1
|
Dini C, Yamashita KM, Sacramento CM, Borges MHR, Takeda TTS, Silva JPDS, Nagay BE, Costa RC, da Cruz NC, Rangel EC, Ruiz KGS, Barão VAR. Tailoring magnesium-doped coatings for improving surface and biological properties of titanium-based dental implants. Colloids Surf B Biointerfaces 2025; 246:114382. [PMID: 39591849 DOI: 10.1016/j.colsurfb.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Physicochemical modifications of biomaterials have been proposed to overcome bone integration impairment and microbial infections. The magnesium (Mg) incorporation on dental implant surfaces has shown positive results in bone-to-implant contact and in the reduction of microbial colonization. Here, we explored the potential of using different Mg precursors to synthesize coatings via plasma electrolytic oxidation (PEO) on commercially pure titanium (cpTi), aiming to optimize the surface and biological properties. For this, we investigated Mg acetate and Mg nitrate precursors in different concentrations (0.04 M and 0.12 M), using calcium (Ca) and phosphorus (P) as the base electrolyte for all groups. Coatings with only the CaP base electrolyte were used as the control group. The surfaces were characterized by confocal laser scanning microscopy, scanning electron microscopy, film thickness measurement, profilometry, wettability, X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, electrochemical behavior, and ion release. For biological analyses, the adhesion (2 h) of Streptococcus sanguinis was evaluated, as well as MC3T3-E1 osteoblastic cells proliferation at 1 and 3 days, and mineralization of calcium phosphates after 28 days. PEO treatment using different Mg precursors promoted physicochemical modifications of cpTi. The experimental groups MgN 0.04 and MgN 0.12 exhibited higher surface roughness and wettability compared to the other surfaces. Regardless of the Mg precursor, the higher the ion concentration in the electrolyte solution, the higher the Mg atomic concentration on the surfaces. Concerning the electrochemical behavior, the results indicated that the incorporation of Mg in the coatings may enhance the electrochemical performance. Mg treated surfaces did not promote greater bacterial adherence when compared to the control. MgAc 0.04 and MgAc 0.12 coatings displayed improved MC3T3-E1 pre-osteoblastic cells proliferation at day 3 compared to other groups. The hydroxyapatite formation on MgAc 0.12 surfaces was higher than in the other groups. Our data indicate that Mg precursor selection positively influences physicochemical and biological properties of coatings. Specifically, MgAc 0.12 surfaces showed the most promising surface features with greater cell proliferation, without affecting microbial colonization, being an excellent candidate for surface treatment of titanium-based dental implants.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Karen Midori Yamashita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Marques Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Thais Terumi Sadamitsu Takeda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Pedro Dos Santos Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil; School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, Minas Gerais 37130-001, Brazil
| | - Nilson Cristino da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Karina Gonzalez Silverio Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
2
|
Romanos GE, Mistretta L, Newman A, Ohana D, Delgado-Ruiz RA. Implant Surface Decontamination Methods That Can Impact Implant Wettability. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6249. [PMID: 39769848 PMCID: PMC11678801 DOI: 10.3390/ma17246249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
This review addresses the effects of various decontamination methods on the wettability of titanium and zirconia dental implants. Despite extensive research on surface wettability, there is still a significant gap in understanding how different decontamination techniques impact the inherent wettability of these surfaces. Although the literature presents inconsistent findings on the efficacy of decontamination methods such as lasers, air-polishing, UV light, and chemical treatments, the reviewed studies suggest that decontamination alters in vitro hydrophilicity. Post-decontamination surface chemistry must be carefully considered when selecting optimal surface treatments for implant materials. Further in vitro investigations are essential to determine which approaches best enhance surface wettability, potentially leading to improved implant-tissue interactions in clinical settings.
Collapse
Affiliation(s)
- Georgios E. Romanos
- Laboratory of Periodontal-, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA; (L.M.); (A.N.); (D.O.)
| | - Lauren Mistretta
- Laboratory of Periodontal-, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA; (L.M.); (A.N.); (D.O.)
| | - Allyson Newman
- Laboratory of Periodontal-, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA; (L.M.); (A.N.); (D.O.)
| | - Danielle Ohana
- Laboratory of Periodontal-, Implant-, Phototherapy, Department of Periodontics and Endodontics, Stony Brook University, Stony Brook, NY 11794, USA; (L.M.); (A.N.); (D.O.)
| | - Rafael A. Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
3
|
Kunrath MF, Garaicoa‐Pazmino C, Giraldo‐Osorno PM, Haj Mustafa A, Dahlin C, Larsson L, Asa'ad F. Implant surface modifications and their impact on osseointegration and peri-implant diseases through epigenetic changes: A scoping review. J Periodontal Res 2024; 59:1095-1114. [PMID: 38747072 PMCID: PMC11626700 DOI: 10.1111/jre.13273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 12/10/2024]
Abstract
Dental implant surfaces and their unique properties can interact with the surrounding oral tissues through epigenetic cues. The present scoping review provides current perspectives on surface modifications of dental implants, their impact on the osseointegration process, and the interaction between implant surface properties and epigenetics, also in peri-implant diseases. Findings of this review demonstrate the impact of innovative surface treatments on the epigenetic mechanisms of cells, showing promising results in the early stages of osseointegration. Dental implant surfaces with properties of hydrophilicity, nanotexturization, multifunctional coatings, and incorporated drug-release systems have demonstrated favorable outcomes for early bone adhesion, increased antibacterial features, and improved osseointegration. The interaction between modified surface morphologies, different chemical surface energies, and/or release of molecules within the oral tissues has been shown to influence epigenetic mechanisms of the surrounding tissues caused by a physical-chemical interaction. Epigenetic changes around dental implants in the state of health and disease are different. In conclusion, emerging approaches in surface modifications for dental implants functionalized with epigenetics have great potential with a significant impact on modulating bone healing during osseointegration.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
- Department of Dentistry, School of Health and Life SciencesPontifical Catholic University of Rio Grande do Sul (PUCRS)Porto AlegreBrazil
| | - Carlos Garaicoa‐Pazmino
- Department of PeriodonticsUniversity of Iowa College of DentistryIowa CityIowaUSA
- Research Center, School of DentistryEspiritu Santo UniversitySamborondónEcuador
| | - Paula Milena Giraldo‐Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Aya Haj Mustafa
- Institute of Odontology, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Lena Larsson
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska AcademyUniversity of GothenburgGöteborgSweden
| |
Collapse
|
4
|
Calazans Neto J, Celles CAS, de Andrade CSAF, Afonso CRM, Nagay BE, Barão VAR. Recent Advances and Prospects in β-type Titanium Alloys for Dental Implants Applications. ACS Biomater Sci Eng 2024; 10:6029-6060. [PMID: 39215386 PMCID: PMC11480944 DOI: 10.1021/acsbiomaterials.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Titanium and its alloys, especially Ti-6Al-4V, are widely studied in implantology for their favorable characteristics. However, challenges remain, such as the high modulus of elasticity and concerns about cytotoxicity. To resolve these issues, research focuses on β-type titanium alloys that incorporate elements such as Mo, Nb, Sn, and Ta to improve corrosion resistance and obtain a lower modulus of elasticity compatible with bone. This review comprehensively examines current β titanium alloys, evaluating their mechanical properties, in particular the modulus of elasticity, and corrosion resistance. To this end, a systematic literature search was carried out, where 81 articles were found to evaluate these outcomes. In addition, this review also covers the formation of the alloy, processing methods such as arc melting, and its physical, mechanical, electrochemical, tribological, and biological characteristics. Because β-Ti alloys have a modulus of elasticity closer to that of human bone compared to other metal alloys, they help reduce stress shielding. This is important because the alloy allows for a more even distribution of forces by having a modulus of elasticity more similar to that of bone. In addition, these alloys show good corrosion resistance due to the formation of a noble titanium oxide layer, facilitated by the incorporation of β stabilizers. These alloys also show significant improvements in mechanical strength and hardness. Finally, they also have lower cytotoxicity and bacterial adhesion, depending on the β stabilizer used. However, there are persistent challenges that require detailed research in critical areas, such as optimizing the composition of the alloy to achieve optimal properties in different clinical applications. In addition, it is crucial to study the long-term effects of implants on the human body and to advance the development of cutting-edge manufacturing techniques to guarantee the quality and biocompatibility of implants.
Collapse
Affiliation(s)
- João
V. Calazans Neto
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Cícero A. S. Celles
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Catia S. A. F. de Andrade
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Conrado R. M. Afonso
- Department
of Materials Engineering (DEMa), Universidade
Federal de São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Bruna E. Nagay
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A. R. Barão
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
5
|
Kahm SH, Lee SH, Lim Y, Jeon HJ, Yun KI. Osseointegration of Dental Implants after Vacuum Plasma Surface Treatment In Vivo. J Funct Biomater 2024; 15:278. [PMID: 39452577 PMCID: PMC11508880 DOI: 10.3390/jfb15100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Previous studies have highlighted the need for post-treatment of implants due to surface aging. This study investigated the effect of vacuum plasma (VP) treatment on the osseointegration of sandblasted, large grit, acid-etched (SLA) implant surfaces. The hypothesis was that VP might enhance implant stability, measured by implant stability quotient (ISQ) and histological osseointegration through bone-to-implant contact (BIC) and bone area ratio (BA) in rabbit models. Eighteen implants were either untreated or treated with VP and installed into the femurs of six rabbits, which were sacrificed after four weeks. Histological analyses of BIC and BA, along with micro-CT analysis of bone volume and ISQ, were performed. The VP-treated group showed higher levels of BA, bone volume, and ISQ, but no statistically significant differences were observed between the control and experimental groups. Despite limitations, both groups achieved better osseointegration and regeneration, warranting further studies on plasma treatment effects over varying implantation periods.
Collapse
Affiliation(s)
- Se Hoon Kahm
- Department of Dentistry, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 1021, Tongil-ro, Eunpyeong-gu, Seoul 03312, Republic of Korea; (S.H.K.); (S.H.L.)
| | - Sang Hwa Lee
- Department of Dentistry, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 1021, Tongil-ro, Eunpyeong-gu, Seoul 03312, Republic of Korea; (S.H.K.); (S.H.L.)
| | - Youbong Lim
- Plasmapp Co., Ltd., 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.L.); (H.J.J.)
| | - Hyun Jeong Jeon
- Plasmapp Co., Ltd., 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.L.); (H.J.J.)
| | - Kyoung-In Yun
- Department of Dentistry (Oral and Maxillofacial Surgery), Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
6
|
Kunrath MF, Hubler R, Dahlin C. Adverse effects of sterilization processes on the fundamental topographic properties of modified dental implant surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:44. [PMID: 39073722 PMCID: PMC11286709 DOI: 10.1007/s10856-024-06813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
The employ of sterilization processes are essential to investigate biomaterials aiming for experimental, preclinical, or clinical applications with biological tissues. However, responsive surface properties of biomaterials may be susceptible to sterilization processes, compromising important physio-chemical characteristics. For that reason, this in vitro study aimed to investigate the effects of three different processes for sterilization (humid heat under pressure, UVC-light exposure, and Gamma irradiation) on the major topographical properties of implant surfaces applied to dental bone-anchored implants and/or implant-abutments. Three groups of implant surfaces were developed: a smooth machined surface, a micro-texturized surface, and a hydrophilic micro-texturized surface. The implants were sterilized with three methodologies and characterized regarding surface morphology, elemental surface composition, roughness parameters, wettability characteristics, and compared to the samples as-developed. Surface morphology and roughness parameters were not modified by any of the sterilization processes applied. On the other hand, hydrophilic implants were negatively affected by autoclaving. After package opening, hydrophilic features showed to be sensible to atmospheric air exposition independently of the sterilization process performed. Our findings revealed significant chemical changes on the implant surfaces caused by autoclaving and UVC exposure; additionally, the results showed the importance of selecting an appropriate sterilization method when investigating hydrophilic implants so as not to generate imprecise outcomes.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden.
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Roberto Hubler
- School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30, Göteborg, Sweden
| |
Collapse
|
7
|
Goel A, Swami V, Patil AS, Swami VV. Preventive Effect of Ultraviolet Photofunctionalization on Peri-implant Biofilm Formation: An In vivo Randomized Study. Contemp Clin Dent 2024; 15:192-197. [PMID: 39512295 PMCID: PMC11540206 DOI: 10.4103/ccd.ccd_106_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 11/15/2024] Open
Abstract
Background Peri-implant biofilm formation due to local bacterial colonization is one of the important factors for the instability of temporary anchorage devices (TADs). Aim The aim of this study was to quantify and compare the colonization of Streptococcus sanguinis on ultraviolet (UV) treated and untreated titanium TADs. Materials and Methods This prospective, in vivo study included 20 subjects requiring orthodontic treatment with first premolar extraction, followed by retraction of the anterior teeth with absolute anchorage using TADs. TADs were placed interdentally, in the keratinized tissue between the upper second premolar and the first molar on the buccal side, at the mucogingival junction. It was a split-mouth study where one side of TAD was UV-treated for 15 min, and the other side was kept untreated as a control. TADs were removed after 6 months for S. sanguinis quantification on both sides and were compared for biofilm reduction. Statistical Analysis Statistical software was used to perform unpaired t-tests for the individual samples as well as for comparing total UV-treated and untreated samples. P <0.05 was considered significant. Results The mean bacterial count (per ml) was found to be 2.2 × 106 copy numbers and 8.9 × 106 copy numbers in the UV group and untreated group, respectively. The total count of bacteria was found to be less in the UV-treated group compared to the untreated group. Conclusions The study concludes that UV photofunctionalization results in a significant reduction of S. sanguinis colony on TADs with reduced chances of failure due to inflammation.
Collapse
Affiliation(s)
- Akanksha Goel
- Department of Dental Surgery, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Vinit Swami
- Department of Orthodontics and Dentofacial Orthopedics, Bharati Vidyapeeth Dental College and Hospital, Deemed to be University, Pune, Maharashtra, India
| | - Amol Somaji Patil
- Department of Orthodontics and Dentofacial Orthopedics, Bharati Vidyapeeth Dental College and Hospital, Deemed to be University, Pune, Maharashtra, India
| | - Vasanthi Vinit Swami
- Department of Orthodontics and Dentofacial Orthopedics, Bharati Vidyapeeth Dental College and Hospital, Deemed to be University, Pune, Maharashtra, India
| |
Collapse
|
8
|
Dini C, Costa RC, Bertolini M, Shibli JA, Feres M, Klein MI, de Avila ÉD, Souza JGS, Barão VAR. In-vitro polymicrobial oral biofilm model represents clinical microbial profile and disease progression during implant-related infections. J Appl Microbiol 2023; 134:lxad265. [PMID: 37951291 DOI: 10.1093/jambio/lxad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
AIM Clinically relevant in-vitro biofilm models are essential and valuable tools for mechanistically dissecting the etiopathogenesis of infectious diseases and test new antimicrobial therapies. Thus, the aim of this study was to develop and test a clinically relevant in-vitro oral polymicrobial biofilm model that mimics implant-related infections in terms of microbial profile. METHODS AND RESULTS For this purpose, 24-well plate system was used to model oral biofilms, using three different microbial inoculums to grow in-vitro biofilms: (1) human saliva from periodontally healthy patients; (2) saliva as in inoculum 1 + Porphyromonas gingivalis strain; and (3) supra and subgingival biofilm collected from peri-implant sites of patients diagnosed with peri-implantitis. Biofilms were grown to represent the dynamic transition from an aerobic to anaerobic community profile. Subsequently, biofilms were collected after each phase and evaluated for microbiological composition, microbial counts, biofilm biomass, structure, and susceptibility to chlorhexidine (CHX). Results showed higher live cell count (P < .05) for biofilms developed from patients' biofilm inoculum, but biomass volume, dry weight, and microbiological composition were similar among groups (P > .05). Interestingly, according to the checkerboard DNA-DNA hybridization results, the biofilm developed from stimulated human saliva exhibited a microbial composition more similar to the clinical subgingival biofilm of patients with peri-implantitis, with proportions of the main pathogens closer to those found in the disease. In addition, biofilm developed using saliva as inoculum was shown to be susceptible to CHX with significant reduction in bacteria compared with biofilms without exposure to CHX (P < .05). CONCLUSION The findings suggested that the in-vitro polymicrobial biofilm developed from human saliva as inoculum is a suitable model and clinically relevant tool for mimicking the microbial composition of implant-related infections.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP 13414-903, Brazil
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP 13414-903, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jamil Awad Shibli
- Dental Research Division, Guarulhos University, Guarulhos, SP 07011-010, Brazil
| | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos, SP 07011-010, Brazil
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Marlise Inêz Klein
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP 13414-903, Brazil
| | - Érica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, SP 14801-385, Brazil
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, SP 16015-050, Brazil
| | | | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP 13414-903, Brazil
| |
Collapse
|
9
|
Mostafa D, Kassem YM, Omar SS, Shalaby Y. Nano-topographical surface engineering for enhancing bioactivity of PEEK implants (in vitro-histomorphometric study). Clin Oral Investig 2023; 27:6789-6799. [PMID: 37847259 PMCID: PMC10630241 DOI: 10.1007/s00784-023-05291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVES Dental implants are currently becoming a routine treatment decision in dentistry. Synthetic polyetheretherketone (PEEK) polymer is a prevalent component of dental implantology field. The current study aimed to assess the influence of Nd:YAG laser nano-topographical surface engineering combined with ultraviolet light or platelet rich fibrin on the bioactivity and osseointegration of PEEK implants in laboratory and animal testing model. MATERIALS AND METHODS Computer Aided Design-Computer Aided Manufacturing (CAD CAM) discs of PEEK were used to fabricate PEEK discs (8 mm × 3 mm) N = 36 and implant cylinders (3 mm × 6 mm) N = 72. Specimens were exposed to Nd:YAG laser at wavelength 1064 nm, and surface roughness topography/Ra parameter was recorded in nanometer using atomic force microscopy. Laser modified specimens were divided into three groups: Nd:YAG laser engineered surfaces (control), Nd:YAG laser/UV engineered surfaces and Nd:YAG laser/PRF engineered surfaces (N = 12 discs-N = 24 implants). In vitro bioactivity test was performed, and precipitated apatite minerals were assessed with X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). In vivo histomorphometric analysis was performed in rabbits with BIC% calculation. RESULTS Ra mean value of PEEK laser engineered surfaces was 125.179 nm. For the studied groups, XRD patterns revealed distinctive peaks of different apatite minerals that were demonstrated by SEM as dispersed surface aggregations. There was a significant increase in the BIC% from control group 56.43 (0.97) to laser/UV surfaces 77.30 (0.78) to laser/PRF 84.80 (1.29) (< 0.0001). CONCLUSIONS Successful engineered nano-topographical biomimetic PEEK implant could be achieved by Nd:YAG laser technique associated with improving bioactivity. The combination with UV or PRF could be simple and economic methods to gain more significant improvement of PEEK implant surface bioactivity with superior osteointegration.
Collapse
Affiliation(s)
- Dawlat Mostafa
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- College of Dentistry, The Arab Academy for Science and Technology and Maritime Transport (AASTMT), El-Alamein, Egypt.
| | - Youssef M Kassem
- Prosthodontic Department, LSUHSC School of Dentistry, LSU Health Science Center, New Orleans, LA, USA
| | | | | |
Collapse
|
10
|
Houshmand B, Rezaei Esfahroodi Z, Behnamghader A, Mohammadreza S, Azizi A, Ramezani K. Evaluation of UV photofunctionalization effect on ultrastructural properties of SLA titanium disks: An in vitro study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2023; 15:117-122. [PMID: 38357335 PMCID: PMC10862043 DOI: 10.34172/japid.2023.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/26/2023] [Indexed: 02/16/2024]
Abstract
Background The success rate of dental implants diminishes over time; the lack of osseointegration and infection are the major causes of most implant failures. One of the effective methods to improve the surface properties is to irradiate ultraviolet (UV) light. This study investigated the effect of UV photofunctionalization on the ultrasuperficial properties of sandblasted, large-grit, acid-etched (SLA) titanium discs. Methods In this in vitro study, 24 sandblasted and acid-etched titanium discs, with a lifespan of more than four weeks, were categorized into three groups (n=8): control, ultraviolet C (UVC), and ultraviolet B (UVB). Then, they were exposed to a UV light source for 48 hours at a 1-cm distance. In addition to measuring the contact angle between the liquid and the disc surface in each of the three groups, the atomic concentrations of carbon, oxygen, and nitrogen atoms were measured at three different sites on each disc. One-way ANOVA and post hoc Tukey tests were used to analyze data. Results The mean concentration of carbon atoms significantly differed in the control, UVC, and UVB groups (P<0.001). The mean concentrations of nitrogen atoms differed significantly between the three groups (P<0.001). However, the mean concentrations of oxygen atoms were not significantly different between the three groups. In examining the contact angle, wettability was higher in the UVC group than in the UVB group and higher in the UBV group than in the control group. Conclusion Photofunctionalization with UV light significantly decreased carbon and nitrogen concentrations on the surface of titanium implants, indicating that the implant's superficial hydrocarbons were eliminated. It was observed that UVC photofunctionalization was more effective than UVB photofunctionalization in reducing superficial contamination and improving wettability.
Collapse
Affiliation(s)
- Behzad Houshmand
- Department of Periodontics, Faculty of Dentistry,Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Rezaei Esfahroodi
- Department of Periodontics, Faculty of Dentistry,Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadegh Mohammadreza
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Aytan Azizi
- Department of Endodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kave Ramezani
- Department of Periodontics, Faculty of Dentistry,Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Silva JPDS, Costa RC, Nagay BE, Borges MHR, Sacramento CM, da Cruz NC, Rangel EC, Fortulan CA, da Silva JHD, Ruiz KGS, Barão VAR. Boosting Titanium Surfaces with Positive Charges: Newly Developed Cationic Coating Combines Anticorrosive and Bactericidal Properties for Implant Application. ACS Biomater Sci Eng 2023; 9:5389-5404. [PMID: 37561763 DOI: 10.1021/acsbiomaterials.3c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Along with poor implant-bone integration, peri-implant diseases are the major causes of implant failure. Although such diseases are primarily triggered by biofilm accumulation, a complex inflammatory process in response to corrosive-related metallic ions/debris has also been recognized as a risk factor. In this regard, by boosting the titanium (Ti) surface with silane-based positive charges, cationic coatings have gained increasing attention due to their ability to kill pathogens and may be favorable for corrosion resistance. Nevertheless, the development of a cationic coating that combines such properties in addition to having a favorable topography for implant osseointegration is lacking. Because introducing hydroxyl (-OH) groups to Ti is essential to increase chemical bonds with silane, Ti pretreatment is of utmost importance to achieve such polarization. In this study, plasma electrolytic oxidation (PEO) was investigated as a new route to pretreat Ti with OH groups while providing favorable properties for implant application compared with traditional hydrothermal treatment (HT). To produce bactericidal and corrosion-resistant cationic coatings, after pretreatment with PEO or HT (Step 1), surface silanization was subsequently performed via immersion-based functionalization with 3-aminopropyltriethoxysilane (APTES) (Step 2). In the end, five groups were assessed: untreated Ti (Ti), HT, PEO, HT+APTES, and PEO+APTES. PEO created a porous surface with increased roughness and better mechanical and tribological properties compared with HT and Ti. The introduction of -OH groups by HT and PEO was confirmed by Fourier transform infrared spectroscopy and the increase in wettability producing superhydrophilic surfaces. After silanization, the surfaces were polarized to hydrophobic ones, and an increase in the amine functional group was observed by X-ray photoelectron spectroscopy, demonstrating a considerable amount of positive ions. Such protonation may explain the enhanced corrosion resistance and dead bacteria (Streptococcus aureus and Escherichia coli) found for PEO+APTES. All groups presented noncytotoxic properties with similar blood plasma protein adsorption capacity vs the Ti control. Our findings provide new insights into developing next-generation cationic coatings by suggesting that a tailorable porous and oxide coating produced by PEO has promise in designing enhanced cationic surfaces targeting biomedical and dental implant applications.
Collapse
Affiliation(s)
- João Pedro Dos S Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina M Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Carlos A Fortulan
- Department of Mechanical Engineering, University of São Paulo (USP), Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - José H D da Silva
- Department of Physics, School of Sciences, São Paulo State University (UNESP), Av. Eng. Luís Edmundo C. Coube, 14-01, Bauru, São Paulo 17033-360, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
12
|
Leonardi de Oliveira Rigotti R, Dias Corpa Tardelli J, Cândido dos Reis A. Influence of antibacterial surface treatment on dental implants on cell viability: A systematic review. Heliyon 2023; 9:e13693. [PMID: 36895374 PMCID: PMC9988489 DOI: 10.1016/j.heliyon.2023.e13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
There is no consensus in the literature about the best non-cytotoxic antibacterial surface treatment for dental implants. Critically evaluate the existing literature and answer the question: "which surface treatment for dental implants made of titanium and its alloys has the greatest non-cytotoxic antibacterial activity for osteoblastic cells?" This systematic review was registered in the Open Science Framework (osf.io/8fq6p) and followed the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols. The search strategy was applied to four databases. Articles were selected that evaluated in both studies the properties of 1) antibacterial activity and 2) cytotoxicity on osteoblastic cells of titanium and their alloy dental implants when treated superficially. Systematic reviews, book chapters, observational studies, case reports, articles that studied non-dental implants, and articles that evaluated only the development of surface treatment were excluded. The Joanna Briggs Institute, a quasi-experimental study assessment tool, was adapted to assess the risk of bias. The search strategy found 1178 articles in the databases after removing duplicates in EndNote Web, resulting in 1011 articles to be evaluated by title and abstract, of which 21 were selected for full reading, of which 12 were included by eligibility criteria, and nine were excluded. Quantitative synthesis could not be performed due to the heterogeneity of the data (surface treatment, antibacterial assay, bacteria strain, cell viability assay, and cell type). Risk of bias assessment showed that ten studies were classified as low risk and two studies as moderate risk. The evaluated literature allowed us to conclude that: 1) The literature surveyed did not allow answering the question due to the heterogeneity of the studies; 2) Ten of the 12 studies evaluated presented surface treatments with non-cytotoxic antibacterial activity; 3) Adding nanomaterials, QPEI, BG, and CS, reduce the chances of bacterial resistance by controlling their adhesion by electrical forces.
Collapse
Affiliation(s)
- Renan Leonardi de Oliveira Rigotti
- Department of Dental Materials and Prosthesis; School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Juliana Dias Corpa Tardelli
- Department of Dental Materials and Prosthesis; School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthesis; School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Wen Y, Dong H, Lin J, Zhuang X, Xian R, Li P, Li S. Response of Human Gingival Fibroblasts and Porphyromonas gingivalis to UVC-Activated Titanium Surfaces. J Funct Biomater 2023; 14:jfb14030137. [PMID: 36976061 PMCID: PMC10051447 DOI: 10.3390/jfb14030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Ultraviolet (UV) photofunctionalization has been demonstrated to synergistically improve the osteoblast response and reduce biofilm formation on titanium (Ti) surfaces. However, it remains obscure how photofunctionalization affects soft tissue integration and microbial adhesion on the transmucosal part of a dental implant. This study aimed to investigate the effect of UVC (100–280 nm) pretreatment on the response of human gingival fibroblasts (HGFs) and Porphyromonas gingivalis (P. g.) to Ti-based implant surfaces. The smooth and anodized nano-engineered Ti-based surfaces were triggered by UVC irradiation, respectively. The results showed that both smooth and nano-surfaces acquired super hydrophilicity without structural alteration after UVC photofunctionalization. UVC-activated smooth surfaces enhanced the adhesion and proliferation of HGFs compared to the untreated smooth ones. Regarding the anodized nano-engineered surfaces, UVC pretreatment weakened the fibroblast attachment but had no adverse effects on proliferation and the related gene expression. Additionally, both Ti-based surfaces could effectively inhibit P. g. adhesion after UVC irradiation. Therefore, the UVC photofunctionalization could be more potentially favorable to synergistically improve the fibroblast response and inhibit P. g. adhesion on the smooth Ti-based surfaces.
Collapse
Affiliation(s)
- Yin Wen
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Hao Dong
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jiating Lin
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Xianxian Zhuang
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ruoting Xian
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- Correspondence: (P.L.); (S.L.)
| | - Shaobing Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
- First Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
- The First People’s Hospital of Kashgar Region, Kashgar 844000, China
- Correspondence: (P.L.); (S.L.)
| |
Collapse
|
14
|
Kwan JC, Dondani J, Iyer J, Muaddi HA, Nguyen TT, Tran SD. Biomimicry and 3D-Printing of Mussel Adhesive Proteins for Regeneration of the Periodontium-A Review. Biomimetics (Basel) 2023; 8:biomimetics8010078. [PMID: 36810409 PMCID: PMC9944831 DOI: 10.3390/biomimetics8010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Innovation in the healthcare profession to solve complex human problems has always been emulated and based on solutions proven by nature. The conception of different biomimetic materials has allowed for extensive research that spans several fields, including biomechanics, material sciences, and microbiology. Due to the atypical characteristics of these biomaterials, dentistry can benefit from these applications in tissue engineering, regeneration, and replacement. This review highlights an overview of the application of different biomimetic biomaterials in dentistry and discusses the key biomaterials (hydroxyapatite, collagen, polymers) and biomimetic approaches (3D scaffolds, guided bone and tissue regeneration, bioadhesive gels) that have been researched to treat periodontal and peri-implant diseases in both natural dentition and dental implants. Following this, we focus on the recent novel application of mussel adhesive proteins (MAPs) and their appealing adhesive properties, in addition to their key chemical and structural properties that relate to the engineering, regeneration, and replacement of important anatomical structures in the periodontium, such as the periodontal ligament (PDL). We also outline the potential challenges in employing MAPs as a biomimetic biomaterial in dentistry based on the current evidence in the literature. This provides insight into the possible increased functional longevity of natural dentition that can be translated to implant dentistry in the near future. These strategies, paired with 3D printing and its clinical application in natural dentition and implant dentistry, develop the potential of a biomimetic approach to overcoming clinical problems in dentistry.
Collapse
Affiliation(s)
- Jan C. Kwan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Jay Dondani
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Janaki Iyer
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hasan A. Muaddi
- Department of Oral and Maxillofacial Surgery, King Khalid University, Abha 62529, Saudi Arabia
| | - Thomas T. Nguyen
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Division of Periodontics, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Correspondence:
| |
Collapse
|
15
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
16
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
17
|
de Avila ED, Nagay BE, Pereira MMA, Barão VAR, Pavarina AC, van den Beucken JJJP. Race for Applicable Antimicrobial Dental Implant Surfaces to Fight Biofilm-Related Disease: Advancing in Laboratorial Studies vs Stagnation in Clinical Application. ACS Biomater Sci Eng 2022; 8:3187-3198. [PMID: 35816289 DOI: 10.1021/acsbiomaterials.2c00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Across years, potential strategies to fight peri-implantitis have been notoriously explored through the antimicrobial coating implant surfaces capable of interfering with the bacterial adhesion process. However, although experimental studies have significantly advanced, no product has been marketed so far. For science to reach the society, the commercialization of research outcomes is necessary to provide real advancement in the biomedical field. Therefore, the aim of this study was to investigate the challenges involved in the development of antimicrobial dental implant surfaces to fight peri-implantitis, through a systematic search. Research articles reporting antimicrobial dental implant surfaces were identified by searching PubMed, Scopus, Web of Science, The Cochrane Library, Embase, and System of Information on Grey Literature in Europe, between 2008 and 2020. A total of 1778 studies were included for quality assessment and the review. An impressive number of 1655 articles (93,1%) comprised in vitro studies, whereas 123 articles refer to in vivo investigations. From those 123, 102 refer to animal studies and only 21 articles were published on the clinical performance of antibacterial dental implant surfaces. The purpose of animal studies is to test how safe and effective new treatments are before they are tested in people. Therefore, the discrepancy between the number of published studies clearly reveals that preclinical investigations still come up against several challenges to overcome before moving forward to a clinical setting. Additionally, researchers need to recognize that the complex journey from lab to market requires more than a great idea and resources to develop a commercial invention; research teams must possess the skills necessary to commercialize an invention.
Collapse
Affiliation(s)
- Erica D de Avila
- Dental Research Division, Guarulhos University (UNG), Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil.,Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaita, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Marta M A Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaita, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaita, 1680, Araraquara, São Paulo 14801-903, Brazil
| | | |
Collapse
|
18
|
Abdullatif FA, Al-Askar M. Does Ultraviolet Radiation Exhibit Antimicrobial Effect against Oral Pathogens Attached on Various Dental Implant Surfaces? A Systematic Review. Dent J (Basel) 2022; 10:dj10060093. [PMID: 35735635 PMCID: PMC9221630 DOI: 10.3390/dj10060093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Dental implant therapy is currently identified as the most effective treatment for edentulous patient. However, peri-implant inflammations were found to be one of the most common complications that leads to the loss and failure of dental implantation. Ultraviolet (UV) radiation has been proposed to enhance bone integration and reduce bacterial attachment. In this study, we aimed to systematically review the current evidence regarding the antimicrobial effect of UV on different dental implant surfaces. Methods: Five databases including PubMed, Scopus, Web of science, VHL, and Cochran Library were searched to retrieve relevant articles. All original reports that examined the effect of the application of UV radiation on dental implants were included in our study. Results: A total of 16 in vitro studies were included in this systematic review. Polymethyl methacrylate UV radiation has induced a significant decrease in bacterial survival in PMMA materials, with an increased effect by modification with 2.5% and 5% TiO2 nanotubes. UV-C showed a superior effect to UV-A in reducing bacterial attachment and accumulation. UV wavelength of 265 and 285 nm showed powerful bactericidal effects. UV of 365 nm for 24 h had the highest inhibition of bacterial growth in ZnO coated magnesium alloys. In UV-irradiated commercially pure titanium surfaces treated with plasma electrolytic oxidation, silver ion application, heat or alkali had shown significant higher bactericidal effect vs non-irradiated treated surfaces than the treatment with any of them alone. UVC and gamma-ray irradiation increased the hydrophilicity of zirconia surface, compared to the dry heat. Conclusion: UV radiation on Ti surfaces exhibited significant antibacterial effects demonstrated through the reduction in bacterial attachment and biofilm formation with suppression of bacterial cells growth. Combination of UV and treated surfaces with alkali, plasma electrolytic oxidation, silver ion application or heat enhance the overall photocatalytic antimicrobial effect.
Collapse
|
19
|
Zhao H, Bai N, Zhang Q, Wang Y, Jiang W, Yang J. Preparation of mussel-inspired silver/polydopamine antibacterial biofilms on Ti-6Al-4V for dental applications. RSC Adv 2022; 12:6641-6648. [PMID: 35424626 PMCID: PMC8982268 DOI: 10.1039/d1ra06634j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
The properties of osseointegration and antibacterial ability is vital import for dental materials. Herein, we designed the multilayer TC4-Ag-polydopamine coatings, to provide TC4 with slow-release antibacterial properties whilst maintaining cytocompatibility. In brief, thickness of Ag inner layer can be easily controlled by magnetron sputtering technology. The resulting top polydopamine layer protected the Ag well from corrosion and gave a sustained release of Ag+ up to one month. In addition, the prepared TC4-Ag-polydopamine samples with Ag thickness of 20 and 30 nm, showed high hydrophilic performance with the contact-angle less than 20°, low cytotoxicity and good cytocompatibility. Expectedly, it could become a prospective candidate for future slow-release antibacterial dental materials.
Collapse
Affiliation(s)
- Hongmei Zhao
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Na Bai
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Ying Wang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Wenjing Jiang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Jianjun Yang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| |
Collapse
|
20
|
Cordeiro JM, Nagay BE, Dini C, Souza JG, Rangel EC, da Cruz NC, Yang F, van den Beucken JJ, Barão VA. Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112550. [DOI: 10.1016/j.msec.2021.112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
|
21
|
Guo T, Oztug NAK, Han P, Ivanovski S, Gulati K. Influence of sterilization on the performance of anodized nanoporous titanium implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112429. [PMID: 34702514 DOI: 10.1016/j.msec.2021.112429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022]
Abstract
Towards clinical translation of bioactive nano-engineered titanium implants, achieving appropriate sterilization and understanding its influence on the modified implant characteristics is essential. With limited studies exploring the influence of sterilization techniques on electrochemically anodized titanium with TiO2 nanostructures, we aimed to advance this domain by performing an in-depth evaluation of the influence of common sterilization techniques (ethanol immersion, various UV irradiation times, gamma irradiation, and dry/wet autoclaving) on TiO2 nanopores fabricated on micro-rough Ti surfaces (dual micro-nano) via single step anodization. Various sterilized surfaces were systematically compared in terms of topographical, chemical, crystalline, wettability and mechanical characteristics. Next, we investigated the protein adhesion capacity and functions of primary gingival fibroblasts (proliferation, adhesion/alignment and spreading morphology) to compare the bioactivity of the sterilized nanopores. Ethanol immersion, gamma irradiation and UV irradiation conserved the topography of the fabricated nanopores, while autoclave sterilization (both dry and wet) compromised the nanoporous structures. Various duration of UV-sterilization resulted in no significant changes in the surface topography and chemistry of the fabricated TNPs. Our findings revealed that UV irradiation is the most appropriate technique to sterilize nano-engineered titanium implants for appropriate wettability, protein adhesion capacity and enhanced metabolism and proliferation of human gingival fibroblasts (hGFs). This study systematically investigated the influence of sterilization on anodized nano-engineered titanium implants towards achieving reproducible outcomes (in terms of topography, chemistry and bioactivity), and found that UV irradiation holds great promise for application across different nano-engineered metal surfaces.
Collapse
Affiliation(s)
- Tianqi Guo
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Necla Asli Kocak Oztug
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Istanbul University, Faculty of Dentistry, Department of Periodontology, Istanbul 34116, Turkey
| | - Pingping Han
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia.
| | - Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia.
| |
Collapse
|
22
|
Molaei M, Attarzadeh N, Fattah-Alhosseini A. Tailoring the biological response of zirconium implants using zirconia bioceramic coatings: A systematic review. J Trace Elem Med Biol 2021; 66:126756. [PMID: 33831798 DOI: 10.1016/j.jtemb.2021.126756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The poor biological performance of zirconium implants in the human body resulting from their bio-inertness and vulnerability to corrosion and bacterial activity reflects the need for further studies on substitution or performing the surface modification. The suggestion of employing zirconia (ZrO2) bioceramic coatings for surface modification seems beneficial. OBJECTIVES This systematic review aims to identify and summarize existing documents reporting the biological responses for ZrO2 coatings produced by the PEO process on zirconium implants. METHODS PubMed, Scopus, and Web of Science international databases were searched for the original and English-language studies published between 2000 and 2021. All publications reported at least one study about in-vitro (cellular and immersion studies), in-vivo (animal studies), and antibacterial topics for ZrO2-PEO coated zirconium implants. RESULTS Throughout the initial search, 496 publications were found, and 296 papers remained following the elimination of duplicates. Finally, after multiple screening and eligibility assessments, 25 publications were qualified and included in the review. Among them, 25 in-vitro (cellular and immersion in SBF and Hanks' solutions studies), one in-vivo (animal studies), and eight antibacterial studies were found. CONCLUSION The ZrO2 coated samples demonstrate no cytotoxicity, high cell viability rate, and excellent biocompatibility. However, changing the solution composition and electrical parameters during the PEO procedures result in significant changes to in-vitro responses. As an instance, the ZrO2 coating surface demonstrates greater biocompatibility after irradiated by UV, which makes the surface more suitable for cell growth. Due to weak apatite-forming ability, the zirconium sample shows low bioactivity in SBF. However, most cases (13 out of 16) show that the specific morphology and chemical composition of the ZrO2 coating promote apatite-forming ability with good bioactivity in SBF. Nevertheless, few papers (three out of 16) showed that the ZrO2 coatings immersed in SBF had no apatite precipitates and so no bioactivity. These cases limit the bioactivity enhancement to treatment by UV-light irradiation, hydrothermal and chemical treatment, thermal evaporation, and cathodic polarization post-treatment on ZrO2 coatings. Both zirconium and ZrO2 coated samples do not show apatite-forming ability in Hanks' solution. The ZrO2 coated implant with the bone together indicates a greater shear strength and rapid new bone formation ability during 12 weeks because of containing Ca-P compounds and porous structure. The UV post-treated ZrO2 coating induces faster new bone formation and firmer connection of bond with bone than those of untreated ZrO2 coatings. A stronger antibacterial activity of ZrO2 coatings is confirmed in half of the selected papers (four out of eight studies) compared to the bare zirconium samples. The antibacterial protection of ZrO2 coatings can be influenced by the PEO procedure variables, i.e., solution composition, electrical parameters, and treatment time. In three cases, the antibacterial activity of ZrO2 coatings is enhanced by deposition of Zn, Ag, or Cu antibacterial layers through thermal evaporation post-treatment.
Collapse
Affiliation(s)
- Maryam Molaei
- Department of Materials Engineering, Bu-Ali Sina University, Hamedan, 65178-38695, Iran
| | - Navid Attarzadeh
- Environmental Science and Engineering Program, University of Texas at El Paso, El Paso, TX, 79968, USA
| | | |
Collapse
|
23
|
Barberi J, Spriano S. Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1590. [PMID: 33805137 PMCID: PMC8037091 DOI: 10.3390/ma14071590] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Titanium and its alloys, specially Ti6Al4V, are among the most employed materials in orthopedic and dental implants. Cells response and osseointegration of implant devices are strongly dependent on the body-biomaterial interface zone. This interface is mainly defined by proteins: They adsorb immediately after implantation from blood and biological fluids, forming a layer on implant surfaces. Therefore, it is of utmost importance to understand which features of biomaterials surfaces influence formation of the protein layer and how to guide it. In this paper, relevant literature of the last 15 years about protein adsorption on titanium-based materials is reviewed. How the surface characteristics affect protein adsorption is investigated, aiming to provide an as comprehensive a picture as possible of adsorption mechanisms and type of chemical bonding with the surface, as well as of the characterization techniques effectively applied to model and real implant surfaces. Surface free energy, charge, microroughness, and hydroxylation degree have been found to be the main surface parameters to affect the amount of adsorbed proteins. On the other hand, the conformation of adsorbed proteins is mainly dictated by the protein structure, surface topography at the nano-scale, and exposed functional groups. Protein adsorption on titanium surfaces still needs further clarification, in particular concerning adsorption from complex protein solutions. In addition, characterization techniques to investigate and compare the different aspects of protein adsorption on different surfaces (in terms of roughness and chemistry) shall be developed.
Collapse
Affiliation(s)
- Jacopo Barberi
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | | |
Collapse
|
24
|
Arroyo-Lamas N, Arteagoitia I, Ugalde U. Surface Activation of Titanium Dental Implants by Using UVC-LED Irradiation. Int J Mol Sci 2021; 22:ijms22052597. [PMID: 33807532 PMCID: PMC7961349 DOI: 10.3390/ijms22052597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 01/31/2023] Open
Abstract
Organic contaminants significantly limit the bioactivity of titanium implants, resulting in the degradation known as the ageing of titanium. To reactivate the surfaces, they can be photofunctionalized, i.e., irradiated with C-range ultraviolet (UVC) light. This descriptive in vitro study compares the effectiveness of novel light-emitting diode (LED) technology to remove contaminant hydrocarbons from three different commercially available titanium dental implants: THD, TiUnite, and SLA. The surface topography and morphology were characterized by scanning electron microscopy (SEM). The chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS), before and after the lighting treatment, by a pair of closely placed UVC (λ = 278 nm) and LED devices for 24 h. SEM analysis showed morphological differences at the macro- and micro-scopic level. XPS analysis showed a remarkable reduction in the carbon contents after the UVC treatment: from 25.6 to 19.5 C at. % (carbon atomic concentration) in the THD; from 30.2 to 20.2 C at. % in the TiUnite; from 26.1 to 19.2 C at. % in the SLA surface. Simultaneously, the concentration of oxygen and titanium increased. Therefore, LED-based UVC irradiation decontaminated titanium surfaces and improved the chemical features of them, regardless of the kind of surface.
Collapse
Affiliation(s)
- Nagore Arroyo-Lamas
- Medicine and Surgery Program, PhD School, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain;
| | - Iciar Arteagoitia
- Maxillofacial Group, Stomatology Department, BioCruces Health Research Institute, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain
- Correspondence: ; Tel.: +34-946-01 2929
| | - Unai Ugalde
- APERT Research Group, Department of Electronic Technology, University of the Basque Country, Bilbao, 48013 Bizkaia, Spain;
| |
Collapse
|
25
|
Verza BS, van den Beucken JJJP, Brandt JV, Jafelicci Junior M, Barão VAR, Piazza RD, Tagit O, Spolidorio DMP, Vergani CE, de Avila ED. A long-term controlled drug-delivery with anionic beta cyclodextrin complex in layer-by-layer coating for percutaneous implants devices. Carbohydr Polym 2021; 257:117604. [PMID: 33541637 DOI: 10.1016/j.carbpol.2020.117604] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
This study demonstrated a drug-delivery system with anionic beta cyclodextrin (β-CD) complexes to retain tetracycline (TC) and control its release from multilayers of poly(acrylic acid) (PAA) and poly(l-lysine) (PLL) in a ten double layers ([PAA/PLL]10) coating onto titanium. The drug-delivery capacity of the multilayer system was proven by controlled drug release over 15 days and sustained released over 30 days. Qualitative images confirmed TC retention within the layer-by-layer (LbL) over 30 days of incubation. Antibacterial activity of TC/anionic β-CD released from the LbL was established against Staphylococcus aureus species. Remarkably, [PAA/PLL]10/TC/anionic β-CD antibacterial effect was sustained even after 30 days of incubation. The non-cytotoxic effect of the multilayer system revealed normal human gingival fibroblast growth. It is expected that this novel approach and the chemical concept to improve drug incorporation into the multilayer system will open up possibilities to make the drug release system more applicable to implantable percutaneous devices.
Collapse
Affiliation(s)
- Beatriz S Verza
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Humaita, 1680 Araraquara, São Paulo, Brazil.
| | | | - João V Brandt
- Department of Physical Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14801-970, Brazil.
| | - Miguel Jafelicci Junior
- Department of Physical Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14801-970, Brazil.
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil.
| | - Rodolfo D Piazza
- Department of Physical Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14801-970, Brazil.
| | - Oya Tagit
- Department of Tumor Immunology, Radboudumc and Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid, 28 Nijmegen, the Netherlands.
| | - Denise M P Spolidorio
- Department of Physiology and Pathology, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo 14801-903, Brazil.
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Humaita, 1680 Araraquara, São Paulo, Brazil.
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Humaita, 1680 Araraquara, São Paulo, Brazil.
| |
Collapse
|
26
|
Pantaroto HN, de Almeida AB, Gomes OP, Matos AO, Landers R, Casarin RCV, da Silva JHD, Nociti FH, Barão VAR. Outlining cell interaction and inflammatory cytokines on UV-photofunctionalized mixed-phase TiO 2 thin film. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111438. [PMID: 33255031 DOI: 10.1016/j.msec.2020.111438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/05/2020] [Accepted: 08/22/2020] [Indexed: 12/25/2022]
Abstract
Photofunctionalization mediated by ultraviolet (UV) light seems to be a promising approach to improve the physico-chemical characteristics and the biological response of titanium (Ti) dental implants. Seeing that photofunctionalization is able to remove carbon from the surface, besides to promote reactions on the titanium dioxide (TiO2) layer, coating the Ti with a stable TiO2 film could potentialize the UV effect. Thus, here we determined the impact of UV-photofunctionalized mixed-phase (anatase and rutile) TiO2 films on the physico-chemical properties of Ti substrate and cell biology. Mixed-phase TiO2 films were grown by radiofrequency magnetron sputtering on commercially pure titanium (cpTi) discs, and samples were divided as follow: cpTi (negative control), TiO2 (positive control), cpTi UV, TiO2 UV (experimental). Photofunctionalization was performed using UVA (360 nm - 40 W) and UVC (250 nm - 40 W) lamps for 48 h. Surfaces were analyzed in terms of morphology, topography, chemical composition, crystalline phase, wettability and surface free energy. Pre-osteoblastic cells (MC3T3E1) were used to assess cell morphology and adhesion, metabolism, mineralization potential and cytokine secretion (IFN-γ, TNF-α, IL-4, IL-6 and IL-17). TiO2-coated surfaces exhibited granular surface morphology and greater roughness. Photofunctionalization increased wettability (p < 0.05) and surface free energy (p < 0.001) on both surface conditions. TiO2-treated groups featured normal cell morphology and spreading, and greater cellular metabolic activity at 2 and 4 days (p < 0.05), whereas UV-photofunctionalized surfaces enhanced cell metabolism, cell adhered area, and calcium deposition (day 14) (p < 0.05). In general, assessed proteins were found slightly affected by either UV or TiO2 treatments. Altogether, our findings suggest that UV-photofunctionalized TiO2 surface has the potential to improve pre-osteoblastic cell differentiation and the ability of cells to form mineral nodules by modifying Ti physico-chemical properties towards a more stable context. UV-modified surfaces modulate the secretion of key inflammatory markers.
Collapse
Affiliation(s)
- Heloisa Navarro Pantaroto
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Amanda B de Almeida
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Orisson P Gomes
- São Paulo State University (UNESP), Department of Physics, Av. Eng. Luís Edmundo C. Coube, 14-01, Bauru, São Paulo 17033-360, Brazil
| | - Adaias O Matos
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Richard Landers
- University of Campinas (UNICAMP), Gleb Wataghin Physics Institute, Department of Applied Physics, R. Sérgio Buarque de Holanda, 777, Campinas, São Paulo 13083-859, Brazil
| | - Renato Corrêa V Casarin
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - José Humberto D da Silva
- São Paulo State University (UNESP), Department of Physics, Av. Eng. Luís Edmundo C. Coube, 14-01, Bauru, São Paulo 17033-360, Brazil
| | - Francisco H Nociti
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontology, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil.
| |
Collapse
|
27
|
Decontamination of Ti Oxide Surfaces by Using Ultraviolet Light: Hg-Vapor vs. LED-Based Irradiation. Antibiotics (Basel) 2020; 9:antibiotics9110724. [PMID: 33105704 PMCID: PMC7690427 DOI: 10.3390/antibiotics9110724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
C-range Ultraviolet (UVC) mercury (Hg)-vapor lamps have shown the successful decontamination of hydrocarbons and antimicrobial effects from titanium surfaces. This study focused on surface chemistry modifications of titanium dental implants by using two different light sources, Hg-vapor lamps and Light Emitting Diodes (LEDs), so as to compare the effectivity of both photofunctionalization technologies. Two different devices, a small Hg-vapor lamp (λ = 254 nm) and a pair of closely placed LEDs (λ = 278 nm), were used to irradiate the implants for 12 min. X-ray Photoelectron Spectroscopy (XPS) was employed to characterize the chemical composition of the surfaces, analysing the samples before and after the lighting treatment, performing a wide and narrow scan around the energy peaks of carbon, oxygen and titanium. XPS analysis showed a reduction in the concentration of surface hydrocarbons in both UVC technologies from around 26 to 23.4 C at.% (carbon atomic concentration). Besides, simultaneously, an increase in concentration of oxygen and titanium was observed. LED-based UVC photofunctionalization has been suggested to be as effective a method as Hg-vapor lamps to remove the hydrocarbons from the surface of titanium dental implants. Therefore, due to the increase in worldwide mercury limitations, LED-based technology could be a good alternative decontamination source.
Collapse
|
28
|
Kunrath MF, Vargas ALM, Sesterheim P, Teixeira ER, Hubler R. Extension of hydrophilicity stability by reactive plasma treatment and wet storage on TiO 2 nanotube surfaces for biomedical implant applications. J R Soc Interface 2020; 17:20200650. [PMID: 32993437 PMCID: PMC7536041 DOI: 10.1098/rsif.2020.0650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Micro and nanoscale changes allow the optimization of physico-chemical properties of titanium implant surfaces. Recently UV and plasma treatments have allowed surface hydrophilicity to take increased prominence; however, this beneficial effect is short-lived. The aim of this study is to investigate methodologies post-anodizing treatment to generate and maintain high surface hydrophilicity along with high biocompatibility. Anodized surfaces were characterized regarding physical-chemical properties. Then, surface wettability with nanomorphology was evaluated at different times and with distinct post-treatments: as deposited, with a reactive plasma and UV-light post-treatment, stored in air or deionized (DI) water. Adhesion, alkaline phosphatase (ALP) activity and bone cell viability tests were executed after the incremental treatments. The anodizing process generated a surface with TiO2 nanotubes morphology and micro-roughness. Plasma-treated surfaces resulted in the most hydrophilic samples and this property was maintained for a longer period when those were stored in DI water (angle variation of 7° to 12° in 21 days). Furthermore, plasma post-treatment changed the titanium surface crystalline phase from amorphous to anatase. Anodized surfaces modified by reactive plasma and stored in DI water suggest better hydrophilicity stability, biocompatibility, ALP activity and achievement of crystalline phase alteration, indicating future potential use on biomedical implants.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, 90619-900, Porto Alegre - RS, Brazil
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 1429, 90619-900, Porto Alegre - RS, Brazil
| | - André L. M. Vargas
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 1429, 90619-900, Porto Alegre - RS, Brazil
| | - Patrícia Sesterheim
- Institute of Cardiology, R. Domingos Crescencio, P.O. Box 132, 90650-090, Porto Alegre - RS, Brazil
| | - Eduardo R. Teixeira
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, 90619-900, Porto Alegre - RS, Brazil
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 1429, 90619-900, Porto Alegre - RS, Brazil
| |
Collapse
|
29
|
Dini C, Nagay BE, Magno MB, Maia LC, Barão VAR. Photofunctionalization as a suitable approach to improve the osseointegration of implants in animal models-A systematic review and meta-analysis. Clin Oral Implants Res 2020; 31:785-802. [PMID: 32564392 DOI: 10.1111/clr.13627] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVES To determine whether photofunctionalization influences dental implant osseointegration. MATERIAL AND METHODS Data on osseointegration rates were extracted from 8 databases, based on bone-to-implant contact (BIC) and pushout tests. Internal validity was accessed through the SYRCLE risk of bias tool for animal experimental studies. Meta-analyses were performed for investigation of the influence of photofunctionalization on implant osseointegration, with a random effect and a confidence interval of 95%. The certainty of evidence was accessed through the GRADE approach. RESULTS Thirty-four records were identified, and 10 were included in the meta-analysis. Photofunctionalized implants showed higher mean values for BIC in rabbits (MD 6.92 [1.01, 12.82], p = .02), dogs (MD 23.70 [10.23, 37.16], p = .001), rats (MD 20.93 [12.91, 28.95], p < .0001), and in the pooled BIC analyses (MD 14.23 [7.80, 20.66], p < .0001) compared to those in control implants in the overall assay. Conversely, at late healing periods, the pooled BIC meta-analyses showed no statistically significant differences (p > .05) for photofunctionalized and control implants at 12 weeks of follow-up. For pushout analysis, photofunctionalized implants presented greater bone strength integration (MD 19.92 [13.88, 25.96], p < .0001) compared to that of control implants. The heterogeneity between studies ranged from "not important" to "moderate" for rabbits I2 = 24%, dogs I2 = 0%, rats I2 = 0%, and pooled BIC (I2 = 49%), while considerable heterogeneity was observed for pushouts (I2 = 90%). CONCLUSION Photofunctionalization improves osseointegration in the initial healing period of implants, as summarized from available data from rabbit, dog, and rat in vivo models.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Marcela Baraúna Magno
- Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
30
|
Synthesis of bioactive glass-based coating by plasma electrolytic oxidation: Untangling a new deposition pathway toward titanium implant surfaces. J Colloid Interface Sci 2020; 579:680-698. [PMID: 32652323 DOI: 10.1016/j.jcis.2020.06.102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
HYPOTHESIS Although bioactive glass (BG) particle coatings were previously developed by different methods, poor particle adhesion to surfaces and reduced biological effects because of glass crystallization have limited their biomedical applications. To overcome this problem, we have untangled, for the first time, plasma electrolytic oxidation (PEO) as a new pathway for the synthesis of bioactive glass-based coating (PEO-BG) on titanium (Ti) materials. EXPERIMENTS Electrolyte solution with bioactive elements (Na2SiO3-5H2O, C4H6O4Ca, NaNO3, and C3H7Na2O6P) was used as a precursor source to obtain a 45S5 bioglass-like composition on a Ti surface by PEO. Subsequently, the PEO-BG coating was investigated with respect to its surface, mechanical, tribological, electrochemical, microbiological, and biological properties, compared with those of machined and sandblasted/acid-etched control surfaces. FINDINGS PEO treatment produced a coating with complex surface topography, Ti crystalline phases, superhydrophilic status, chemical composition, and oxide layer similar to that of 45S5-BG (~45.0Si, 24.5 Ca, 24.5Na, 6.0P w/v%). PEO-BG enhanced Ti mechanical and tribological properties with higher corrosion resistance. Furthermore, PEO-BG had a positive influence in polymicrobial biofilms, by reducing pathogenic bacterial associated with biofilm-related infections. PEO-BG also showed higher adsorption of blood plasma proteins without cytotoxic effects on human cells, and thus may be considered a promising biocompatible approach for biomedical implants.
Collapse
|