1
|
Qiu T, Liu C, Ding Y, Wang L, Liu Y, Sun Y, Mao Z, Chen P, Sun H, Chen F, Cao Y. SERS-based simplified analysis of paraquat in poisoning cases: Bypassing complicated pretreatment with antioxidant sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125593. [PMID: 39756248 DOI: 10.1016/j.saa.2024.125593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance. This resistance is attributed to the physical properties of the nanoparticles, specifically the silver shell coating and loading on the molybdenum disulfide (MoS2). By the creation of "hot spots" of the composite nanoparticles (Ag@AuBPs on flower-like MoS2), the kit achieves a remarkably low detection limit as low as 1.0 × 10-10 M for Paraquat in lake water, soil, and clothing samples, allowing for rapid and direct identification of PQ in complex environments.
Collapse
Affiliation(s)
- Tianyu Qiu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Liu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yan Ding
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lixiang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuhui Liu
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang, 330013, China
| | - Yang Sun
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhengsheng Mao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Peng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hao Sun
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China; Institute of Poisoning, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Pimalai D, Putnin T, Bamrungsap S. A highly sensitive electrochemical sensor based on poly(3-aminobenzoic acid)/graphene oxide-gold nanoparticles modified screen printed carbon electrode for paraquat detection. J Environ Sci (China) 2025; 148:139-150. [PMID: 39095153 DOI: 10.1016/j.jes.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 08/04/2024]
Abstract
Herein, a modified screen printed carbon electrode (SPCE) based on a composite material, graphene oxide-gold nanoparticles (GO-AuNPs), and poly(3-aminobenzoic acid)(P3ABA) for the detection of paraquat (PQ) is introduced. The modified electrode was fabricated by drop casting of the GO-AuNPs, followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA. The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy (SEM) for each step of modification. The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode. In addition, the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate, which stimulate redox reaction on the modified electrode, thus improving the sensitivity of PQ analysis. The SPCE/GO-AuNPs/P3ABA offered a wide linear range of PQ determination (10-9-10-4 mol/L) and low limit of detection (LOD) of 0.45 × 10-9 mol/L or 0.116 µg/L, which is far below international safety regulations. The modified electrode showed minimum interference effect with percent recovery ranging from 96.5% to 116.1% after addition of other herbicides, pesticides, metal ions, and additives. The stability of the SPCE/GO-AuNPs/P3ABA was evaluated, and the results indicated negligible changes in the detection signal over 9 weeks. Moreover, this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.
Collapse
Affiliation(s)
- Dechnarong Pimalai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Thitirat Putnin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| |
Collapse
|
3
|
Yang M, Xiao L, Chen WT, Deng X, Hu G. Recent advances on metal-organic framework-based electrochemical sensors for determination of organic small molecules. Talanta 2024; 280:126744. [PMID: 39186861 DOI: 10.1016/j.talanta.2024.126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Metal-organic frameworks (MOFs) are an extraordinarily versatile class of porous materials renowned for their intricate three-dimensional skeletal architectures and exceptional chemical properties. These extraordinary attributes have pushed MOFs into the vanguard of diverse disciplines such as microporous conduction, catalysis, separation, biomedical engineering, and electrochemical sensing. The focus of this review is to offer a comprehensive summary of recent advancements in designing MOF-based electrochemical sensors for detecting organic small molecules. offer a comprehensive survey of the recent progress in the methodologies adopted for the construction of MOF composites, covering template-assisted synthesis, Modification in synthesis, and post-synthesis modification. In addition, we discuss the practical application of MOF-based electrochemical sensors in the detection of organic small molecules. Our findings highlight the superior electrochemical sensing capabilities of these novel composites compared to those of their pristine counterparts. In conclusion, we provide a condensed perspective on the potential future trajectories in this domain, underscoring the impetus for continued enquiry and enhancement of MOF composite assemblies. With sustained investigation, the horizon appears bright for electrochemical sensing of small organic molecules and their myriad applications.
Collapse
Affiliation(s)
- Mengxia Yang
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Linfeng Xiao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Wen-Tong Chen
- Key Laboratory of Coordination Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343009, China
| | - Xiujun Deng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, 650214, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
4
|
Tayeb FJ, Felemban MF, Adnan Ashour A, Shafie A. Paraquat-Induced Toxicities: Epidemiological Insights and Advances in Colorimetric and Fluorimetric Detection Methods. Crit Rev Anal Chem 2024:1-31. [PMID: 39602183 DOI: 10.1080/10408347.2024.2433005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Paraquat (PQ) is a potent and widely utilized herbicide known for its effectiveness in controlling a broad spectrum of weeds. Its chemical properties make it an invaluable tool in agriculture, where it helps maintain crop yields and manage invasive plant species. However, despite its benefits in weed management, PQ poses significant risks due to its severe toxicity, which affects multiple organ systems in both humans and animals. The dual nature of PQ, as both a valuable agricultural chemical and a hazardous toxicant, necessitates a comprehensive understanding of its toxicological impacts and the development of effective detection and development strategies. This review aims to provide a comprehensive overview of PQ-induced toxicities, including neurotoxicity, lung toxicity, liver toxicity, kidney toxicity, and immunotoxicity. By synthesizing current knowledge on PQ health impacts, highlighting epidemiological trends, and exploring recent advancements in colorimetric and fluorimetric detection methods, this review seeks to contribute to the development of strategies for improving public health outcomes and enhancing our ability to manage the risks associated with PQ exposure. Addressing PQ toxicity through a multidisciplinary approach, incorporating toxicological, epidemiological, and technological perspectives, is essential for safeguarding health and promoting effective interventions.
Collapse
Affiliation(s)
- Faris J Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammed Fareed Felemban
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
5
|
Kavazoi HS, Miyazaki CM, Constantino CJL, Martin CS, Alessio P. Selective Detection of Paraquat in Adulterated and Complex Environmental Samples Using Raman Spectroelectrochemistry. APPLIED SPECTROSCOPY 2024; 78:912-921. [PMID: 39090839 DOI: 10.1177/00037028241267920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Growing demand for pesticides has created an environment prone to deceptive activities, where counterfeit or adulterated pesticide products infiltrate the market, often escaping rapid detection. This situation presents a significant challenge for sensor technology, crucial in identifying authentic pesticides and ensuring agricultural safety practices. Raman spectroscopy emerges as a powerful technique for detecting adulterants. Coupling the electrochemical techniques allows a more specific and selective detection and compound identification. In this study, we evaluate the efficacy of spectroelectrochemical measurements by coupling a potentiostat and Raman spectrograph to identify paraquat, a nonselective herbicide banned in several countries. Our findings demonstrate that applying -0.70 V during measurements yields highly selective Raman spectra, highlighting the primary vibrational bands of paraquat. Moreover, the selective Raman signal of paraquat was discernible in complex samples, including tap water, apple, and green cabbage, even in the presence of other pesticides such as diquat, acephate, and glyphosate. These results underscore the potential of this technique for reliable pesticide detection in diverse and complex matrices.
Collapse
Affiliation(s)
- Henry S Kavazoi
- School of Technology and Sciences, Sao Paulo State University (UNESP), Presidente Prudente-SP, Brazil
| | - Celina M Miyazaki
- School of Technology and Sciences, Sao Paulo State University (UNESP), Presidente Prudente-SP, Brazil
| | - Carlos J L Constantino
- School of Technology and Sciences, Sao Paulo State University (UNESP), Presidente Prudente-SP, Brazil
| | - Cibely S Martin
- School of Engineering, São Paulo State University (UNESP), Ilha Solteira-SP, Brazil
| | - Priscila Alessio
- School of Technology and Sciences, Sao Paulo State University (UNESP), Presidente Prudente-SP, Brazil
| |
Collapse
|
6
|
Flafel HM, Rafatullah M, Lalung J, Kapoor RT, Siddiqui MR, Qutob M. A novel combination of wetland plants ( Eichhornia crassipes) and biochar derived from palm kernel shells modified with melamine for the removal of paraquat from aqueous medium: a green and sustainable approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2378-2391. [PMID: 39138934 DOI: 10.1080/15226514.2024.2390192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herbicide contamination in aquatic systems has become a global concern due to their long- term persistence, accumulation and health risks to humans. Paraquat, a widely used and cost-effective nonselective herbicide, is frequently applied in agricultural fields for pest control. Consequently, the removal of paraquat from contaminated water is crucial. This research presents a sustainable and environmentally benign method for paraquat removal from aqueous system by integrating wetland plants (Eichhornia crassipes) with biochar derived from melamine-modified palm kernel shells. The prepared biochar was characterized by using various analytical techniques. The effectiveness of biochar in enhancing phytoremediation was evaluated through a series of experiments, showing significant paraquat removal efficiencies of 99.7, 98.3, and 82.8% at different paraquat concentrations 50, 100, and 150 mg L-1, respectively. Additionally, present study examined the impact of biochar on the growth of E. crassipes, highlighting its potential to reduce the toxic effects of paraquat even present at higher concentrations. The paraquat removal mechanism was elucidated, focusing on the synergistic role of biochar adsorption and phytoremediation capability of E. crassipes. This innovative approach is an effective, feasible, sustainable and eco-friendly technique that can contribute to the development of advanced and affordable water remediation processes for widespread application.
Collapse
Affiliation(s)
- Hamza Mohamed Flafel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- Libyan Center for Studies and Research in Environmental Science and Technology, Brack Al-Shatti, Libya
- Department of Environmental Science, Faculty of Environment & Natural Resources, Wadi Al-Shatti University, Brack Al-Shatti, Libya
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Japareng Lalung
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
7
|
Jjagwe J, Olupot PW, Kulabako R, Carrara S. Electrochemical sensors modified with iron oxide nanoparticles/nanocomposites for voltammetric detection of Pb (II) in water: A review. Heliyon 2024; 10:e29743. [PMID: 38665564 PMCID: PMC11044046 DOI: 10.1016/j.heliyon.2024.e29743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Permissible limits of Pb2+ in drinking water are being reduced from 10 μgL-1 to 5 μgL-1, which calls for rapid, and highly reliable detection techniques. Electrochemical sensors have garnered attention in detection of heavy metal ions in environmental samples due to their ease of operation, low cost, and rapid detection responses. Selectivity, sensitivity and detection capabilities of these sensors, can be enhanced by modifying their working electrodes (WEs) with iron oxide nanoparticles (IONPs) and/or their composites. Therefore, this review is an in-depth analysis of the deployment of IONPs/nanocomposites in modification of electrochemical sensors for detection of Pb2+ in drinking water over the past decade. From the analyzed studies (n = 23), the optimal solution pH, deposition potential, and deposition time ranged between 3 and 5.6, -0.7 to -1.4 V vs Ag/AgCl, and 100-400 s, respectively. Majority of the studies employed square wave anodic stripping voltammetry (n = 16), in 0.1 M acetate buffer solution (n = 19) for detection of Pb2+. Limits of detection obtained (2.5 x 10-9 - 4.5 μg/L) were below the permissible levels which indicated good sensitivities of the modified electrodes. Despite the great performance of these modified electrodes, the primary source of IONPs has always been commercial iron-based salts in addition to the use of so many materials as modifying agents of these IONPs. This may limit reproducibility and sustainability of the WEs due to lengthy and costly preparation protocols. Steel and/or iron industrial wastes can be alternatively employed in generation of IONPs for modification of electrochemical sensors. Additionally, biomass-based activated carbons enriched with surface functional groups are also used in modification of bare IONPs, and subsequently bare electrodes. However, these two areas still need to be fully explored.
Collapse
Affiliation(s)
- Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Peter Wilberforce Olupot
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Robinah Kulabako
- Department of Civil and Environmental Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Sandro Carrara
- Bio/CMOS Interfaces Laboratory, School of Engineering, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
8
|
Shi G, Zhang C, Bai X, Sun J, Wang K, Meng Q, Li Y, Hu G, Hu R, Cai Q, Huang M. A potential mechanism clue to the periodic storm from microglia activation and progressive neuron damage induced by paraquat exposure. ENVIRONMENTAL TOXICOLOGY 2024; 39:1874-1888. [PMID: 38189626 DOI: 10.1002/tox.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/24/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
Paraquat (PQ), is characterized by neurotoxicity, which increases the potential risk of Parkinson's disease (PD) exposure in the long-term and low doses. Triggering microglia activation and neuroinflammation is deemed an early event resulting in PD. However, the underlying pathogenesis of PD by PQ is not clear yet. In this article, C57BL/6J mice treated with PQ could successfully act out Parkinson-like. In addition, we observed the fluorescence intensity enhancement of Iba-1 activated microglia with released pro-inflammatory, all ahead of both the damage of dopaminergic neurons in the substantia nigra and corpus striatum of the brain. Surprisingly, the injection of minocycline before PQ for many hours not only can effectively improve the neurobehavioral symptoms of mice but inhibit the activation of microglia and the release of pro-inflammatory substances, even controlling the gradual damage and loss of neurons. A further mechanism of minocycline hampered the expression levels of key signaling proteins PI3K, PDK1, p-AKT, and CD11b (the receptor of microglia membrane recognition), while a large number of inflammatory factors. Our results suggested that the CD11b/PI3K/NOX2 pathway may be a clue that microglia-mediated inflammatory responses and neuronal damage in a PQ-induced abnormal behavior Parkinson-like mouse.
Collapse
Affiliation(s)
- Ge Shi
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chunhui Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xinghua Bai
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian Sun
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - KaiDong Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qian Cai
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Min Huang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
9
|
Zulfajri M, Gedda G, Ulla H, Habibati, Gollavelli G, Huang GG. A review on the chemical and biological sensing applications of silver/carbon dots nanocomposites with their interaction mechanisms. Adv Colloid Interface Sci 2024; 325:103115. [PMID: 38422725 DOI: 10.1016/j.cis.2024.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The development of new nanocomposites has a significant impact on modern instrumentation and analytical methods for chemical analysis. Due to their unique properties, carbon dots (CDs) and silver nanoparticles (AgNPs), distinguished by their unique physical, electrochemical, and optical properties, have captivated significant attention. Thus, combining AgNPs and CDs may produce Ag/CDs nanocomposites with improved performances than the individual material. This comprehensive review offers an in-depth exploration of the synthesis, formation mechanism, properties, and the recent surge in chemical and biological sensing applications of Ag/CDs with their sensing mechanisms. Detailed insights into synthesis methods to produce Ag/CDs are unveiled, followed by information on their physicochemical and optical properties. The crux of this review lies in its spotlight on the diverse landscape of chemical and biological sensing applications of Ag/CDs, with a particular focus on fluorescence, electrochemical, colorimetric, surface-enhanced Raman spectroscopy, and surface plasmon resonance sensing techniques. The elucidation of sensing mechanisms of the nanocomposites with various target analytes adds depth to the discussion. Finally, this review culminates with a concise summary and a glimpse into future perspectives of Ag/CDs aiming to achieve highly efficient and enduring Ag/CDs for various applications.
Collapse
Affiliation(s)
- Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh 23245, Indonesia
| | - Gangaraju Gedda
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India.; Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| | - Hidayath Ulla
- Department of Physics, School of Engineering, Presidency University, Bangalore 560064, India; Innovation and Translational Research Hub (iTRH), Presidency University, Bangalore 560064, Karnataka, India
| | - Habibati
- Department of Chemistry Education, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
| | - Ganesh Gollavelli
- Department of Humanities and Basic Science, Aditya Engineering College, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, India
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
10
|
Khanaaekwichaporn P, Thammakhet-Buranachai C, Sangsudcha W, Thavarungkul P, Kanatharana P, Jeerapan I. A wearable electrode based on copper nanoparticles for rapid determination of paraquat. Mikrochim Acta 2023; 190:286. [PMID: 37417989 DOI: 10.1007/s00604-023-05861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
The application of copper-based nanoparticles synthesized via green synthesis and their integration with a wearable electrode is reported for designing a flexible catalytic electrode on a glove for onsite electroanalysis of paraquat. A copper precursor and an orange extract from Citrus reticulata are used to synthesize an economical electrocatalytic material for supporting the selective and sensitive detection of paraquat. The electrode yields multidimensional fingerprints due to two redox couples in a square wave voltammogram, corresponding to the presence of paraquat. The developed lab-on-a-finger sensor provides the fast electroanalysis of paraquat within 10 s, covering a wide range from 0.50 to 1000 µM, with a low detection limit down to 0.31 µM and high selectivity. It is also possible to use this sensor at a fast scan rate as high as 6 V s-1 (< 0.5 s for a scan). This wearable glove sensor allows the user to directly touch and analyze samples, such as surfaces of vegetables and fruits, to screen the contamination. It is envisioned that these glove-embedded sensors can be applied to the on-site analysis of food contamination and environments.
Collapse
Affiliation(s)
- Phennapa Khanaaekwichaporn
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chongdee Thammakhet-Buranachai
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warawut Sangsudcha
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
11
|
Guterres Silva LR, Santos Stefano J, Cornélio Ferreira Nocelli R, Campos Janegitz B. 3D electrochemical device obtained by additive manufacturing for sequential determination of paraquat and carbendazim in food samples. Food Chem 2023; 406:135038. [PMID: 36463603 DOI: 10.1016/j.foodchem.2022.135038] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Pesticides are heavily employed compounds protecting crops, however, these compounds can be extremely harmful to human health. Once the monitoring of pesticides in foods is of great importance, in this work we propose a ready-to-use electrochemical sensor made with 3D printing technology, capable of detecting paraquat and carbendazim in sequential analysis. The proposed electrodes are lab-made and of easy obtention, composed of graphite on a polylactic acid matrix, and provided great results for the analysis of paraquat and carbendazim in honey, milk, juice, and water samples. The sequential analysis of paraquat and carbendazim was proposed, providing optimal analysis of both compounds individually when both are present in a mixture. Limits of detection of 0.01 and 0.03 µmol/L for paraquat and carbendazim, respectively. Recovery tests attested to the suitability of the method, ranging from 94.5 to 113.7 %, and the suitability of 3D printing for environmental and food samples analysis.
Collapse
Affiliation(s)
- Luiz Ricardo Guterres Silva
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil
| | - Jéssica Santos Stefano
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil.
| | | | - Bruno Campos Janegitz
- Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970 Araras, São Paulo, Brazil.
| |
Collapse
|
12
|
Wang H, Hou E, Xu N, Nie P, Chang L, Wu J, Zhang X. Graphene electrochemical transistors decorated by Ag nanoparticles exhibiting high sensitivity for the detection of paraquat over a wide concentration range. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:959-968. [PMID: 36723188 DOI: 10.1039/d2ay01728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Paraquat (PQ) is a nonselective contact herbicide used in agriculture for the control of broad leaf weeds, which would cause irreversible damage to human organs even at very low concentrations. Therefore, the trace residue detection of PQ in the environment is of vital importance. Here, a novel graphene electrochemical transistor (GECT) for PQ detection is reported for the first time. The key to the device design is the application of a layer of Ag nanoparticle (Ag NP) modified monolayer graphene as the channel layer. Due to the good electrochemical activity of Ag NPs for PQ detection, the device exhibits excellent sensitivity for PQ with the detection limit of 0.068 nM and a wide linear range from 0.1 nM to 5 mM. The GECT sensor also reveals good selectivity toward several common interferents and exhibits satisfactory recoveries for PQ detection when using Chinese cabbage as a simulant to deduce the real detection situation. The GECT sensor not only provides an efficient method for the detection of PQ residues, but also provides an effective grafting platform for the construction of novel high-sensitivity electrochemical sensors.
Collapse
Affiliation(s)
- Hairui Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Enhui Hou
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Na Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Ping Nie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China.
| | - Jianfeng Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Xuelin Zhang
- MEMS Center, School of Astronautics, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
13
|
Paraquat and Diquat: Recent Updates on Their Pretreatment and Analysis Methods since 2010 in Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020684. [PMID: 36677742 PMCID: PMC9866389 DOI: 10.3390/molecules28020684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Paraquat (PQ) and diquat (DQ) are quaternary ammonium herbicides which have been used worldwide for controlling the growth of weeds on land and in water. However, PQ and DQ are well known to be toxic. PQ is especially toxic to humans. Moreover, there is no specific antidote for PQ poisoning. The main treatment for PQ poisoning is hemoperfusion to reduce the PQ concentration in blood. Therefore, it is essential to be able to detect PQ and DQ concentrations in biological samples. This critical review summarizes the articles published from 2010 to 2022 and can help researchers to understand the development of the sample treatment and analytical methods for the determination of PQ and DQ in various types of biological samples. The sample preparation includes liquid-liquid extraction, solid-phase extraction based on different novel materials, microextration methods, and other methods. Analytical methods for quantifying PQ and DQ, such as different chromatography and spectroscopy methods, electrochemical methods, and immunological methods, are illustrated and compared. We focus on the latest advances in PQ and DQ treatment and the application of new technologies for these analyses. In our opinion, tandem mass spectrometry is a good choice for the determination of PQ and DQ, due to its high sensitivity, high selectivity, and high accuracy. As far as we are concerned, the best LOD of 4 pg/mL for PQ in serum can be obtained.
Collapse
|
14
|
Rajaram R, Neelakantan L. Recent advances in estimation of paraquat using various analytical techniques: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Feng R, Wang M, Qian J, He Q, Zhang M, Zhang J, Zhao H, Wang B. Monoclonal antibody-based enzyme-linked immunosorbent assay and lateral flow immunoassay for the rapid screening of paraquat in adulterated herbicides. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Wu Q, Tao H, Wu Y, Wang X, Shi Q, Xiang D. A Label-Free Electrochemical Aptasensor Based on Zn/Fe Bimetallic MOF Derived Nanoporous Carbon for Ultra-Sensitive and Selective Determination of Paraquat in Vegetables. Foods 2022; 11:foods11162405. [PMID: 36010404 PMCID: PMC9407144 DOI: 10.3390/foods11162405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Paraquat (PQ) has high acute toxicity, even at low concentrations. For most people, the main pathway of exposure to PQ is through the diet. Therefore, the development of simple and efficient methods for PQ testing is critical for ensuring food safety. In this study, a new electrochemical detection strategy for paraquat is proposed based on the specific binding of PQ to its nucleic acid aptamer. Firstly, the Zn/Fe bimetallic ZIF derived nanoporous carbon (Zn/Fe-ZIF-NPC) and nickel hexacyanoferrate nanoparticles (NiHCF-NPs) were sequentially modified onto the glassy carbon electrode (GCE). NiHCF-NPs served as the signal probes, while Zn/Fe-ZIF-NPC facilitated electron transfer and effectively enhanced the sensing signal of NiHCF-NPs. Au nanoparticles (AuNPs) were then electrodeposited on the NiHCF-NPs/Zn/Fe-ZIF-NPC/GCE and then the thiolated aptamer was assembled on the AuNPs/NiHCF-NPs/Zn/Fe-ZIF-NPC/GCE via Au-S bonding. When incubated with PQ, the formation of PQ–aptamer complexes delayed the interfacial electron transport reaction of NiHCF-NPs, which caused a decrease in the current signals. As a result, simple and highly sensitive detection of PQ can be readily achieved by detecting the signal changes. A linear range was obtained from 0.001 to 100 mg/L with a detection limit as low as 0.34 μg/L. Due to the recognition specificity of the aptamer to its target molecule, the proposed method has excellent anti-interference ability. The prepared electrochemical aptasensor was successfully used for PQ assay in lettuce, cabbage and agriculture irrigation water samples with recoveries ranging from 96.20% to 104.02%, demonstrating the validity and practicality of the proposed method for PQ detection in real samples.
Collapse
Affiliation(s)
- Qiaoling Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-0851-88236895
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qili Shi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Donglin Xiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Fermentation Engineering and Biopharmacy of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Silva PVD, Mendonça Bezera M, Medeiros ESD, Carvalho Dambrós T, Mauad M, Monquero PA, Alves Nunes F, Schedenffeldt BF. Pre-harvest desiccation strategies of soybean culture: a scenario without paraquat. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:710-719. [PMID: 35861133 DOI: 10.1080/03601234.2022.2100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The objective of this study was to evaluate the use of diquat, glufosinate ammonium, saflufenacil and flumioxazim, positioned alone and/or combined, in the pre-harvest desiccation of soybean crops. For this purpose, a field experiment was conducted, with application of the treatments in the phenological stage R 7.2 of soybean. At 3 DAA, the herbicides diquat and their combinations with flumioxazin and ammonium glufosinate, at all doses, resulted in defoliation and desiccation percentages greater than 90%. At 5 DAA, only the flumioxazin and glufosinate ammonium treatments, alone, did not show indices for harvesting. At 10 DAA, only the control differed from the other treatments in relation to desiccation, demonstrating the need to apply desiccants to enable harvest. The results indicate that the combination of herbicides may represent an alternative to reduce doses and increase the efficacy of isolated products through synergism, in addition to operational gains.
Collapse
Affiliation(s)
| | | | | | | | - Munir Mauad
- College of Agriculture, Federal University of Grande Dourados, Dourados, Brazil
| | | | - Felipe Alves Nunes
- Center for Agricultural Sciences, Federal University of São Carlos, Araras, Brazil
| | | |
Collapse
|
18
|
Maheshwaran S, Renganathan V, Chen SM, Balaji R, Kao CR, Chandrasekar N, Ethiraj S, Samuel MS, Govarthanan M. Hydrothermally constructed AgWO 4-rGO nanocomposites as an electrode enhancer for ultrasensitive electrochemical detection of hazardous herbicide crisquat. CHEMOSPHERE 2022; 299:134434. [PMID: 35351476 DOI: 10.1016/j.chemosphere.2022.134434] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The advancements in electrode materials with high efficiency has been prioritized to effectively monitor the presence of harmful pesticides concerning the environment. In such a way, we hydrothermally constructed a hybrid AgWO4-rGO nanocomposites for the rapid electrochemical detection of crisquat (CQT). The structural, compositional, morphological and topographical characterization for AgWO4-rGO nanocomposites is thoroughly performed to understand its electrocatalytic properties. The AgWO4-rGO nanocomposites are used as an electrode enhancer (rGO@AgWO4/GCE) for the electrochemical investigations towards CQT detection. The results indicated that the rGO@AgWO4/GCE possessed an excellent catalytic activity with a wide linear detection range 1-1108 μM coupled with an ultrasensitive limit of detection (LOD) 0.0661 μM for electrochemical CQT detection. The rGO@AgWO4/GCE CQT sensor also expressed remarkable sensitivity of 0.6306 μAμM-1cm-2 in addition to good selectivity and reproducibility. Furthermore, the commercial CQT, river water, tap water and washed vegetable water are used as a representative for real world analysis using rGO@AgWO4/GCE and results are highly appreciable for the real time CQT detection. Our work proposes a novel hybrid rGO@AgWO4 nanocomposites reinforced electrodes for ultra-trace level CQT detection with good reliability and can be advocated for real time detection of pesticides.
Collapse
Affiliation(s)
- Selvarasu Maheshwaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | | | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - C R Kao
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Melvin S Samuel
- Department of Material Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| |
Collapse
|
19
|
Electrochemical monitoring sensors of water pollution systems. Food Chem Toxicol 2022; 166:113196. [PMID: 35691466 DOI: 10.1016/j.fct.2022.113196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
Abstract
Analytical techniques as strong, precise, and expensive are necessary for monitoring food and water safety for contaminants, microorganisms, and allergies that might be harmful if used. Sudan dyes are commonly utilized as an ingredient in food dye substances and a variety of industrial items. These colors are classified as three carcinogens and are linked to liver and bladder cancers. They are not authorized for human consumption by the International Agency for Research on Cancer (IARC) and are not permitted to be used by the Food Standards Agency or the European Union. This article describes electrochemical dye analysis beside the numerous electrochemical sensors utilized to identify these dyes as a food colorant and water. As a result, the qualities, chemistry, and toxicity of dyes as food colorants and industrial goods in Sudan have been investigated in this study. Sudan dyes have been thoroughly studied, and many electrochemical sensors have been developed to define and monitor these dyes in food colorants. As a result, current electrochemical sensors have been found to be neither mass-production nor cost-effective. Mostly, the synthesis of high-performance materials needs high knowledge, and the production of electrode surfaces is remained difficult due to labor-intensive and time-consuming activities.
Collapse
|
20
|
Recent advances in the application of different electrode materials for the determination of 4-hydroxy-nitrobenzene: Review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Palakollu VN, Chen D, Tang JN, Wang L, Liu C. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Mikrochim Acta 2022; 189:161. [PMID: 35344127 DOI: 10.1007/s00604-022-05238-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline materials which find widespread applications in the field of microporous conductors, catalysis, separation, biomedical engineering, and electrochemical sensing. With a specific emphasis on the MOF composites for electrochemical sensor applications, this review summarizes the recent construction strategies on the development of conductive MOF composites (post-synthetic modification of MOFs, in situ synthesis of functional materials@MOFs composites, and incorporating electroactive ligands). The developed composites are revealed to have excellent electrochemical sensing activity better than their pristine forms. Notably, the applicable functionalized MOFs to electrochemical sensing/biosensing of various target species are discussed. Finally, we highlight the perspectives and challenges in the field of electrochemical sensors and biosensors for potential directions of future development.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People's Republic of China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiao-Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
22
|
Aghris S, Alaoui OT, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi M. Extraction and determination of flubendiamide insecticide in food samples: A review. Curr Res Food Sci 2022; 5:401-413. [PMID: 35243353 PMCID: PMC8861570 DOI: 10.1016/j.crfs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
Flubendiamide (FBD) is the first commercially available phthalic acid diamide that targets ryanodine receptors (RyRs) in insects, which play a major role in lepidoptera control. However, excessive use of FBD can influence the quality of treated products leading to toxic effects on human health. The availability of rapid and convenient methods for evaluating FBD amount in the environment is necessary. Therefore, analytical methods were developed for the determination of residues of FBD and its metabolite desiodo in different food matrices like tomato, cabbage, pigeon pea, apple, chilli and rice. The current review carries forward methods for FBD residues analysis in foods by using several chromatographic techniques including sample preparation steps. The comparison between the different methods employed for quantitative and qualitative analysis of food quality and safety is also discussed. Liquid chromatography (LC) is the predominant analytical method for assessing the quality of foods treated with FBD. Studies related to LC coupled multichannel detector (Ultraviolet (UV), Mass spectrometry (MS)) are also applied to detect pesticide residues. Extraction and clean up steps are essential to obtain reliable results. Moreover, this review reports the allowed limits of residues for the safety of consuming products treated with FBD.
Collapse
Affiliation(s)
- S. Aghris
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - O. Tahiri Alaoui
- Moulay Ismail University, Laboratory of Physical Chemistry, Materials and Environment, Sciences and Technologies Faculty, Errachidia, Morocco
| | - F. Laghrib
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of sciences, Fes, Morocco
| | - A. Farahi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M. Bakasse
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S. Saqrane
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - S. Lahrich
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M.A. El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| |
Collapse
|
23
|
Traiwatcharanon P, Siriwatcharapiboon W, Jongprateep O, Wongchoosuk C. Electrochemical paraquat sensor based on lead oxide nanoparticles. RSC Adv 2022; 12:16079-16092. [PMID: 35733661 PMCID: PMC9150220 DOI: 10.1039/d2ra02034c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
1,1-Dimethyl-4,4-bipyridinium dichloride known as paraquat is a popular well-known herbicide that is widely used in agriculture around the world. However, paraquat is a highly toxic chemical causing damage to vital organs including the respiratory system, liver, heart, and kidneys and death. Therefore, detection of paraquat is still necessary to protect life and the environment. In this work, an electrochemical sensor based on lead oxide nanoparticles (PbO-NPs) modified on a screen-printed silver working electrode (SPE) has been fabricated for paraquat detection at room temperature. The PbO-NPs have been synthesized by using a sparking method via two Pb metal wires. The electrochemical paraquat sensors have been prepared by a simple drop-casting of PbO-NPs solution on the surface of the SPE. The PbO-NPs/SPE sensor exhibits a linear response in the range from 1 mM to 5 mM with good reproducibility and high sensitivity (204.85 μA mM−1 cm−2) for paraquat detection at room temperature. The PbO-NPs/SPE sensor shows high selectivity to paraquat over other popular herbicides such as glyphosate, glufosinate-ammonium and butachlor-propanil. The application of the PbO-NPs/SPE sensor is also demonstrated via the monitoring of paraquat contamination in juice and milk. The PbO nanoparticles-based electrochemical sensor can be integrated into a smartphone for on-site field testing of paraquat with high sensitivity and selectivity.![]()
Collapse
Affiliation(s)
| | - Wilai Siriwatcharapiboon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Oratai Jongprateep
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
24
|
Bobrinetskiy I, Radovic M, Rizzotto F, Vizzini P, Jaric S, Pavlovic Z, Radonic V, Nikolic MV, Vidic J. Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2700. [PMID: 34685143 PMCID: PMC8538910 DOI: 10.3390/nano11102700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Electrochemical biosensors utilizing nanomaterials have received widespread attention in pathogen detection and monitoring. Here, the potential of different nanomaterials and electrochemical technologies is reviewed for the development of novel diagnostic devices for the detection of foodborne pathogens and their biomarkers. The overview covers basic electrochemical methods and means for electrode functionalization, utilization of nanomaterials that include quantum dots, gold, silver and magnetic nanoparticles, carbon nanomaterials (carbon and graphene quantum dots, carbon nanotubes, graphene and reduced graphene oxide, graphene nanoplatelets, laser-induced graphene), metal oxides (nanoparticles, 2D and 3D nanostructures) and other 2D nanomaterials. Moreover, the current and future landscape of synergic effects of nanocomposites combining different nanomaterials is provided to illustrate how the limitations of traditional technologies can be overcome to design rapid, ultrasensitive, specific and affordable biosensors.
Collapse
Affiliation(s)
- Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Marko Radovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Francesco Rizzotto
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Priya Vizzini
- Department of Agriculture Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Stefan Jaric
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Zoran Pavlovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Vasa Radonic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| |
Collapse
|
25
|
Affiliation(s)
- Beant Kaur Billing
- University Centre for Research and Development Chandigarh University Gharuan Mohali 140413 India
| |
Collapse
|
26
|
Lv Y, Sun J, Qiao S, Zhang M, Li J. A facile, inexpensive and green electrochemical sensor for sensitive detection of imidacloprid residue in rice using activated electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3649-3658. [PMID: 34368826 DOI: 10.1039/d1ay00984b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of sensitive, facile, cost-effective and eco-friendly sensors is essential for monitoring imidacloprid (IDP) residue on a large scale. Compared with popular modification of electrodes with advanced materials, electrochemical activation is promising at this point. In this paper, we found that strongly basic electrolytes (e.g. KOH and K3PO4) and applying cyclic potential during the activating process are beneficial to greatly amplify the electro-reduction response of IDP by nearly 16 times. Combining the characterization of activated electrodes with electrochemical behavior analysis of IDP, it is speculated that specific oxygen-contained functional groups were formed to bond with IDP molecules, leading to fast electron transfer kinetics. Then a sensitive IDP sensor has been developed with a low limit of detection (LOD) of 0.03 μM in the range of 0.1-100 μM. The methodological evaluation including reproducibility, stability and recovery has been also carefully studied, verifying the potential of proposed activated electrodes for application in rice samples.
Collapse
Affiliation(s)
- Yitao Lv
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shanxi 712100, China.
| | | | | | | | | |
Collapse
|
27
|
Zhang D, Liu Z, Liu Q, Lan H, Peng J, Liu X, Liu W. Tenascin-C Participates Pulmonary Injury Induced by Paraquat Through Regulating TLR4 and TGF-β Signaling Pathways. Inflammation 2021; 45:222-233. [PMID: 34463846 DOI: 10.1007/s10753-021-01540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This study was conducted to investigate the role of Tenascin-C (TNC) in paraquat (PQ)-induced lung injury in vivo and in vitro and explore its related mechanism during this process. Six- to eight-week-old male C57BL/6 mice were injected with 30 mg/kg PQ by intraperitoneal injection and sacrificed on 2 days, 7 days, 14 days, and 28 days after PQ administration. In vivo, we detected the expression of TNC at all time points of lung tissues in mice by reverse transcription-quantitative-polymerase chain reaction, western blotting, and immunohistochemistry. Expression of TLR4, NF-κB p65, TGF-β1, and α-SMA in lung tissues have also been tested. In vitro, siRNA was used to knock down TNC expression in A549 cells and TLR4, NF-κB p65, and TGF-β1 expressions were examined after PQ exposure. TNC expression increased in both lung tissues of mice model and A549 cells after PQ administration. In vivo, TNC mostly located at the extracellular matrix of thickened alveolar septum, especially at sites of injury, together with the increasing of TLR4, NF-κB p65, TGF-β1, and α-SMA. In vitro, PQ exposure also increased the expressions of TLR4, NF-κB p65, and TGF-β1 in A549 cells, but knocking down TNC gene expression obviously down-regulated the expressions of TLR4, NF-κB p65, NF-κB Pp65, and TGF-β1. The results of this study demonstrate, for the first time, that TNC participates in the development of lung injury induced by PQ poisoning. The role of TNC in this process is closely related to TLR4 and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Di Zhang
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Zhi Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Qianqian Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Honghai Lan
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Jinjin Peng
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China
| | - Wei Liu
- Emergency Department, First Hospital of China Medical University, Shenyang, China. .,Emergency Department, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Abstract
Nanoclays are widespread materials characterized by a layered structure in the nano-scale range. They have multiple applications in diverse scientific and industrial areas, mainly due to their swelling capacity, cation exchange capacity, and plasticity. Due to the cation exchange capacity, nanoclays can serve as host matrices for the stabilization of several molecules and, thus, they can be used as sensors by incorporating electroactive ions, biomolecules as enzymes, or fluorescence probes. In this review, the most recent applications as bioanalyte sensors are addressed, focusing on two main detection systems: electrochemical and optical methods. Particularly, the application of electrochemical sensors with clay-modified electrodes (CLME) for pesticide detection is described. Moreover, recent advances of both electrochemical and optical sensors based on nanoclays for diverse bioanalytes’ detection such as glucose, H2O2, organic acids, proteins, or bacteria are also discussed. As it can be seen from this review, nanoclays can become a key factor in sensors’ development, creating an emerging technology for the detection of bioanalytes, with application in both environmental and biomedical fields.
Collapse
|
29
|
Curulli A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021; 26:2940. [PMID: 34063344 PMCID: PMC8156954 DOI: 10.3390/molecules26102940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
30
|
Zhao H, Li B, Liu R, Chang Y, Wang H, Zhou L, Komarneni S. Ultrasonic-assisted preparation of halloysite nanotubes/zirconia/carbon black nanocomposite for the highly sensitive determination of methyl parathion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111982. [PMID: 33812610 DOI: 10.1016/j.msec.2021.111982] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Herein, a cost-effective and scalable ultrasound assisted approach was proposed to prepare the nanocomposite of halloysite nanotubes/zirconia/carbon black (Hal/ZrO2/CB), which was used to fabricate a novel electrochemical sensor for the highly sensitive determination of methyl parathion (MP). In the Hal/ZrO2/CB nanocomposite, Hal with large specific surface area and numerous active sites could enhance the adsorption capacity and accelerate the redox reaction of MP; ZrO2 nanoparticles with high affinity toward the phosphate group could contribute to good recognition performance for MP; CB nanoparticles with good dispersibility formed an interconnected pearl-chain-like conductive network. Benefitting from the synergistic effect of the three components, the Hal/ZrO2/CB/GCE (glassy carbon electrode) sensor showed a remarkably low detection limit of 5.23 nM in a good linear MP detection range of 0.01-10 μM. The Hal/ZrO2/CB/GCE sensor possessed a pretty decent practicality with satisfactory RSD and recovery results for the determination of MP in peach, pear, and apple juices. Therefore, the Hal/ZrO2/CB/GCE sensor has important implication on the quite sensitive detection of MP.
Collapse
Affiliation(s)
- Hongyuan Zhao
- Henan Institute of Science and Technology, Xinxiang 453003, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; Department of Ecosystem Science and Management and Materials Research Institute, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Bo Li
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Runqiang Liu
- Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Yuqi Chang
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hongliang Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
31
|
Abstract
The use of fully printed electrochemical devices has gained more attention for the monitoring of clinical, food, and environmental analytes due to their low cost, great reproducibility, and versatility characteristics, serving as an important technology for commercial application. Therefore, a paper-based inkjet-printed electrochemical system is proposed as a cost-effective analytical detection tool for paraquat. Chromatographic paper was used as the printing substrate due its sustainable and disposable characteristics, and an inkjet-printing system deposited the conductive silver ink with no further modification on the paper surface, providing a three-electrode system. The printed electrodes were characterized with scanning electron microscopy, cyclic voltammetry, and chronopotentiometry. The proposed sensor exhibited a large surface area, providing a powerful tool for paraquat detection due to its higher analytical signal. For the detection of paraquat, square-wave voltammetry was used, and the results showed a linear response range of 3.0–100 μM and a detection limit of 0.80 µM, along with the high repeatability and disposability of the sensor. The prepared sensors were also sufficiently selective against interference, and high accuracy (recovery range = 96.7–113%) was obtained when applied to samples (water, human serum, and orange juice), showing the promising applicability of fully printed electrodes for electrochemical monitoring.
Collapse
|
32
|
Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021; 13:974. [PMID: 33810074 PMCID: PMC8004762 DOI: 10.3390/polym13060974] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent challenges in biomedical diagnostics show that the development of rapid affinity sensors is very important issue. Therefore, in this review we are aiming to outline the most important directions of affinity sensors where polymer-based semiconducting materials are applied. Progress in formation and development of such materials is overviewed and discussed. Some applicability aspects of conducting polymers in the design of affinity sensors are presented. The main attention is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline, polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some other polymers and inorganic materials that are suitable for molecular imprinting technology are also overviewed. Polymerization techniques, which are the most suitable for the development of composite structures suitable for affinity sensors are presented. Analytical signal transduction methods applied in affinity sensors based on polymer-based semiconducting materials are discussed. In this review the most attention is focused on the development and application of molecularly imprinted polymer-based structures, which can replace antibodies, receptors, and many others expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as "stealth coatings" in the future implantable affinity-sensors. Some new perspectives and trends in analytical application of polymer-based semiconducting materials are highlighted.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Jagminas
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
33
|
Ying Z, Long Y, Yang F, Dong Y, Li J, Zhang Z, Wang X. Self-powered liquid chemical sensors based on solid-liquid contact electrification. Analyst 2021; 146:1656-1662. [PMID: 33514956 DOI: 10.1039/d0an02126a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Triboelectric nanogenerators (TENGs) have attracted many research endeavors as self-powered sensors for force, velocity, and gas detection based on solid-solid or solid-air interactions. Recently, triboelectrification at liquid-solid interfaces also showed intriguing capability in converting physical contacts into electricity. Here, we report a self-powered triboelectric sensor for liquid chemical sensing based on liquid-solid electrification. As a liquid droplet passed across the tribo-negative sensor surface, the induced surface charge balanced with the electrical double layer charge in the liquid droplet. The competition between the double layer charge and surface charge generated characteristic positive and negative voltage spikes, which may serve as a "binary feature" to identify the chemical compound. The sensor showed distinct sensitivity to three amino acids including glycine, lysine and phenylalanine as a function of their concentration. The versatile sensing ability was further demonstrated on several other inorganic and organic chemical compounds dissolved in DI water. This work demonstrated a promising sensing application based on the triboelectrification principle for biofluid sensor development.
Collapse
Affiliation(s)
- Zhihua Ying
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA. and College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Fan Yang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Ziyi Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
34
|
Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
A Facile Approach Based on Functionalized Silver Nanoparticles as a Chemosensor for the Detection of Paraquat. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-01978-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Ajermoun N, Lahrich S, Farahi A, Bakasse M, Saqrane S, El Mhammedi MA. Electrodeposition of silver onto carbon graphite and their catalysis properties toward thiamethoxam reduction: application in food and beverage samples. Heliyon 2020; 6:e05784. [PMID: 33376826 PMCID: PMC7758523 DOI: 10.1016/j.heliyon.2020.e05784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
The purpose of this paper is the electrodeposition of silver particles on graphite electrode (Ag@GrCE) using chronoamperometry and the use of this electrode for the determination of thiamethoxam. The electrode was prepared by chronoamperometry and characterized by X-Ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), EDX analysis and electrochemical impedance spectroscopy. The obtained electrode exhibits excellent electrocatalytic activity toward thiamethoxam reduction. The voltammetric response was linear as function of TXM concentration with a limit of detection around to 1.92 × 10−6 mol L−1. The proposed electrode was successfully used to analyze thiamethoxam residue in some food samples including orange and tomato juices.
Collapse
Affiliation(s)
- N Ajermoun
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| | - A Farahi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, Khouribga, Morocco
| |
Collapse
|
37
|
El Mhammedi MA, Saqrane S, Lahrich S, Laghrib F, El Bouabi Y, Farahi A, Bakasse M. Current Trends in Analytical Methods for the Determination of Hydroxychloroquine and Its Application as Treatment for COVID‐19. ChemistrySelect 2020. [DOI: 10.1002/slct.202003361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Moulay Abderrahim El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Sanaa Saqrane
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Sara Lahrich
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Fathellah Laghrib
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Younes El Bouabi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Abdelfettah Farahi
- Sultan Moulay Slimane University of Beni Mellal Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary faculty 25 000 Khouribga Morocco
| | - Mina Bakasse
- Chouaib Doukkali University Faculty of Sciences Laboratory of Organic Bioorganic Chemistry and Environment El Jadida Morocco
| |
Collapse
|