation on type I collagen from horse tendon: Fine tuning of its physico-chemical and rheological properties. Int J Biol Macromol 2024; 256:128489. [PMID: 38043667 DOI: 10.1016/j.ijbiomac.2023.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Collapse
Affiliation(s)
- Luca Salvatore
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy.
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | - Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Sonia Bagheri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Nunzia Gallo
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy; Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
26
|
Ahmad MI, Li Y, Pan J, Liu F, Dai H, Fu Y, Huang T, Farooq S, Zhang H. Collagen and gelatin: Structure, properties, and applications in food industry. Int J Biol Macromol 2024; 254:128037. [PMID: 37963506 DOI: 10.1016/j.ijbiomac.2023.128037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Food-producing animals have the highest concentration of collagen in their extracellular matrix. Collagen and gelatin are widely used in food industry due to their specific structural, physicochemical, and biochemical properties, which enable them to improve health and nutritional value as well as to increase the stability, consistency, and elasticity of food products. This paper reviews the structural and functional properties including inherent self-assembly, gel forming, water-retaining, emulsifying, foaming, and thickening properties of collagen and gelatin. Then the colloid structures formed by collagen such as emulsions, films or coatings, and fibers are summarized. Finally, the potential applications of collagen and gelatin in muscle foods, dairy products, confectionary and dessert, and beverage products are also reviewed. The objective of this review is to provide the current market value, progress as well as applications of collagen and its derivatives in food industry.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jinfeng Pan
- National Engineering Research Centre for Seafood, Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Centre for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, Jiangnan University, School of Food Science and Technology, International Joint Laboratory on Food Safety, Wuxi 214122, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Sun Y, Wei Z, Wang K, Xu T, Duan R, Zhang J. Preparation and comparison of two medical dressings made from the collagens from fish and bovine. J Biomed Mater Res B Appl Biomater 2023; 111:2055-2063. [PMID: 37578020 DOI: 10.1002/jbm.b.35307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Collagen is used in medical dressings because of its high hydrophilicity, low immunogenicity, excellent biocompatibility, and degradability. These features can promote cell proliferation and platelet agglomeration. Herein, we studied the preparation of gel dressing by using silver carp skin collagen and bovine collagen as raw materials. Their properties and the application effects of collagen gel dressing were evaluated and compared. The centrifugal stability, rheology, and water-loss rate of silver carp skin collagen gel (SCG) and bovine tendon collagen gel (CTG) were determined. Results showed that the two gels were stable, and SCG had better rheology and ductility than CTG. However, the denaturation temperature and water-retention rate of SCG were slightly lower than those of CTG. Two collagen gels were used in the burn-repair experiment of KM mice. Results showed that the SCG and CTG were consistent with the wound-repair effect of commercially available products for shallow II-degree scald and deep II-degree scald. In the superficial shallow II scald experiment, SCG had a faster healing rate in the first 8 days and a shorter recovery time than CTG. In the deep II-degree scald experiment, the wound-healing rate of SCG on the 14th day reached 94.24%, which was 2 days faster than the recovery time of CTG. Moreover, the skin after wound healing was shallower than the scar produced after CTG treatment. Therefore, SCG had the potential to be used as the medical dressing.
Collapse
Affiliation(s)
- Yaru Sun
- Jiangsu Ocean University, Lianyungang, China
| | - Zeyu Wei
- Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
| | - Ke Wang
- Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Tianyue Xu
- Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Rui Duan
- Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Junjie Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
28
|
Fan Z, Zhou Y, Gan B, Li Y, Chen H, Peng X, Zhou Y. Collagen-EGCG Combination Synergistically Prevents UVB-Induced Skin Photoaging in Nude Mice. Macromol Biosci 2023; 23:e2300251. [PMID: 37863121 DOI: 10.1002/mabi.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Ultraviolet (UV) radiation is a major cause of skin photoaging through generating excessive oxidative stress and inflammation. One of the strategies is to use photo-chemoprotectors, such as natural products with antioxidant and anti-inflammatory properties, to protect the skin from photo damage. The present study investigates the photoprotective potentials of topical administration of unhydrolyzed collagen, epigallocatechin gallate (EGCG), and their combination against ultraviolet B (UVB)-induced photoaging in nude mice. It is found that both the solo and combined pretreatments could recover UVB-induced depletion of antioxidative enzymes, including superoxide dismutase and glutathione peroxidase (GSH-Px), as well as an increase of lipid peroxide malondialdehyde and inflammatory tumor necrosis factor-α. Meanwhile, the UVB-stimulated skin collagen degradation is attenuated significantly with drug treatments, which is evidenced by expression analysis of matrix metalloproteinase-1 and hydroxyproline. Additionally, the mouse skin histology shows that the drug-pretreated groups possess decreased epidermis thickness and normal collagen fiber structure of the dermis layer. These results demonstrate that both EGCG and collagen can protect the skin against UVB-induced skin photoaging. Synergistically, the combination of them shows the maximum prevention to skin damage, showing its potential in the application of anti-photoaging formulation products.
Collapse
Affiliation(s)
- Zhiqiang Fan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
- Pharmacy Department, Zhongshan Second People's Hospital, 528447, Zhongshan, P. R. China
| | - Yubin Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
| | - Bin Gan
- The Third Affiliated Hospital of Guangdong Medical University, 528000, Foshan, P. R. China
| | - Yuling Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
| | - Huizhi Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Dongguan Key Laboratory of Drug Design and Formulation Technology, and Biomedical Innovation Center, Guangdong Medical University, 523808, Dongguan, P. R. China
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, P. R. China
| | - Yanfang Zhou
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, P. R. China
- Department of Pathophysiology, Guangdong Medical University, 523808, Dongguan, P. R. China
| |
Collapse
|
29
|
de Moraes R, Plepis AMDG, Martins VDCA, Garcia CF, Galdeano EA, Maia FLM, Machado EG, Munhoz MDAES, Buchaim DV, Fernandes VAR, Beraldo RA, Buchaim RL, da Cunha MR. Viability of Collagen Matrix Grafts Associated with Nanohydroxyapatite and Elastin in Bone Repair in the Experimental Condition of Ovariectomy. Int J Mol Sci 2023; 24:15727. [PMID: 37958710 PMCID: PMC10649653 DOI: 10.3390/ijms242115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Bone lesions have the capacity for regeneration under normal conditions of the bone metabolism process. However, due to the increasing incidence of major traumas and diseases that cause bone-mineral deficiency, such as osteoporosis, scaffolds are needed that can assist in the bone regeneration process. Currently, natural polymeric scaffolds and bioactive nanoparticles stand out. Therefore, the objective of the study was to evaluate the osteoregenerative potential in tibiae of healthy and ovariectomized rats using mineralized collagen and nanohydroxyapatite (nHA) scaffolds associated with elastin. The in-vivo experimental study was performed with 60 20-week-old Wistar rats, distributed into non-ovariectomized (NO) and ovariectomized (O) groups, as follows: Controls (G1-NO-C and G4-O-C); Collagen with nHA scaffold (G2-NO-MSH and G5-O-MSH); and Collagen with nHA and elastin scaffold (G3-NO-MSHC and G6-O-MSHC). The animals were euthanized 6 weeks after surgery and the samples were analyzed by macroscopy, radiology, and histomorphometry. ANOVA and Tukey tests were performed with a 95% CI and a significance index of p < 0.05. In the histological analyses, it was possible to observe new bone formed with an organized and compact morphology that was rich in osteocytes and with maturity characteristics. This is compatible with osteoconductivity in both matrices (MSH and MSHC) in rats with normal conditions of bone metabolism and with gonadal deficiency. Furthermore, they demonstrated superior osteogenic potential when compared to control groups. There was no significant difference in the rate of new bone formation between the scaffolds. Ovariectomy did not exacerbate the immune response but negatively influenced the bone-defect repair process.
Collapse
Affiliation(s)
- Renato de Moraes
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil;
| | | | - Claudio Fernandes Garcia
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
| | - Ewerton Alexandre Galdeano
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | | | - Eduardo Gomes Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Marcelo de Azevedo e Souza Munhoz
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | - Victor Augusto Ramos Fernandes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Rodrigo Alves Beraldo
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Marcelo Rodrigues da Cunha
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| |
Collapse
|
30
|
Wang W, Liu P, Zhang B, Gui X, Pei X, Song P, Yu X, Zhang Z, Zhou C. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Int J Nanomedicine 2023; 18:5815-5830. [PMID: 37869064 PMCID: PMC10590137 DOI: 10.2147/ijn.s416098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Large bone defects caused by congenital defects, infections, degenerative diseases, trauma, and tumors often require personalized shapes and rapid reconstruction of the bone tissue. Three-dimensional (3D)-printed bone tissue engineering scaffolds exhibit promising application potential. Fused deposition modeling (FDM) technology can flexibly select and prepare printed biomaterials and design and fabricate bionic microstructures to promote personalized large bone defect repair. FDM-3D printing technology was used to prepare polylactic acid (PLA)/nano β-tricalcium phosphate (TCP) composite bone tissue engineering scaffolds in this study. The ability of the bone-tissue-engineered scaffold to repair bone defects was evaluated in vivo and in vitro. Methods PLA/nano-TCP composite bone tissue engineering scaffolds were prepared using FDM-3D printing technology. The characterization data of the scaffolds were obtained using relevant detection methods. The physical and chemical properties, biocompatibility, and in vitro osteogenic capacity of the scaffolds were investigated, and their bone repair capacity was evaluated using an in vivo animal model of rabbit femur bone defects. Results The FDM-printed PLA/nano β-TCP composite scaffolds exhibited good personalized porosity and shape, and their osteogenic ability, biocompatibility, and bone repair ability in vivo were superior to those of pure PLA. The merits of biodegradable PLA and bioactive nano β-TCP ceramics were combined to improve the overall biological performance of the composites. Conclusion The FDM-printed PLA/nano-β-TCP composite scaffold with a ratio of 7:3 exhibited good personalized porosity and shape, as well as good osteogenic ability, biocompatibility, and bone repair ability. This study provides a promising strategy for treating large bone defects.
Collapse
Affiliation(s)
- Wenzhao Wang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Boqing Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xuan Pei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ping Song
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xia Yu
- Department of Clinical Laboratory, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People’s Republic of China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
- Department of Orthopedics, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People’s Republic of China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
31
|
Pei Y, Li W, Wang L, Cui J, Li L, Ling S, Tang K, Tian H. Mesostructured Fibrils Exfoliated in Deep Eutectic Solvent as Building Blocks of Collagen Membranes. Polymers (Basel) 2023; 15:4008. [PMID: 37836057 PMCID: PMC10574992 DOI: 10.3390/polym15194008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The mesoscale components of collagen (nanofibrils, fibrils, and fiber bundles) are well organized in native tissues, resulting in superior properties and diverse functions. In this paper, we present a simple and controlled liquid exfoliation method to directly extract medium-sized collagen fibers ranging from 102 to 159 nm in diameter from bovine Achilles tendon using urea/hydrochloric acid and a deep eutectic solvent (DES). In situ observations under polarized light microscopy (POM) and molecular dynamics simulations revealed the effects of urea and GuHCl on tendon collagen. FTIR study results confirmed that these fibrils retained the typical structural characteristics of type I collagen. These shed collagen fibrils were then used as building blocks to create independent collagen membranes with good and stable mechanical properties, excellent barrier properties, and cell compatibility. A new method for collagen processing is provided in this work by using DES-assisted liquid exfoliation for constructing robust collagen membranes with mesoscale collagen fibrils as building blocks.
Collapse
Affiliation(s)
- Ying Pei
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Wei Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Lu Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Jing Cui
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Shengjie Ling
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; (W.L.); (L.W.); (K.T.)
| | - Huafeng Tian
- Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
32
|
Slyker L, Bonassar LJ. Alginate Conjugation Increases Toughness in Auricular Chondrocyte Seeded Collagen Hydrogels. Bioengineering (Basel) 2023; 10:1037. [PMID: 37760139 PMCID: PMC10526064 DOI: 10.3390/bioengineering10091037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Current auricular cartilage replacements for pediatric microtia fail to address the need for long-term integration and neocartilage formation. While collagen hydrogels have been successful in fostering neocartilage formation, the toughness and extensibility of these materials do not match that of native tissue. This study used the N-terminal functionalization of collagen with alginate oligomers to improve toughness and extensibility through metal-ion complexation. Alginate conjugation was confirmed via FTIR spectroscopy. The retention of native collagen fibrillar structure, thermal gelation, and helical conformation in functionalized gels was confirmed via scanning electron microscopy, oscillatory shear rheology, and circular dichroism spectroscopy, respectively. Alginate-calcium complexation enabled a more than two-fold increase in modulus and work density in functionalized collagen with the addition of 50 mM CaCl2, whereas unmodified collagen decreased in both modulus and work density with increasing calcium concentration. Additionally, the extensibility of alginate-functionalized collagen was increased at 25 and 50 mM CaCl2. Following 2-week culture with auricular chondrocytes, alginate-functionalization had no effect on the cytocompatibility of collagen gels, with no effects on cell density, and increased glycosaminoglycan deposition. Custom MATLAB video analysis was then used to quantify fracture toughness, which was more than 5-fold higher following culture in functionalized collagen and almost three-fold higher in unmodified collagen.
Collapse
Affiliation(s)
- Leigh Slyker
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Lawrence J. Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Purcăreanu B, Ene MD, Moroșan A, Mihaiescu DE, Florea MA, Ghica A, Nita RA, Drumea V, Grigoroscuta MA, Kuncser A, Badica P, Olariu L. Mesoporous Composite Bioactive Compound Delivery System for Wound-Healing Processes. Pharmaceutics 2023; 15:2258. [PMID: 37765227 PMCID: PMC10534662 DOI: 10.3390/pharmaceutics15092258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, the treatment of wounds is still a challenge for healthcare professionals due to high complication incidences and social impacts, and the development of biocompatible and efficient medicines remains a goal. In this regard, mesoporous materials loaded with bioactive compounds from natural extracts have a high potential for wound treatment due to their nontoxicity, high loading capacity and slow drug release. MCM-41-type mesoporous material was synthesized by using sodium trisilicate as a silica source at room temperature and normal pressure. The synthesized mesoporous silica was characterized by using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), N2 absorption-desorption (BET), Dynamic Light Scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR), revealing a high surface area (BET, 1244 m2/g); pore diameter of approx. 2 nm; and a homogenous, ordered and hexagonal geometry (TEM images). Qualitative monitoring of the desorption degree of the Salvia officinalis (SO) extract, rich in ursolic acid and oleanolic acid, and Calendula officinalis (CO) extract, rich in polyphenols and flavones, was performed via the continuous recording of the UV-VIS spectra at predetermined intervals. The active ingredients in the new composite MCM-41/sage and marigold (MCM-41/SO&CO) were quantified by using HPLC-DAD and LC-MS-MS techniques. The evaluation of the biological composites' activity on the wound site was performed on two cell lines, HS27 and HaCaT, naturally involved in tissue-regeneration processes. The experimental results revealed the ability to stimulate collagen biosynthesis, the enzymatic activity of the main metalloproteinases (MMP-2 and MMP-9) involved in tissue remodeling processes and the migration rate in the wound site, thus providing insights into the re-epithelializing properties of mesoporous composites.
Collapse
Affiliation(s)
- Bogdan Purcăreanu
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Manuela Diana Ene
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Alina Moroșan
- Department of Organic Chemistry “Costin Neniţescu”, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry “Costin Neniţescu”, Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
| | - Mihai Alexandru Florea
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Adelina Ghica
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Roxana Andreea Nita
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Veronica Drumea
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
| | - Mihai Alexandru Grigoroscuta
- National Institute of Materials Physics, Street Atomistilor 405 A, 077125 Magurele, Romania; (M.A.G.); (A.K.); (P.B.)
| | - Andrei Kuncser
- National Institute of Materials Physics, Street Atomistilor 405 A, 077125 Magurele, Romania; (M.A.G.); (A.K.); (P.B.)
| | - Petre Badica
- National Institute of Materials Physics, Street Atomistilor 405 A, 077125 Magurele, Romania; (M.A.G.); (A.K.); (P.B.)
| | - Laura Olariu
- Biotehnos SA, Gorunului Street 3-5, 075100 Otopeni, Romania or (B.P.); (M.A.F.); (A.G.); (R.A.N.); (V.D.); (L.O.)
- Academy of Romanian Scientists, 3 Ilfov Street, 030167, Bucharest, Romania
| |
Collapse
|
34
|
Castellano M, Dodero A, Scarfi S, Mirata S, Pozzolini M, Tassara E, Sionkowska A, Adamiak K, Alloisio M, Vicini S. Chitosan-Collagen Electrospun Nanofibers Loaded with Curcumin as Wound-Healing Patches. Polymers (Basel) 2023; 15:2931. [PMID: 37447576 DOI: 10.3390/polym15132931] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Composite chitosan-collagen nanofibrous mats embedded with curcumin were prepared via a single-step electrospinning procedure and explored as wound-healing patches with superior biological activity. A mild crosslinking protocol consisting of a short exposure to ammonia vapor and UV radiation was developed to ensure proper stability in physiological-like conditions without affecting the intrinsic biocompatibility of chitosan and collagen. The fabricated composite patches displayed a highly porous, homogeneous nanostructure consisting of fibers with an average diameter of 200 nm, thermal stability up to 200 °C, mechanical features able to ensure protection and support to the new tissues, and water-related properties in the ideal range to allow exudate removal and gas exchange. The release kinetic studies carried out in a simulated physiological environment demonstrated that curcumin release was sustained for 72 h when the mats are crosslinked hence providing prolonged bioactivity reflected by the displayed antioxidant properties. Remarkably, combining chitosan and collagen not only ensures prolonged stability and optimal physical-chemical properties but also allows for better-promoting cell adhesion and proliferation and enhanced anti-bacteriostatic capabilities with the addition of curcumin, owing to its beneficial anti-inflammatory effect, ameliorating the attachment and survival/proliferation rates of keratinocytes and fibroblasts to the fabricated patches.
Collapse
Affiliation(s)
- Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sonia Scarfi
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Serena Mirata
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Marina Pozzolini
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Eleonora Tassara
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, 87100 Toruń, Poland
| | - Katarzyna Adamiak
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, 87100 Toruń, Poland
| | - Marina Alloisio
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| |
Collapse
|
35
|
Katrilaka C, Karipidou N, Petrou N, Manglaris C, Katrilakas G, Tzavellas AN, Pitou M, Tsiridis EE, Choli-Papadopoulou T, Aggeli A. Freeze-Drying Process for the Fabrication of Collagen-Based Sponges as Medical Devices in Biomedical Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4425. [PMID: 37374608 DOI: 10.3390/ma16124425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
This paper presents a systematic review of a key sector of the much promising and rapidly evolving field of biomedical engineering, specifically on the fabrication of three-dimensional open, porous collagen-based medical devices, using the prominent freeze-drying process. Collagen and its derivatives are the most popular biopolymers in this field, as they constitute the main components of the extracellular matrix, and therefore exhibit desirable properties, such as biocompatibility and biodegradability, for in vivo applications. For this reason, freeze-dried collagen-based sponges with a wide variety of attributes can be produced and have already led to a wide range of successful commercial medical devices, chiefly for dental, orthopedic, hemostatic, and neuronal applications. However, collagen sponges display some vulnerabilities in other key properties, such as low mechanical strength and poor control of their internal architecture, and therefore many studies focus on the settlement of these defects, either by tampering with the steps of the freeze-drying process or by combining collagen with other additives. Furthermore, freeze drying is still considered a high-cost and time-consuming process that is often used in a non-optimized manner. By applying an interdisciplinary approach and combining advances in other technological fields, such as in statistical analysis, implementing the Design of Experiments, and Artificial Intelligence, the opportunity arises to further evolve this process in a sustainable and strategic manner, and optimize the resulting products as well as create new opportunities in this field.
Collapse
Affiliation(s)
- Chrysoula Katrilaka
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Niki Karipidou
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Nestor Petrou
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Chris Manglaris
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - George Katrilakas
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Anastasios Nektarios Tzavellas
- 3rd Department of Orthopedics, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maria Pitou
- School of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleftherios E Tsiridis
- 3rd Department of Orthopedics, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | | | - Amalia Aggeli
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
36
|
Ouyang Z, Dong L, Yao F, Wang K, Chen Y, Li S, Zhou R, Zhao Y, Hu W. Cartilage-Related Collagens in Osteoarthritis and Rheumatoid Arthritis: From Pathogenesis to Therapeutics. Int J Mol Sci 2023; 24:9841. [PMID: 37372989 DOI: 10.3390/ijms24129841] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Collagens serve essential mechanical functions throughout the body, particularly in the connective tissues. In articular cartilage, collagens provide most of the biomechanical properties of the extracellular matrix essential for its function. Collagen plays a very important role in maintaining the mechanical properties of articular cartilage and the stability of the ECM. Noteworthily, many pathogenic factors in the course of osteoarthritis and rheumatoid arthritis, such as mechanical injury, inflammation, and senescence, are involved in the irreversible degradation of collagen, leading to the progressive destruction of cartilage. The degradation of collagen can generate new biochemical markers with the ability to monitor disease progression and facilitate drug development. In addition, collagen can also be used as a biomaterial with excellent properties such as low immunogenicity, biodegradability, biocompatibility, and hydrophilicity. This review not only provides a systematic description of collagen and analyzes the structural characteristics of articular cartilage and the mechanisms of cartilage damage in disease states but also provides a detailed characterization of the biomarkers of collagen production and the role of collagen in cartilage repair, providing ideas and techniques for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ziwei Ouyang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Heifei 230601, China
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Heifei 230032, China
| |
Collapse
|
37
|
Gögele C, Hahn J, Schulze-Tanzil G. Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses. Int J Mol Sci 2023; 24:ijms24119745. [PMID: 37298698 DOI: 10.3390/ijms24119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The firm integration of anterior cruciate ligament (ACL) grafts into bones remains the most demanding challenge in ACL reconstruction, since graft loosening means graft failure. For a functional-tissue-engineered ACL substitute to be realized in future, robust bone attachment sites (entheses) have to be re-established. The latter comprise four tissue compartments (ligament, non-calcified and calcified fibrocartilage, separated by the tidemark, bone) forming a histological and biomechanical gradient at the attachment interface between the ACL and bone. The ACL enthesis is surrounded by the synovium and exposed to the intra-articular micromilieu. This review will picture and explain the peculiarities of these synovioentheseal complexes at the femoral and tibial attachment sites based on published data. Using this, emerging tissue engineering (TE) strategies addressing them will be discussed. Several material composites (e.g., polycaprolactone and silk fibroin) and manufacturing techniques (e.g., three-dimensional-/bio-printing, electrospinning, braiding and embroidering) have been applied to create zonal cell carriers (bi- or triphasic scaffolds) mimicking the ACL enthesis tissue gradients with appropriate topological parameters for zones. Functionalized or bioactive materials (e.g., collagen, tricalcium phosphate, hydroxyapatite and bioactive glass (BG)) or growth factors (e.g., bone morphogenetic proteins [BMP]-2) have been integrated to achieve the zone-dependent differentiation of precursor cells. However, the ACL entheses comprise individual (loading history) asymmetric and polar histoarchitectures. They result from the unique biomechanical microenvironment of overlapping tensile, compressive and shear forces involved in enthesis formation, maturation and maintenance. This review should provide a road map of key parameters to be considered in future in ACL interface TE approaches.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Judith Hahn
- Workgroup BioEngineering, Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
38
|
Mao J, Li S, Yun L, Zhang M. Structural Identification and Antioxidant Activity of Loach Protein Enzymatic Hydrolysates. Molecules 2023; 28:molecules28114391. [PMID: 37298867 DOI: 10.3390/molecules28114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Loach, rich in nutrients, such as proteins, amino acids, and mineral elements, is being gradually favored by consumers. Therefore, in this study, the antioxidant activity and structural characteristics of loach peptides were comprehensively analyzed. The loach protein (LAP) with a molecular weight between 150 and 3000 Da was graded by ultrafiltration and nanofiltration processes, which exhibited excellent scavenging activity against DPPH radical (IC50 2.91 ± 0.02 mg/mL), hydroxyl radical (IC50 9.95 ± 0.03 mg/mL), and superoxide anion radical (IC50 13.67 ± 0.33 mg/mL). Additionally, LAP was purified by gel filtration chromatography, and two principal components (named as LAP-I and LAP-II) were isolated. A total of 582 and 672 peptides were identified in LAP-I and LAP-II, respectively, through structural analysis. The XRD results revealed that LAP-I and LAP-II had an irregular amorphous structure. The 2D-NMR spectroscopy results suggested that LAP-I had a compact stretch conformation in the D2O solution, while LAP-II had a folded conformation. Overall, the study results suggested that loach peptide could be a potential antioxidant agent and might provide valuable information for chain conformation and antioxidant mechanism research further.
Collapse
Affiliation(s)
- Jinrong Mao
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liyuan Yun
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
39
|
Almogy M, Moses O, Schiffmann N, Weinberg E, Nemcovsky CE, Weinreb M. Addition of Resolvins D1 or E1 to Collagen Membranes Mitigates Their Resorption in Diabetic Rats. J Funct Biomater 2023; 14:jfb14050283. [PMID: 37233393 DOI: 10.3390/jfb14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Uncontrolled diabetes is characterized by aberrant inflammatory reactions and increased collagenolysis. We have reported that it accelerates the degradation of implanted collagen membranes (CM), thus compromising their function in regenerative procedures. In recent years, a group of physiological anti-inflammatory agents called specialized pro-resolving lipid mediators (SPMs) have been tested as a treatment for various inflammatory conditions, either systemically or locally, via medical devices. Yet, no study has tested their effect on the fate of the biodegradable material itself. Here, we measured the in vitro release over time of 100 or 800 ng resolvin D1 (RvD1) incorporated into CM discs. In vivo, diabetes was induced in rats with streptozotocin, while buffer-injected (normoglycemic) rats served as controls. Resolvins (100 or 800 ng of RvD1 or RvE1) were added to biotin-labeled CM discs, which were implanted sub-periosteally over the calvaria of rats. Membrane thickness, density, and uniformity were determined by quantitative histology after 3 weeks. In vitro, significant amounts of RvD1 were released over 1-8 days, depending on the amount loaded. In vivo, CMs from diabetic animals were thinner, more porous, and more variable in thickness and density. The addition of RvD1 or RvE1 improved their regularity, increased their density, and reduced their invasion by the host tissue significantly. We conclude that addition of resolvins to biodegradable medical devices can protect them from excessive degradation in systemic conditions characterized by high degree of collagenolysis.
Collapse
Affiliation(s)
- Michal Almogy
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ofer Moses
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Nathan Schiffmann
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
40
|
Sergeeva IA, Klinov DV, Schäffer TE, Dubrovin EV. Characterization of the effect of chromium salts on tropocollagen molecules and molecular aggregates. Int J Biol Macromol 2023; 242:124835. [PMID: 37201883 DOI: 10.1016/j.ijbiomac.2023.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Though the capability of chromium treatment to improve the stability and mechanical properties of collagen fibrils is well-known, the influence of different chromium salts on collagen molecules (tropocollagen) is not well characterized. In this study, the effect of Cr3+ treatment on the conformation and hydrodynamic properties of collagen was studied using atomic force microscopy (AFM) and dynamic light scattering (DLS). Statistical analysis of contours of adsorbed tropocollagen molecules using the two-dimensional worm-like chain model revealed a reduction of the persistence length (i.e., the increase of flexibility) from ≈72 nm in water to ≈56-57 nm in chromium (III) salt solutions. DLS studies demonstrated an increase of the hydrodynamic radius from ≈140 nm in water to ≈190 nm in chromium (III) salt solutions, which is associated with protein aggregation. The kinetics of collagen aggregation was shown to be ionic strength dependent. Collagen molecules treated with three different chromium (III) salts demonstrated similar properties such as flexibility, aggregation kinetics, and susceptibility to enzymatic cleavage. The observed effects are explained by a model that considers the formation of chromium-associated intra- and intermolecular crosslinks. The obtained results provide novel insights into the effect of chromium salts on the conformation and properties of tropocollagen molecules.
Collapse
Affiliation(s)
- Irina A Sergeeva
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 bld 2, 119991 Moscow, Russia.
| | - Dmitry V Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Tilman E Schäffer
- University of Tübingen, Institute of Applied Physics, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Evgeniy V Dubrovin
- Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 bld 2, 119991 Moscow, Russia.
| |
Collapse
|
41
|
Chen Y, Zhang Y, Wang Q, Dan N, Li Y, Li Z, Dan W, Wang Y. Converting Acellular Dermal Matrix into On-Demand Versatile Skin Scaffolds by a Balanceable Crosslinking Approach for Integrated Infected Wounds Therapy. Biomacromolecules 2023; 24:2342-2355. [PMID: 37094104 DOI: 10.1021/acs.biomac.3c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Ideal tissue-engineered skin scaffolds should possess integrated therapeutic effects and multifunctionality, such as broad-spectrum antibacterial properties, adjustable mechanical properties, and bionic structure. Acellular dermal matrix (ADM) has been broadly used in many surgical applications as an alternative treatment to the "gold standard" tissue transplantation. However, insufficient broad-spectrum antibacterial and mechanical properties for therapeutic efficacy limit the practical clinical applications of ADM. Herein, a balanceable crosslinking approach based on oxidized 2-hydroxypropyltrimethyl ammonium chloride chitosan (OHTCC) was developed for converting ADM into on-demand versatile skin scaffolds for integrated infected wounds therapy. Comprehensive experiments show that different oxidation degrees of OHTCC have significative influences on the specific origins of OHTCC-crosslinked ADM scaffolds (OHTCC-ADM). OHTCC with an oxidation degree of about 13% could prosperously balance the physiochemical properties, antibacterial functionality, and cytocompatibility of the OHTCC-ADM scaffolds. Owing to the natural features and comprehensive crosslinking effects, the proposed OHTCC-ADM scaffolds possessed the desirable multifunctional properties, including adjustable mechanical, degradable characteristics, and thermal stability. In vitro/in vivo biostudies indicated that OHTCC-ADM scaffolds own well-pleasing broad-spectrum antibacterial performances and play effectively therapeutic roles in treating infection, inhibiting inflammation, promoting angiogenesis, and promoting collagen deposition to enhance the infected wound healing. This study proposes a facile balanceable crosslinking approach for the design of ADM-based versatile skin scaffolds for integrated infected wounds therapy.
Collapse
Affiliation(s)
- Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengjun Li
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weihua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
42
|
Prontera CT, Gallo N, Giannuzzi R, Pugliese M, Primiceri V, Mariano F, Maggiore A, Gigli G, Sannino A, Salvatore L, Maiorano V. Collagen Membrane as Water-Based Gel Electrolyte for Electrochromic Devices. Gels 2023; 9:gels9040310. [PMID: 37102922 PMCID: PMC10137362 DOI: 10.3390/gels9040310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Bio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte. The evaluation of the membrane's stability in water and aqueous electrolyte and the mechanical characterization demonstrated that cross-linked samples showed a good compromise in terms of water absorption capability and resistance. The optical characteristics and the ionic conductivity of the cross-linked membrane, after overnight dipping in sulfuric acid solution, demonstrated the potential of the reported membrane as an electrolyte for electrochromic devices. As proof of concept, an electrochromic device was fabricated by sandwiching the membrane (after sulfuric acid dipping) between a glass/ITO/PEDOT:PSS substrate and a glass/ITO/SnO2 substrate. The results in terms of optical modulation and kinetic performance of such a device demonstrated that the reported cross-linked collagen membrane could represent a valid candidate as a water-based gel and bio-based electrolyte for full-solid-state electrochromic devices.
Collapse
Affiliation(s)
- Carmela Tania Prontera
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Roberto Giannuzzi
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Marco Pugliese
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vitantonio Primiceri
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Fabrizio Mariano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Maggiore
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovations, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Vincenzo Maiorano
- CNR NANOTEC-Institute of Nanotechnology c/o Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
43
|
Martínez-Puig D, Costa-Larrión E, Rubio-Rodríguez N, Gálvez-Martín P. Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge. Nutrients 2023; 15:nu15061332. [PMID: 36986062 PMCID: PMC10058045 DOI: 10.3390/nu15061332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, generating pain, disability, and socioeconomic costs worldwide. Currently there are no approved disease-modifying drugs for OA, and safety concerns have been identified with the chronic use of symptomatic drugs. In this context, nutritional supplements and nutraceuticals have emerged as potential alternatives. Among them, collagen is being a focus of particular interest, but under the same term different types of collagens coexist with different structures, compositions, and origins, leading to different properties and potential effects. The aim of this narrative review is to generally describe the main types of collagens currently available in marketplace, focusing on those related to joint health, describing their mechanism of action, preclinical, and clinical evidence. Native and hydrolyzed collagen are the most studied collagen types for joint health. Native collagen has a specific immune-mediated mechanism that requires the recognition of its epitopes to inhibit inflammation and tissue catabolism at articular level. Hydrolyzed collagen may contain biologically active peptides that are able to reach joint tissues and exert chondroprotective effects. Although there are preclinical and clinical studies showing the safety and efficacy of food ingredients containing both types of collagens, available research suggests a clear link between collagen chemical structure and mechanism of action.
Collapse
|
44
|
Pei Y, Yang W, Tang K, Kaplan DL. Collagen processing with mesoscale aggregates as templates and building blocks. Biotechnol Adv 2023; 63:108099. [PMID: 36649798 DOI: 10.1016/j.biotechadv.2023.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen presents a well-organized hierarchical multilevel structure. Microfibers, fibers, and fiber bundles are the aggregates of natural collagen; which achieve an ideal balance of mechanical strength and toughness at the mesoscopic scale for biological tissue. These mesostructured aggregates of collagen isolated from biological tissues retain these inherent organizational features to enable their use as building blocks for constructing new collagen materials with ideal mechanical performance, thermal and dimensional stability. This strategy is distinct from the more common bottom-up or molecular-level design and assembly approach to generating collagen materials. The present review introduces the hierarchical structure of biological collagen with a focus on mesostructural features. Isolation strategies for these collagen aggregates (CAs) are summarized. Recent progress in the use of these mesostructural components for the construction of new collagen materials with emerging applications is reviewed, including in catalysis, environmental applications, biomedicine, food packaging, electrical energy storage, and flexible sensors. Finally, challenges and prospects are assessed for controllable production of CAs as well as material designs.
Collapse
Affiliation(s)
- Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wen Yang
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - David L Kaplan
- Biomedical Engineering, Tufts University, MA 02155, United States
| |
Collapse
|
45
|
Antioxidant peptides from edible aquatic animals: Preparation method, mechanism of action, and structure-activity relationships. Food Chem 2023; 404:134701. [DOI: 10.1016/j.foodchem.2022.134701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
46
|
Ahmed M, Bhat AR, Verma AK, Patel R. Collagen-PVA Films Plasticized with Choline Acetate Ionic Liquid for Sustained Drug Release: UV Shielding, Mechanical, Antioxidant, and Antibacterial Properties. ACS APPLIED BIO MATERIALS 2023; 6:663-673. [PMID: 36696601 DOI: 10.1021/acsabm.2c00918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Collagen and poly(vinyl alcohol) films as topical drug delivery systems were developed by plasticization with glycerol and different concentrations of choline acetate ([Cho]Ac) ionic liquid (IL). The results showed that [Cho]Ac improved the performance of the materials and can serve as an alternative to synthetic plasticizers such as glycerol. Ciprofloxacin (CIP) was used as a model drug to study its release behavior. Ready-to-use films were characterized for their optical opacity, solubility, swelling, mechanical properties, water contact angle, surface morphology, surface roughness, antioxidant, and antimicrobial activities. Moreover, X-ray diffraction and Fourier Transform Infrared (FTIR) studies were carried out for molecular characterization of the films. [Cho]Ac used as a plasticizing agent showed excellent antioxidant properties, mechanical strength, and UV shielding properties. Further, [Cho]Ac improves the roughness and decreases the solubility of films. The in vitro release behavior of CIP was investigated at physiological pH (7.4), and the results showed that CIP was released in a more controlled manner due to the incorporation of [Cho]Ac into the films' matrix, while the films constructed with glycerol exhibited burst release of CIP. Moreover, the films loaded with CIP showed excellent antibacterial activity against Gram-negative (Escherichia coli) as well as Gram-positive (Staphylococcus aureus) bacteria. This study provides insight into the use of choline-based ILs as plasticizing agents for the fabrication of protein-polymer composite films for wound dressing and many other applications.
Collapse
Affiliation(s)
- Mofieed Ahmed
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi110025, India
| | - Ab Raouf Bhat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Amit Kumar Verma
- Department of Biosciences, Jamia Millia Islamia, New Delhi110025, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| |
Collapse
|
47
|
Fan L, Ren Y, Emmert S, Vučković I, Stojanovic S, Najman S, Schnettler R, Barbeck M, Schenke-Layland K, Xiong X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24043744. [PMID: 36835168 PMCID: PMC9963569 DOI: 10.3390/ijms24043744] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synthetic bone substitute materials (BSMs) are becoming the general trend, replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has played a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structures, and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts have focused on the preparation of collagen-based biomimetic BSMs, along with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.
Collapse
Affiliation(s)
- Lu Fan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
| | - Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
| | - Ivica Vučković
- Department of Maxillofacial Surgery, Clinic for Dental Medicine, 18000 Niš, Serbia
| | - Sanja Stojanovic
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stevo Najman
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057 Rostock, Germany
- BerlinAnalytix GmbH, Ullsteinstraße 108, 12109 Berlin, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Institute of Biomedical Engineering, Department of Medical Technologies and Regenerative Medicine, Medical Faculty, Eberhard Karls University of Tübingen, Silcherstr. 7/1, 72076 Tübingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
- Correspondence: (K.S.-L.); (X.X.); Tel.: +49-(0)-71215153010 (K.S.-L.); +49+(0)-71215153413 (X.X.)
| |
Collapse
|
48
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
49
|
Deaconu M, Prelipcean AM, Brezoiu AM, Mitran RA, Isopencu G, Matei C, Berger D. Novel Collagen-Polyphenols-Loaded Silica Composites for Topical Application. Pharmaceutics 2023; 15:pharmaceutics15020312. [PMID: 36839635 PMCID: PMC9962153 DOI: 10.3390/pharmaceutics15020312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Lesions can affect skin functions and cause a simple issue, such as dehydration, or more challenging complications, such as bacterial infections. The purpose of this study was to design composites for topical application that can prevent and/or assist in bacterial infections and support cell regeneration using natural components. A polyphenolic extract obtained from Salvia officinalis was embedded in functionalized mesoporous silica nanoparticles for better stability, followed by their distribution into a collagen porous scaffold. The resulting polyphenols-loaded MSN exhibited enhanced antibacterial activity and good cytocompatibility. Improved thermal stability of the collagen porous scaffold was obtained due to the presence of the functionalized MSN. For the first time, collagen-polyphenols-loaded silica composites were reported in the literature as potential wound dressings. The newly developed composites showed excellent sterility.
Collapse
Affiliation(s)
- Mihaela Deaconu
- CAMPUS Research Institute, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Ana-Maria Prelipcean
- National Institute of R&D for Biological Sciences, 296 Splaiul Independetei, 060031 Bucharest, Romania
- Correspondence: (A.-M.P.); (D.B.)
| | - Ana-Maria Brezoiu
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Raul-Augustin Mitran
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Gabriela Isopencu
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Cristian Matei
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Daniela Berger
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Correspondence: (A.-M.P.); (D.B.)
| |
Collapse
|
50
|
Chen J, Liu J, Yang W, Pei Y. Collagen and Silk Fibroin as Promising Candidates for Constructing Catalysts. Polymers (Basel) 2023; 15:375. [PMID: 36679256 PMCID: PMC9863204 DOI: 10.3390/polym15020375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
A catalyst determines the mechanism of an organic chemical reaction, thus enabling the commercially viable formation of desired material products. Biopolymers offer new opportunities for the construction of catalysts by virtue of their biocompatibility, environmental benignity, and sustainability, as well as their low cost. Biopolymers are especially useful as carriers and precursors in catalysis application. The employment of biocompatible and biosustainable collagen and silk fibroin materials will revolutionize state-of-the-art electronic devices and systems that currently rely on conventional technologies. In this review, we first consider the ordered hierarchical structure, origin, and processing methods of collagen and silk fibroin. Then, the unique advantages and applicability of collagen and silk fibroin for constructing catalysts are summarized. Moreover, a summary of the state-of-the-art design, fabrication, and application of collagen- and silk fibroin-based catalysts, as well as the application of collagen- and silk-based catalysts, is presented by focusing on their roles as carriers and precursors, respectively. Finally, challenges and prospects are assessed for the construction and development of collagen and silk fibroin-based catalysts.
Collapse
Affiliation(s)
- Jiankang Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|