1
|
Wu L, Xu T, Li S, Sun K, Tang Z, Xu H, Qiu Y, Feng Z, Liu Z, Zhu Z, Qin X. Sequential activation of osteogenic microenvironment via composite peptide-modified microfluidic microspheres for promoting bone regeneration. Biomaterials 2025; 316:122974. [PMID: 39631161 DOI: 10.1016/j.biomaterials.2024.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/03/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
The osteogenic microenvironment (OME) significantly influences bone repair; however, reproducing its dynamic activation and repair processes remains challenging. In this study, we designed injectable porous microspheres modified with composite peptides to investigate cascade alterations in OME and their underlying mechanisms. Poly l-lactic acid microfluidic microspheres underwent surface modifications through alkaline hydrolysis treatment, involving heterogeneous grafting of bovine serum albumin nanoparticles with stem cell-homing peptides (BNP@SKP) and BMP-2 mimicking peptides (P24), respectively. These modifications well-organized the actions of initial release and subsequent in situ grafting of peptides. Cellular experiments demonstrated varied degrees of chemotactic recruitment and osteogenic differentiation in mesenchymal stem cells. Further biological analysis revealed that BNP@SKP targeted the Ras/Erk axis and upregulated matrix metalloproteinase (MMP)2 and MMP9 expression, thereby enhancing initial chemotaxis and recruitment. In vivo studies validated the establishment of a dynamically regulated OME centered on the microspheres, resulting in increased stem cell recruitment, sequential activation of the differentiation microenvironment, and facilitation of in situ osteogenesis without ectopic ossification. In conclusion, this study successfully fabricated composite peptide-modified microspheres and systematically explored the mechanisms of bone formation through sequential activation of OME via heterogeneous grafting of signaling molecules. This provides theoretical evidence for biomaterials based on microenvironment regulation.
Collapse
Affiliation(s)
- Liang Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Tao Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Kai Sun
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ziyang Tang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hui Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Xiaodong Qin
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Sun T, Li C, Luan J, Zhao F, Zhang Y, Liu J, Shao L. Black phosphorus for bone regeneration: Mechanisms involved and influencing factors. Mater Today Bio 2024; 28:101211. [PMID: 39280114 PMCID: PMC11402231 DOI: 10.1016/j.mtbio.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
BP has shown good potential for promoting bone regeneration. However, the understanding of the mechanisms of BP-enhanced bone regeneration is still limited. This review first summarizes the recent advances in applications of BP in bone regeneration. We further highlight the possibility that BP enhances bone regeneration by regulating the behavior of mesenchymal stem cells (MSCs), osteoblasts, vascular endothelial cells (VECs), and macrophages, mainly through the regulation of cytoskeletal remodeling, energy metabolism, oxidation resistance and surface adsorption properties, etc. In addition, moderating the physicochemical properties of BP (i.e., shape, size, and surface charge) can alter the effects of BP on bone regeneration. This review reveals the underlying mechanisms of BP-enhanced bone regeneration and provides strategies for further material design of BP-based materials for bone regeneration.
Collapse
Affiliation(s)
- Ting Sun
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Chufeng Li
- School of Dentistry, Jinan University, Guangzhou, 510630, China
| | - Jiayi Luan
- Foshan Stomatology Hospital & School of Medicine, Foshan University, Foshan, 528000, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
4
|
Sukhodub L, Bozhko N, Kumeda M, Sukhodub L. Antioxidant potential of Quartzetin and Rosemary extract as components of Nanometric apatite biopolymer materials for osteoplasty. J Drug Deliv Sci Technol 2024; 98:105870. [DOI: 10.1016/j.jddst.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Deng H, Guan Y, Dong Q, An R, Wang J. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. J Mater Chem B 2024; 12:7480-7496. [PMID: 39016095 DOI: 10.1039/d3tb02563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of various osteogenic biomaterials has not only promoted the development of bone tissue engineering but also provided more possibilities for bone defect repair. However, most previous studies have focused on the interaction of biomaterials on endogenous or exogenous stem cells involved in the bone regeneration process while neglecting the effect of changes in the immune microenvironment of bone defect sites on bone regeneration after biomaterial implantation into the host. With the development of bone immunology, the role of various immune cells, especially macrophages, in bone regeneration has gradually attracted the attention of researchers. An increasing number of studies have begun to target macrophages to better promote bone regeneration by modulating the fate of macrophages in a spatiotemporally ordered manner to mimic the changes in the immune microenvironment of bone defect sites during the natural repair process of bone tissue. Chitosan is one of the most abundant natural polysaccharides in the world. In recent years, various chitosan-based biomaterials have been widely used in macrophage fate modulation and bone regeneration. In this review, we review the interaction between macrophages and scaffold materials, general information about chitosan, the modulation of macrophage fate by chitosan-based biomaterials, and their application in bone regeneration.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Yuanyuan Guan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Quping Dong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| |
Collapse
|
6
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
7
|
Lei M, Wan H, Song J, Lu Y, Chang R, Wang H, Zhou H, Zhang X, Liu C, Qu X. Programmable Electro-Assembly of Collagen: Constructing Porous Janus Films with Customized Dual Signals for Immunomodulation and Tissue Regeneration in Periodontitis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305756. [PMID: 38189598 PMCID: PMC10987108 DOI: 10.1002/advs.202305756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Jia Song
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell MetabolismEast China University of Science and TechnologyShanghai200237China
- Wenzhou Institute of Shanghai UniversityWenzhou325000China
| |
Collapse
|
8
|
Yadav SA, Hasan S, Gnanaselvan S, Baskaran S, Danaraj J. Biological Activities and Nanoparticle Synthesis of Dioscorea bulbifera and its Mechanistic Action - An Extensive Review. Pharm Nanotechnol 2024; 12:379-390. [PMID: 38265372 DOI: 10.2174/0122117385284106240110065809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Dioscorea bulbifera is commonly known as air potato present in the tropical and subtropical regions. It is a perennial climber traditionally used for various therapeutic purposes by traditional healers. This review explores various medicinal uses of D. bulbifera and its active ingredients, as well as describes its nanoparticle synthesis for medical applications. METHODS The Google Scholar search engine was used to conduct this comprehensive review along with the databases of the following publishers: Elsevier, Springer, Taylor and Francis, Bentham, and PubMed. DISCUSSION D. bulbifera contains several bioactive compounds that are responsible for its pharmacological properties, such as antioxidant, anti-inflammatory, neuroprotective, anticancer, and antidiabetic properties. It is also used as a nutritive functional food. D. bulbifera-mediated nanoparticle synthesis has been established by the scientific communities for various medicinal applications. CONCLUSION D. bulbifera contains numerous active ingredients, including diosbulbins, bafoudiosbulbin, β-sitosterol, diosgenin, dioscin, pennogenin, myricetin, quercetin, and stigmasterols with numerous biological activities. In addition, it has a vital role in synthesizing nanoparticles with good pharmacological applications, especially in drug delivery systems. However, its potential characteristic features and functional properties of the active molecules present in this tuber need to be further explored in clinical trials. We suggest that using this edible tuber, we may formulate the valueadded food with good medicinal applications.
Collapse
Affiliation(s)
- Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Shiek Hasan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Suvathika Gnanaselvan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Santhoshraman Baskaran
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Jayapragash Danaraj
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| |
Collapse
|
9
|
Lukin I, Erezuma I, Desimone MF, Zhang YS, Dolatshahi-Pirouz A, Orive G. Nanomaterial-based drug delivery of immunomodulatory factors for bone and cartilage tissue engineering. BIOMATERIALS ADVANCES 2023; 154:213637. [PMID: 37778293 DOI: 10.1016/j.bioadv.2023.213637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
As life expectancy continues to increase, so do disorders related to the musculoskeletal system. Orthopedics-related impairments remain a challenge, with nearly 325 thousand and 120 thousand deaths recorded in 2019. Musculoskeletal system, including bone and cartilage tissue, is a living system in which cells constantly interact with the immune system, which plays a key role in the tissue repair process. An alternative to bridge the gap between these two systems is exploiting nanomaterials, as they have proven to serve as delivery agents of an array of molecules, including immunomodulatory agents (anti-inflammatory drugs, cytokines), as well as having the ability to mimic tissue by their nanoscopic structure and promote tissue repair per se. Therefore, this review outlooks nanomaterials and immunomodulatory factors widely employed in the area of bone and cartilage tissue engineering. Emerging developments in nanomaterials for delivery of immunomodulatory agents for bone and cartilage tissue engineering applications have also been discussed. It can be concluded that latest progress in nanotechnology have enabled to design intricate systems with the ability to deliver biologically active agents, promoting tissue repair and regeneration; thus, nanomaterials studied herein have shown great potential to serve as immunomodulatory agents in the area of tissue engineering.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
10
|
Zhou H, Ye S, Xu M, Hao L, Chen J, Fang Z, Guo K, Chen Y, Wang L. Dynamic surface adapts to multiple service stages by orchestrating responsive polymers and functional peptides. Biomaterials 2023; 301:122200. [PMID: 37423184 DOI: 10.1016/j.biomaterials.2023.122200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Control over the implant surface functions is highly desirable to enhance tissue healing outcomes but has remained unexplored to adapt to the different service stages. In the present study, we develop a smart titanium surface by orchestrating thermoresponsive polymer and antimicrobial peptide to enable dynamic adaptation to the implantation stage, normal physiological stage and bacterial infection stage. The optimized surface inhibited bacterial adhesion and biofilm formation during surgical implantation, while promoted osteogenesis in the physiological stage. The further temperature increase driven by bacterial infection induced polymer chain collapse to expose antimicrobial peptides by rupturing bacterial membranes, as well as protect the adhered cells from the hostile environment of infection and abnormal temperature. The engineered surface could inhibit infection and promote tissue healing in rabbit subcutaneous and bone defect infection models. This strategy enables the possibility to create a versatile surface platform to balance bacteria/cell-biomaterial interactions at different service stages of implants that has not been achieved before.
Collapse
Affiliation(s)
- Haiyan Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Silin Ye
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Mingjian Xu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Lihui Hao
- Department of Stomatology, Xingtai Medical College, Xingtai 054000, China
| | - Junjian Chen
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Zhou Fang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kunzhong Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
11
|
Long J, Yao Z, Zhang W, Liu B, Chen K, Li L, Teng B, Du X, Li C, Yu X, Qin L, Lai Y. Regulation of Osteoimmune Microenvironment and Osteogenesis by 3D-Printed PLAG/black Phosphorus Scaffolds for Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302539. [PMID: 37616380 PMCID: PMC10558667 DOI: 10.1002/advs.202302539] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/07/2023] [Indexed: 08/26/2023]
Abstract
The treatment of bone defects remains a significant challenge to be solved clinically. Immunomodulatory properties of orthopedic biomaterials have significance in regulating osteoimmune microenvironment for osteogenesis. A lactic acid-co-glycolic acid (PLGA) scaffold incorporates black phosphorus (BP) fabricated by 3D printing technology to investigate the effect of BP on osteoimmunomodulation and osteogenesis in site. The PLGA/BP scaffold exhibits suitable biocompatibility, biodegradability, and mechanical properties as an excellent microenvironment to support new bone formation. The studies' result also demonstrate that the PLGA/BP scaffolds are able to recruit and stimulate macrophages M2 polarization, inhibit inflammation, and promote human bone marrow mesenchymal stem cells (hBMSCs) proliferation and differentiation, which in turn promotes bone regeneration in the distal femoral defect region of steroid-associated osteonecrosis (SAON) rat model. Moreover, it is screened and demonstrated that PLGA/BP scaffolds can promote osteogenic differentiation by transcriptomic analysis, and PLGA/BP scaffolds promote osteogenic differentiation and mineralization by activating PI3K-AKT signaling pathway in hBMSC cells. In this study, it is shown that the innovative PLGA/BP scaffolds are extremely effective in stimulating bone regeneration by regulating macrophage M2 polarization and a new strategy for the development of biomaterials that can be used to repair bone defects is offered.
Collapse
Affiliation(s)
- Jing Long
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Zhenyu Yao
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Wei Zhang
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Ben Liu
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Kaiming Chen
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Long Li
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Bin Teng
- Center for Energy Metabolism and ReproductionShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Xiang‐Fu Du
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Cairong Li
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Xue‐Feng Yu
- Materials and Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Ling Qin
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- Musculoskeletal Research LaboratoryDepartment of Orthopaedics & TraumatologyThe Chinese University of Hong KongHKHong Kong SAR999077P. R. China
- CAS‐HK Joint Lab of BiomaterialsShenzhen518055P. R. China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & DevelopmentShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- CAS‐HK Joint Lab of BiomaterialsShenzhen518055P. R. China
- Guangdong Engineering Laboratory of Biomaterials Additive ManufacturingShenzhen518055P. R. China
- Orthopaedics/Department of Spine Surgerythe First Affiliated Hospital, Shenzhen University, Shenzhen Second People’s HospitalShenzhen518035P. R. China
| |
Collapse
|
12
|
Kim OH, Jeon TJ, So YI, Shin YK, Lee HJ. Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells. Int J Stem Cells 2023; 16:251-259. [PMID: 37385634 PMCID: PMC10465339 DOI: 10.15283/ijsc22211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 07/01/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Tae Jin Jeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Young In So
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| |
Collapse
|
13
|
Akiyama N, Patel KD, Jang EJ, Shannon MR, Patel R, Patel M, Perriman AW. Tubular nanomaterials for bone tissue engineering. J Mater Chem B 2023; 11:6225-6248. [PMID: 37309580 DOI: 10.1039/d3tb00905j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.
Collapse
Affiliation(s)
- Naomi Akiyama
- Department of Chemical Engineering, The Cooper Union of the Advancement of Science and Art, New York City, NY 10003, USA
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Eun Jo Jang
- Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Mark R Shannon
- Bristol Composites Institute (BCI), University of Bristol, Bristol, BS8 1UP, UK
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Chen H, Feng R, Xia T, Wen Z, Li Q, Qiu X, Huang B, Li Y. Progress in Surface Modification of Titanium Implants by Hydrogel Coatings. Gels 2023; 9:gels9050423. [PMID: 37233014 DOI: 10.3390/gels9050423] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Although titanium and titanium alloys have become the preferred materials for various medical implants, surface modification technology still needs to be strengthened in order to adapt to the complex physiological environment of the human body. Compared with physical or chemical modification methods, biochemical modification, such as the introduction of functional hydrogel coating on implants, can fix biomolecules such as proteins, peptides, growth factors, polysaccharides, or nucleotides on the surface of the implants, so that they can directly participate in biological processes; regulate cell adhesion, proliferation, migration, and differentiation; and improve the biological activity on the surface of the implants. This review begins with a look at common substrate materials for hydrogel coatings on implant surfaces, including natural polymers such as collagen, gelatin, chitosan, and alginate, and synthetic materials such as polyvinyl alcohol, polyacrylamide, polyethylene glycol, and polyacrylic acid. Then, the common construction methods of hydrogel coating (electrochemical method, sol-gel method and layer-by-layer self-assembly method) are introduced. Finally, five aspects of the enhancement effect of hydrogel coating on the surface bioactivity of titanium and titanium alloy implants are described: osseointegration, angiogenesis, macrophage polarization, antibacterial effects, and drug delivery. In this paper, we also summarize the latest research progress and point out the future research direction. After searching, no previous relevant literature reporting this information was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Feng
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
15
|
Zhang QY, Tan J, Huang K, Nie R, Feng ZY, Zou CY, Li QJ, Chen J, Sheng N, Qin BQ, Gu ZP, Liu LM, Xie HQ. Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation. Carbohydr Polym 2023; 305:120546. [PMID: 36737196 DOI: 10.1016/j.carbpol.2023.120546] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
To enhance the bioactivity of cellulosic derivatives has become an important strategy to promote their value for clinical applications. Herein, protocatechualdehyde (PCA), a polyphenolic molecule, was used to modify a cellulose acetate (CA) membrane by combining with metal ions to confer an immunomodulatory activity. The PCA-modified CA membrane has shown a significant radical scavenging activity, thereby suppressed the inflammatory response and created a favorable immune microenvironment for osteogenesis and mineralization. Moreover, addition of metal ions could further stimulate the osteogenic differentiation of stem cells and accelerate bone regeneration both in vitro and in vivo. This study may provide a strategy to promote the immunomodulatory activity of cellulose-based biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jie Tan
- Department of Spine Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jun Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Sheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Bo-Quan Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhi-Peng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li-Min Liu
- Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
16
|
Li Y, Xu C, Lei C. The Delivery and Activation of Growth Factors Using Nanomaterials for Bone Repair. Pharmaceutics 2023; 15:pharmaceutics15031017. [PMID: 36986877 PMCID: PMC10052849 DOI: 10.3390/pharmaceutics15031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bone regeneration is a comprehensive process that involves different stages, and various growth factors (GFs) play crucial roles in the entire process. GFs are currently widely used in clinical settings to promote bone repair; however, the direct application of GFs is often limited by their fast degradation and short local residual time. Additionally, GFs are expensive, and their use may carry risks of ectopic osteogenesis and potential tumor formation. Nanomaterials have recently shown great promise in delivering GFs for bone regeneration, as they can protect fragile GFs and control their release. Moreover, functional nanomaterials can directly activate endogenous GFs, modulating the regeneration process. This review provides a summary of the latest advances in using nanomaterials to deliver exogenous GFs and activate endogenous GFs to promote bone regeneration. We also discuss the potential for synergistic applications of nanomaterials and GFs in bone regeneration, along with the challenges and future directions that need to be addressed.
Collapse
Affiliation(s)
- Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Zhang Q, Xin M, Yang S, Wu Q, Xiang X, Wang T, Zhong W, Helder MN, Jaspers RT, Pathak JL, Xiao Y. Silica nanocarrier-mediated intracellular delivery of rapamycin promotes autophagy-mediated M2 macrophage polarization to regulate bone regeneration. Mater Today Bio 2023; 20:100623. [PMID: 37077506 PMCID: PMC10106556 DOI: 10.1016/j.mtbio.2023.100623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Targeting macrophages to regulate the immune microenvironment is a new strategy for bone regeneration with nano-drugs. Nano-drugs have achieved surprising anti-inflammatory and bone-regenerative effects, however, their underlying mechanisms in macrophages remain to be clarified. Macrophage polarization, immunomodulation, and osteogenesis are governed by autophagy. Rapamycin, an autophagy inducer, has shown promising results in bone regeneration, but high dose-mediated cytotoxicity and low bioavailability hinder its clinical application. This study aimed to develop rapamycin-loaded virus-like hollow silica nanoparticles (R@HSNs) which are easily phagocytosed by macrophages and translocated to lysosomes. R@HSNs induced macrophage autophagy, promoted M2 polarization, and alleviated the degree of M1 polarization as indicated by the downregulation of inflammatory factors IL-6, IL-1β, TNF-α, and iNOS, and upregulation of anti-inflammatory factors CD163, CD206, IL-1ra, IL-10, and TGF-β. These effects were nullified by cytochalasin B-induced inhibition of R@HSNs uptake in macrophages. The conditioned medium (CM) collected from R@HSNs-treated macrophages promoted osteogenic differentiation of mouse bone marrow mesenchymal stromal cells (mBMSCs). In a mouse calvaria defect model, free rapamycin treatment was inhibited, but R@HSNs robustly promoted bone defect healing. In conclusion, silica nanocarrier-mediated intracellular rapamycin delivery to macrophages effectively triggers autophagy-mediated M2 macrophage polarization, further enhancing bone regeneration by triggering osteogenic differentiation of mBMSCs.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Shuang Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qiuyu Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Xi Xiang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Tianqi Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wen Zhong
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 HV Amsterdam, the Netherlands
| | - Richard T. Jaspers
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- Corresponding author.
| | - Yin Xiao
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Corresponding author. Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China.
| |
Collapse
|
18
|
Wu L, Seon GM, Ju S, Choi SH, Jiang ES, Kim Y, Chung SH, Ahn JS, Yang HC. Synergistic effects of arginine-glycine-aspartic acid and phosphatidylserine on the surface immunomodulation and osseointegration of titanium implants. Biomater Sci 2023; 11:1358-1372. [PMID: 36594560 DOI: 10.1039/d2bm01589g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The control of macrophage polarization is important in bone tissue regeneration such as osseointegration. In this study, a coating method was developed to improve the osseointegration of titanium (Ti) implants by generating an immunomodulatory effect. The surface of the Ti discs was coated with a poly(lactide-co-glycolide)(PLGA) polymer, phosphatidylserine (PS), and arginine-glycine-aspartic acid (RGD) peptide conjugated phospholipid. In in vitro assay using mouse bone marrow-derived macrophages (BMDMs), the most significant expression of the M2 marker genes (Arg-1, YM-1, FIZZ1) and CD206, an M2 surface marker, was obtained with coatings containing 6 mol% RGD conjugates and phospholipids consisting of 50 mol% PS. The M2-inducing effect of RGD and PS was also verified in rat femurs where coated Ti rods were implanted. The RGD and PS coating significantly enhanced the osseointegration of the Ti implants. Moreover, a biomechanical push-out test showed that the RGD and PS coating increased the interfacial binding force between the bone and implants. These results indicate that PS and RGD can be applied to the solid surface of implantable biomedical devices to improve immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Lele Wu
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Gyeung Mi Seon
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Sungwon Ju
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Sang Hoon Choi
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - En-Shi Jiang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Yongjoon Kim
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Shin Hye Chung
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Jin-Soo Ahn
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| |
Collapse
|
19
|
Wei F, Mu Y, Tan RP, Wise SG, Bilek MM, Zhou Y, Xiao Y. Osteo-Immunomodulatory Role of Interleukin-4-Immobilized Plasma Immersion Ion Implantation Membranes for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2590-2601. [PMID: 36607242 DOI: 10.1021/acsami.2c17005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Barrier membranes for guided tissue regeneration are essential for bone repair and regeneration. The implanted membranes may trigger early inflammatory responses as a foreign material, which can affect the recruitment and differentiation of bone cells during tissue regeneration. The purpose of this study was to determine whether immobilizing interleukin 4 (IL4) on plasma immersion ion implantation (PIII)-activated surfaces may alter the osteo-immunoregulatory characteristics of the membranes and produce pro-osteogenic effects. In order to immobilize IL4, polycaprolactone surfaces were modified using the PIII technology. No discernible alterations were found between the morphology before and after PIII treatment or IL4 immobilization. IL4-immobilized PIII surfaces polarized macrophages to an M2 phenotype and mitigated inflammatory cytokine production under lipopolysaccharide stimulation. Interestingly, the co-culture of macrophages (on IL4-immobilized PIII surfaces) and bone marrow-derived mesenchymal stromal cells enhanced the production of angiogenic and osteogenic factors and triggered autophagy activation. Exosomes produced by PIII + IL4-stimulated macrophages were also found to play a role in osteoblast differentiation. In conclusion, the osteo-immunoregulatory properties of bone materials can be modified by PIII-assisted IL4 immobilization, creating a favorable osteoimmune milieu for bone regeneration.
Collapse
Affiliation(s)
- Fei Wei
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, Queensland 4000, Australia
| | - Yuqing Mu
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland 4006, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, Queensland 4000, Australia
| | - Richard P Tan
- School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Health and Medicine, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
- School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia
- School of Biomedical Engineering, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Yinghong Zhou
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland 4006, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, Queensland 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, Queensland 4000, Australia
- School of Medicine and Dentistry, Griffith University, Southport, Queensland 4222, Australia
| |
Collapse
|
20
|
Lv B, Wu J, Xiong Y, Xie X, Lin Z, Mi B, Liu G. Functionalized multidimensional biomaterials for bone microenvironment engineering applications: Focus on osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:1023231. [PMID: 36406210 PMCID: PMC9672076 DOI: 10.3389/fbioe.2022.1023231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
As bone biology develops, it is gradually recognized that bone regeneration is a pathophysiological process that requires the simultaneous participation of multiple systems. With the introduction of osteoimmunology, the interplay between the immune system and the musculoskeletal diseases has been the conceptual framework for a thorough understanding of both systems and the advancement of osteoimmunomodulaty biomaterials. Various therapeutic strategies which include intervention of the surface characteristics or the local delivery systems with the incorporation of bioactive molecules have been applied to create an ideal bone microenvironment for bone tissue regeneration. Our review systematically summarized the current research that is being undertaken in the field of osteoimmunomodulaty bone biomaterials on a case-by-case basis, aiming to inspire more extensive research and promote clinical conversion.
Collapse
Affiliation(s)
| | | | | | | | | | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Sun Y, Zhou Q, Du Y, Sun J, Bi W, Liu W, Li R, Wu X, Yang F, Song L, Li N, Cui W, Yu Y. Dual Biosignal-Functional Injectable Microspheres for Remodeling Osteogenic Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201656. [PMID: 35419952 DOI: 10.1002/smll.202201656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Bone defect regeneration depends on the population and lifespan of M2 macrophages, which are regulated by dual signals generated by the "physical" spatial configuration of biological tissues and "molecular" chemokines. Herein, inspired by the reprogramming of macrophages, immunoengineered porous microspheres are constructed to accelerate bone repair through the regulation of both "physical" and "molecular" signals. The porous structure of injectable poly (l-lactic acid) (PLLA) microspheres prepared by the microfluidic technique provides a "physical signal" for osteogenic differentiation. Additionally, interleukin (IL)-4-loaded liposomes (Ls) are modified on PLLA microspheres through amide bonds to produce IL-4/Ls/PLLA microspheres, providing a "molecular signal" in stimulating the differentiation of macrophages to M2 type. It is confirmed that IL-4/Ls/PLLA microspheres could induce M2-macrophages polarization and potentiate osteoblast proliferation and differentiation while coculturing with macrophages and osteoblasts in vitro. Besides, IL-4/Ls/PLLA microspheres are proved to promote bone defect regeneration by inducing the conversion of M1 macrophages to M2 through dual biosignal-functional regulation in both the calvaria defect and maxillary sinus defect models. Overall, the immuno-reprogrammed IL-4/Ls/PLLA microspheres achieve the precise immuno-reprogramming of macrophages by dual biosignal-functional regulation. This immune reengineering strategy paves a way for clinical bone defect treatment.
Collapse
Affiliation(s)
- Yang Sun
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Qianrong Zhou
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jian Sun
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Wei Bi
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Wenjuan Liu
- Department of Stomatology, Xuhui Central Hospital, 996 Huaihaizhong Road, Shanghai, 200031, P. R. China
| | - Ruixue Li
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Xingwen Wu
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Fei Yang
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Liang Song
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Ni Li
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan hospital, Fudan University, No. 180 Fenglin road, Shanghai, 200032, China
| |
Collapse
|
22
|
Li C, Xian J, Hong J, Cao X, Zhang C, Deng Q, Qin Z, Chen M, Zheng X, Li M, Hou J, Zhou Y, Yin X. Dual photothermal nanocomposites for drug-resistant infectious wound management. NANOSCALE 2022; 14:11284-11297. [PMID: 35880632 DOI: 10.1039/d2nr01998a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Management of antibiotic-resistant bacteria-induced skin infections for rapid healing remains a critical clinical challenge. Photothermal therapy, which uses mediated hyperthermia to combat such problems, has recently been recognised as a promising approach to take. In this study, bacterial cellulose-based photothermal membranes were designed and developed to combat bacterial infections and promote rapid wound healing. Polydopamine was incorporated into gold nanoparticles to produce superior dual-photothermal behaviour. The in vitro antibacterial efficacy of the prepared composite membranes against S. aureus, E. coli and methicillin-resistant Staphylococcus aureus (MRSA) could reach 99% under near-infrared (NIR) irradiation. In addition, the synthesised nanocomposite exhibited good biocompatibility in vitro as demonstrated by a cell survival ratio of >85%. The effectiveness of the composite membranes on wound healing was further investigated in a murine model of MRSA-infected wounds, focusing on the effect of photothermal temperature. According to the detailed therapeutic mechanism study undertaken, the composite membranes cause bacterial killing initially and promote the transition from the inflammatory phase to proliferation by suppressing pro-inflammatory cytokine production, promoting collagen deposition, and stimulating angiogenesis. Considering their remarkable effectiveness and facile fabrication process, it is expected that these novel materials could serve as competitive multifunctional dressings in the management of infectious wounds and accelerate the regeneration of damaged tissues related to abnormal immune responses.
Collapse
Affiliation(s)
- Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Jiaru Xian
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Jixuan Hong
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Xiaxin Cao
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Changze Zhang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Qiaoyuan Deng
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Maohua Chen
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Xiaofei Zheng
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
- ZhongAo (Hainan) Biotechnology Research Institute, Haikou, Hainan 570000, P.R. China
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD 4006, Australia.
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, P.R. China.
| |
Collapse
|
23
|
Su N, Villicana C, Yang F. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types. Biomaterials 2022; 286:121604. [PMID: 35667249 PMCID: PMC9881498 DOI: 10.1016/j.biomaterials.2022.121604] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Tissue engineering strategies for treating bone loss to date have largely focused on targeting stem cells or vascularization. Immune cells, including macrophages and T cells, can also indirectly enhance bone healing via cytokine secretion to interact with other bone niche cells. Bone niche cues and local immune environment vary depending on anatomical location, size of defects and disease types. As such, it is critical to evaluate the role of the immune system in the context of specific bone niche and different disease types. This review focuses on immunomodulation research for bone applications using biomaterials and cell-based strategies, with a unique perspective from different disease types. We first reviewed applications for prolonging orthopaedic implant lifetime and enhancing fracture healing, two clinical challenges where immunomodulatory strategies were initially developed for orthopedic applications. We then reviewed recent research progress in harnessing immunomodulatory strategies for regenerating critical-sized, long bone or cranial bone defects, and treating osteolytic bone diseases. Remaining gaps in knowledge, future directions and opportunities were also discussed.
Collapse
Affiliation(s)
- Ni Su
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cassandra Villicana
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA.,: Corresponding Author Fan Yang, Ph D, Department of Orthopaedic Surgery and Bioengineering, Stanford University School of Medicine, 240 Pasteur Dr, Palo Alto, CA 94304, Biomedical Innovation Building, 1st floor, Room 1200, , Phone: (650) 646-8558
| |
Collapse
|
24
|
Wu S, Ma J, Liu J, Liu C, Ni S, Dai T, Wang Y, Weng Y, Zhao H, Zhou D, Zhao X. Immunomodulation of Telmisartan-Loaded PCL/PVP Scaffolds on Macrophages Promotes Endogenous Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15942-15955. [PMID: 35353482 DOI: 10.1021/acsami.1c24748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomaterial-immune system interactions play an important role in postimplantation osseointegration to retain the functionality of healthy and intact bones. Therefore, appropriate osteoimmunomodulation of implants has been considered and validated as an efficient strategy to alleviate inflammation and enhance new bone formation. Here, we fabricated a nanostructured PCL/PVP (polycaprolactone/polyvinylpyrrolidone) electrospinning scaffold for cell adhesion, tissue ingrowth, and bone defect padding. In addition, telmisartan, an angiotensin 2 receptor blocker with distinct immune bioactivity, was doped into PCL-/PVP-electrospun scaffolds at different proportions [1% (TPP-1), 5% (TPP-5), and 10% (TPP-10)] to investigate its immunomodulatory effects and osteoinductivity/conductivity. Telmisartan-loaded scaffolds displayed in vitro anti-inflammatory bioactivity on lipopolysaccharide-induced M1 macrophages by polarizing them to an M2-like phenotype and exhibited pro-osteogenic properties on bone marrow-derived mesenchymal stem cells (BMSCs). Histological analysis and micro-CT results of a rat skull defect model also showed that the telmisartan-loaded scaffolds induced a higher M2/M1 ratio, less inflammatory infiltration, and better bone regenerative patterns. Furthermore, activation of the BMP2 (bone morphogenetic protein-2)-Smad signaling pathway was found to be dominant in telmisartan-loaded scaffold-mediated macrophage-BMSC interactions. These findings indicate that telmisartan incorporation with PCL/PVP nanofibrous scaffolds is a potential therapeutic strategy for promoting bone healing by modulating M1 macrophages to a more M2 phenotype at early stages of postimplantation.
Collapse
Affiliation(s)
- Siyu Wu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
- Dalian Medical University, Dalian 116044, China
| | - Jiayi Ma
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
- Dalian Medical University, Dalian 116044, China
| | - Jun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
- Dalian Medical University, Dalian 116044, China
| | - Chun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Su Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Ting Dai
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Yan Wang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Yiping Weng
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Hongbin Zhao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Dong Zhou
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| |
Collapse
|
25
|
Zheng Y, Gao A, Bai J, Liao Q, Wu Y, Zhang W, Guan M, Tong L, Geng D, Zhao X, Chu PK, Wang H. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioact Mater 2022; 14:364-376. [PMID: 35386814 PMCID: PMC8964985 DOI: 10.1016/j.bioactmat.2022.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a desirable alternative to conventional biomedical metals for orthopedic implants due to the excellent mechanical properties. However, the inherent bioinertness of PEEK contributes to inferior osseointegration of PEEK implants, especially under pathological conditions of osteoporosis. Herein, a programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable hybrid coating consisting of poly(lactide-co-glycolide) and alendronate (ALN) loaded nano-hydroxyapatite is deposited on PEEK and then interleukin-4 (IL-4) is grafted onto the outer surface of the hybrid coating with the aid of N2 plasma immersion ion implantation and subsequent immersion in IL-4 solution. Dominant release of IL-4 together with ALN and Ca2+ during the first few days synergistically mitigates the early acute inflammatory reactions and creates an osteoimmunomodulatory microenvironment that facilitates bone regeneration. Afterwards, slow and sustained delivery of ALN and Ca2+ in the following weeks boosts osteogenesis and suppresses osteoclastogenesis simultaneously, consequently ameliorating bone-implant osseointegration even under osteoporotic conditions. By taking into account the different phases in bone repair, this strategy of constructing advanced bone implants with sequential functions provides customizable and clinically viable therapy to osteoporotic patients. A programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable coating consisting ALN loaded nano-HA is deposited on PEEK, with IL-4 being grafted onto the outmost surface. Dominant release of IL-4 together with ALN and Ca2+ synergistically mitigates the early acute inflammatory reactions. Slow and sustained delivery of ALN and Ca2+ boosts osteogenesis and suppresses osteoclastogenesis simultaneously. Sequential regulation of peri-implant biological responses is achieved to match the dynamic process of bone regeneration.
Collapse
Affiliation(s)
- Yanyan Zheng
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Corresponding author
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| |
Collapse
|
26
|
Cui Y, Li H, Li Y, Mao L. Novel insights into nanomaterials for immunomodulatory bone regeneration. NANOSCALE ADVANCES 2022; 4:334-352. [PMID: 36132687 PMCID: PMC9418834 DOI: 10.1039/d1na00741f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 05/02/2023]
Abstract
Bone defect repair caused by trauma, congenital malformation, tumors, infection or systemic diseases remains the focus of attention in regeneration medicine. Recent advances in osteoimmunology indicate that immune cells and correlative cytokines modulate the delicate balance between osteoblasts and osteoclasts and induce a favorable microenvironment for bone regeneration. With superior attributes that imitate the three-dimensional architecture of natural bone, excellent fabricability, mechanical and biological properties, nanomaterials (NMs) are becoming attractive in the field of bone tissue engineering. Particularly, it could be an effective strategy for immunomodulatory bone regeneration by engineering NMs involved in composition nature, nanoarchitectural morphology, surface chemistry, topography and biological molecules, whose mechanisms potentially refer to regulating the phenotype of high-plastic immune cells and inducing cytokine secretion to accelerate osteogenesis. Despite these prominent achievements, the employment of NMs is poorly translated into clinical trials due to the lack of knowledge about the interaction between NMs and the immune system. For this reason, we sketch out the hierarchical structure of bone and its natural healing process, followed by discussion about the effects of immune cells on bone regeneration. Novel horizons focusing on recent progressions in the architectural and physicochemical performances of NMs and their impacts on the body defence mechanism are also emphasized, hoping to provide novel insights for the fabrication of bone graft materials in tissue engineering.
Collapse
Affiliation(s)
- Ya Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology Shanghai China
| | - Hairui Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology Shanghai China
| | - Yaxin Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology Shanghai China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology Shanghai China
| |
Collapse
|
27
|
Hong L, Yuan L, Xu X, Ma Y, Meng L, Wang J, Zhao N, Wang X, Ma J. Biocompatible Nanotube-Strontium/polydopamine-arginine-glycine-aspartic acid coating on Ti6Al4V enhances osteogenic properties for biomedical applications. Microsc Res Tech 2021; 85:1518-1526. [PMID: 34964200 DOI: 10.1002/jemt.24014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/06/2023]
Abstract
Titanium (Ti) alloys, particularly Ti6 Al4 V, are the most commonly used biomedical implant material. Ti alloys are biologically inert, so there have been continuous efforts to improve their osteogenic properties and clinical performance. Since TiO2 nanotubes (NT) appear to be excellent drug platforms, and strontium reportedly enhances osteogenesis, we constructed a TiO2 nanotube coating on the surface of Ti6 Al4 V and immersed it in Sr (OH)2 solution in order to incorporate Sr into TiO2 nanotubes (NT-Sr). The results of field emission scanning electron microscope and X-ray diffraction analysis verified the fabrication of NT-Sr. We next added polydopamine (PDA) and cyclo- (arginine-glycine-aspartic acid-phenylalanine-cysteine) [c(RGDfC)] peptides to further promote biocompatibility of the implant. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the existence of PDA and c(RGDfC). Mesenchymal stem cells (MSCs) were planted on Ti, NT, NT-Sr, NT-Sr/PDA, and NT-Sr/PDA-RGD surfaces. The adhesion and differentiation of MSCs on different surfaces were evaluated. The mRNA expression of alkaline phosphatase, runt-related transcription factor 2 (Runx2) and type I collagen (Col I) of different groups were also tested. Finally, we observed that the NT-Sr/PDA-RGD group showed significantly better performance than other groups in terms of the differentiation and osteogenesis-related gene expression of MSCs. Thus, the NT-Sr/PDA-RGD complex may be an important modification strategy for Ti, as it shows excellent osteogenic potential.
Collapse
Affiliation(s)
- Leilei Hong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Xiaoxu Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Yuhuan Ma
- Nanjng Foreign Language School, Nanjing, Jiangsu, China
| | - Li Meng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Junyi Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Na Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Nanjing University, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, China
| |
Collapse
|
28
|
Peptide-modified substrate enhances cell migration and migrasome formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112495. [PMID: 34857281 DOI: 10.1016/j.msec.2021.112495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are cell-to-cell communication tools. Migrasomes are recently discovered microscale EVs formed at the rear ends of migrating cells, and thus are suggested to be involved in communicating with neighboring cells. In cell culture, peptide scaffolds on substrates have been used to demonstrate cellular function for regenerative medicine. In this study, we evaluated peptide scaffolds, including cell penetrating, virus fusion, and integrin-binding peptides, for their potential to enable the formation of migrasome-like vesicles. Through structural and functional analyses, we confirmed that the EVs formed on these peptide-modified substrates were migrasomes. We further noted that the peptide interface comprising cell-penetrating peptides (pVEC and R9) and virus fusion peptide (SIV) have superior properties for enabling cell migration and migrasome formation than fibronectin protein, integrin-binding peptide (RGD), or bare substrate. This is the first report of migrasome formation on peptide-modified substrates. Additionally, the combination of 95% RGD and 5% pVEC peptides provided a functional interface for effective migrasome formation and desorption of cells from the substrate via a simple ethylenediaminetetraacetic acid treatment. These results provide a functional substrate for the enhancement of migrasome formation and functional analysis.
Collapse
|
29
|
Wu L, Kim Y, Seon GM, Choi SH, Park HC, Son G, Kim SM, Lim BS, Yang HC. Effects of RGD-grafted phosphatidylserine-containing liposomes on the polarization of macrophages and bone tissue regeneration. Biomaterials 2021; 279:121239. [PMID: 34753037 DOI: 10.1016/j.biomaterials.2021.121239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
Phosphatidylserine-containing liposomes (PSLs) can mimic the anti-inflammatory effects of apoptotic cells by binding to the phosphatidylserine receptors of macrophages. MGF-E8, a bridge molecule between phosphatidylserine and macrophages, can promote M2 polarization by activating macrophage integrin with its arginine-glycine-aspartic acid (RGD) motif. In this study, to mimic MGF-E8, PSLs presenting RGD peptide (RGD-PSLs) were prepared, and their immunomodulatory effects on macrophages and the bone tissue regeneration of rat calvarial defects were investigated. RGD peptides enhanced the phagocytosis of PSLs by macrophages, especially when the PSLs contained 3% RGD. RGD-PSLs were also more effective than PSLs for the suppression of lipopolysaccharide-induced gene expression of proinflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α) as well as CD86 (M1 marker) expression. Furthermore, RGD promoted PSL-induced M2 polarization: 3%-RGD-PSLs significantly enhanced the mRNA expression of Arg-1, FIZZ1, and YM-1, as well as CD206 (M2 marker) expression. In a calvarial defect model, a significant increase in M2 with a decrease in M1 macrophages was observed with 3%-RGD-PSL treatment compared with the effects of PSLs alone. Finally, new bone formation was also accelerated by 3%-RGD-PSLs. Thus, these results suggest that the intensive immunomodulatory effect of RGD-PSLs led to the enhancement of bone tissue regeneration.
Collapse
Affiliation(s)
- Lele Wu
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Yongjoon Kim
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Gyeung Mi Seon
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Sang Hoon Choi
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hee Chul Park
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Gitae Son
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Bum-Soon Lim
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
30
|
Wei G, Jiang D, Hu S, Yang Z, Zhang Z, Li W, Cai W, Liu D. Polydopamine-Decorated Microcomposites Promote Functional Recovery of an Injured Spinal Cord by Inhibiting Neuroinflammation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47341-47353. [PMID: 34597036 DOI: 10.1021/acsami.1c11772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neuroinflammation following spinal cord injury usually aggravates spinal cord damage. Many inflammatory cytokines are key players in neuroinflammation. Owing largely to the multiplicity of cytokine targets and the complexity of cytokine interactions, it is insufficient to suppress spinal cord damage progression by regulating only one or a few cytokines. Herein, we propose a two-pronged strategy to simultaneously capture the released cytokines and inhibit the synthesis of new ones in a broad-spectrum manner. To achieve this strategy, we designed a core/shell-structured microcomposite, which was composed of a methylprednisolone-incorporated polymer inner core and a biocompatible polydopamine outer shell. Thanks to the inherent adhesive nature of polydopamine, the obtained microcomposite (MP-PLGA@PDA) efficiently neutralized the excessive cytokines in a broad-spectrum manner within 1 day after spinal cord injury. Meanwhile, the controlled release of immunosuppressive methylprednisolone reduced the secretion of new inflammatory cytokines. Benefiting from its efficient and broad-spectrum capability in reducing the level of cytokines, this core/shell-structured microcomposite suppressed the recruitment of macrophages and protected the injured spinal cord, leading to an improved recovery of motor function. Overall, the designed microcomposite successfully achieved the two-pronged strategy in cytokine neutralization, providing an alternative approach to inhibit neuroinflammation in the injured spinal cord.
Collapse
Affiliation(s)
- Guangfei Wei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Dongdong Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyuan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Zifan Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Weihua Cai
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
31
|
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater 2021; 133:208-221. [PMID: 33657453 DOI: 10.1016/j.actbio.2021.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.
Collapse
|
32
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
33
|
Lu H, Zhang Y, Xiong S, Zhou Y, Xiao L, Ma Y, Xiao Y, Wang X. Modulatory Role of Silver Nanoparticles and Mesenchymal Stem Cell-Derived Exosome-Modified Barrier Membrane on Macrophages and Osteogenesis. Front Chem 2021; 9:699802. [PMID: 34409016 PMCID: PMC8365089 DOI: 10.3389/fchem.2021.699802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023] Open
Abstract
Background: As a wound dressing and barrier membrane, surface modification of polycaprolactone (PCL) is needed in order to achieve better biological activities. Exosomes derived from mesenchymal stem cells (MSCs) hold significant tissue regeneration promise. Silver nanoparticles (Ag) have been suggested as the surface modification technique for various medical devices. Materials and Methods: Ag and human bone marrow MSC (hBMSC)-derived exosomes (MSCs-exo) were used to modify the PCL scaffold. The impact of different scaffolds on immune cells and MSC proliferation and differentiation was further evaluated. Results: MSCs-exo exhibited cup-shaped morphology with a diameter around 100 nm. MSCs-exo were enriched with exosome marker CD81 and showed good internalization into recipient cells. 200 ng/ml Ag nanoparticles and MSCs-exo were further used to modify the PCL scaffold. The internalization study further indicated a similar releasing pattern of exosomes from Ag/MSCs-exo hybrid scaffolds into RAW264.7 and hBMSCs at 12 and 24 h, respectively. Macrophages play an important role during different stages of bone regeneration. The MTT and confocal microscopy study demonstrated no significant toxicity of exosome and/or Ag hybrid scaffolds for macrophages and MSCs. Inflammatory macrophages were further used to mimic the inflammatory environment. A mixed population of elongated and round morphology was noted in the exosome and Ag hybrid group, in which the proinflammatory genes and secretion of IL-6 and TNF-α were significantly reduced. In addition, the exosome and Ag hybrid scaffolds could significantly boost the osteogenic differentiation of hBMSCs. Discussion: This study highlights the possibility of using Ag nanoparticles and MSCs-exo to modify the PCL scaffold, thus providing new insight into the development of the novel immunomodulatory biomembrane.
Collapse
Affiliation(s)
- Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Shan Xiong
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, QLD, Australia
| | - Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, QLD, Australia
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, QLD, Australia
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Brisbane, QLD, Australia
| |
Collapse
|
34
|
Zhao Q, Zhang Y, Xiao L, Lu H, Ma Y, Liu Q, Wang X. Surface engineering of titania nanotubes incorporated with double-layered extracellular vesicles to modulate inflammation and osteogenesis. Regen Biomater 2021; 8:rbab010. [PMID: 34211726 PMCID: PMC8240597 DOI: 10.1093/rb/rbab010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
Titania nanotubes (TNT) generated on titanium implant are emerged as important modification technique to facilitate bone regeneration. Mesenchymal stem cells (MSCs)-derived exosomes are membrane bound extracellular vesicles (EVs), which play an important role in tissue regeneration. The objective of this study was to generate an EVs hybrid TNT aiming at regulating inflammation, MSCs recruitment and osteogenesis. We isolated EVs from MSCs (MSCs EVs) and 3-day osteogenically differentiated MSCs (3d EVs). MSC EVs and 3d EVs exhibited round morphology under TEM, which also showed robust internalization by human bone marrow derived MSCs (hBMSCs). Next, we fabricated 3d EVs/MSC EVs hybrid TNT. When inflammatory macrophages were co-cultured with EVs hybrid TNT, the gene and protein expression of inflammatory cytokine were significantly reduced. Macrophage morphology was also examined by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Further migratory ability study using hBMSCs indicated significant enhancement of MSCs migration in EVs hybrid TNT. In addition, we further demonstrated significant increase of osteogenic differentiation of hBMSCs in EVs hybrid TNT. This study suggests that EVs hybrid TNT may serve as a viable therapeutic approach to enhance osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Qingyu Zhao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
- The Australia−China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
| | - Qi Liu
- Department of Periodontology, Stomatological Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou, China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia
- The Australia−China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
35
|
Wei F, Liu S, Chen M, Tian G, Zha K, Yang Z, Jiang S, Li M, Sui X, Chen Z, Guo Q. Host Response to Biomaterials for Cartilage Tissue Engineering: Key to Remodeling. Front Bioeng Biotechnol 2021; 9:664592. [PMID: 34017827 PMCID: PMC8129172 DOI: 10.3389/fbioe.2021.664592] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterials play a core role in cartilage repair and regeneration. The success or failure of an implanted biomaterial is largely dependent on host response following implantation. Host response has been considered to be influenced by numerous factors, such as immune components of materials, cytokines and inflammatory agents induced by implants. Both synthetic and native materials involve immune components, which are also termed as immunogenicity. Generally, the innate and adaptive immune system will be activated and various cytokines and inflammatory agents will be consequently released after biomaterials implantation, and further triggers host response to biomaterials. This will guide the constructive remolding process of damaged tissue. Therefore, biomaterial immunogenicity should be given more attention. Further understanding the specific biological mechanisms of host response to biomaterials and the effects of the host-biomaterial interaction may be beneficial to promote cartilage repair and regeneration. In this review, we summarized the characteristics of the host response to implants and the immunomodulatory properties of varied biomaterial. We hope this review will provide scientists with inspiration in cartilage regeneration by controlling immune components of biomaterials and modulating the immune system.
Collapse
Affiliation(s)
- Fu Wei
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing, China
| | - Guangzhao Tian
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Kangkang Zha
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Zhen Yang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | | | - Muzhe Li
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Chen Z, Wang Z, Qiu W, Fang F. Overview of Antibacterial Strategies of Dental Implant Materials for the Prevention of Peri-Implantitis. Bioconjug Chem 2021; 32:627-638. [PMID: 33779151 DOI: 10.1021/acs.bioconjchem.1c00129] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As dental implants have become one of the main treatment options for patients with tooth loss, the number of patients with peri-implant diseases has increased. Similar to periodontal diseases, peri-implant diseases have been associated with dental plaque formation on implants. Unconventional approaches have been reported to remove plaque from infected implants, but none of these methods can completely and permanently solve the problem of bacterial invasion. Fortunately, the constant development of antibacterial implant materials is a promising solution to this situation. In this review, the development and study of different antibacterial strategies for dental implant materials for the prevention of peri-implantitis are summarized. We hope that by highlighting the advantages and limitations of these antimicrobial strategies, we can assist in the continued development of oral implant materials.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| |
Collapse
|
37
|
Xing H, Li R, Qing Y, Ying B, Qin Y. Biomaterial-based osteoimmunomodulatory strategies via the TLR4-NF-κB signaling pathway: A review. APPLIED MATERIALS TODAY 2021; 22:100969. [DOI: 10.1016/j.apmt.2021.100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Li M, Li C, Zhou Y, Tian H, Deng Q, Liu H, Zhu L, Yin X. Optimization of cinnamaldehyde microcapsule wall materials by experimental and quantitative methods. J Appl Polym Sci 2021. [DOI: 10.1002/app.49667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - You Zhou
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Hua Tian
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Qiaoyuan Deng
- School of Materials Science and Engineering Hainan University Haikou PR China
| | - Haifang Liu
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou PR China
| | - Li Zhu
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| |
Collapse
|