1
|
Ben Amor I, Hemmami H, Grara N, Aidat O, Ben Amor A, Zeghoud S, Bellucci S. Chitosan: A Green Approach to Metallic Nanoparticle/Nanocomposite Synthesis and Applications. Polymers (Basel) 2024; 16:2662. [PMID: 39339126 PMCID: PMC11436026 DOI: 10.3390/polym16182662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Chitosan, a naturally occurring biopolymer derived from chitin, has emerged as a highly promising instrument for the production and application of metal nanoparticles. The present review delves into the several functions of chitosan in the development and operation of metal nanoparticles, emphasizing its aptitudes as a green reducing agent, shape-directing agent, size-controlling agent, and stabilizer. Chitosan's special qualities make it easier to manufacture metal nanoparticles and nanocomposites with desired characteristics. Furthermore, there is a lot of promise for chitosan-based nanocomposites in a number of fields, such as metal removal, water purification, and photoacoustic, photothermal, antibacterial, and photodynamic therapies. This thorough analysis highlights the potential application of chitosan in the advancement of nanotechnology and the development of medicinal and environmental solutions.
Collapse
Affiliation(s)
- Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
| | - Nedjoud Grara
- Department of Biology, Faculty of Nature, Life Sciences, Earth and Universe Sciences, University 8 May 1945, P.O. Box 401, Guelma 24000, Algeria
| | - Omaima Aidat
- Laboratoire de Technologie Alimentaire et de Nutrition, Abdelhamid Ibn Badis University, Mostaganem 27000, Algeria;
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (I.B.A.); (H.H.); (A.B.A.); (S.Z.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
| | - Stefano Bellucci
- National Institute of Materials Physics, Atomistilor 405 A, 077125 Magurele, Romania
- INFN—Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
2
|
Li Z, Chen Q, Wen G, Jiang Z. Mxene Quantum Dot Nanosurface Molecularly Imprinted Polymer Resonance Rayleigh Scattering Probe for Highly Sensitive and Selective Determination of Thiocyanate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17358-17366. [PMID: 39110838 DOI: 10.1021/acs.langmuir.4c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
In this article, a nanosurface molecularly imprinted polymer (MQD@MIP) resonance Rayleigh scattering (RRS) spectral probe for SCN- was prepared by sol-gel method, using Mxene quantum dot as a matrix, thiocyanate (SCN-) as a template ion, (3-aminopropyl) triethoxysilane (APTES) as a functional monomer, tetraethoxysilane (TEOS) as the cross-linker, and ammonia as the initiator. The probe produced an RRS peak at 370 nm and exhibits a strong RRS energy transfer (RRS-ET) effect when the MQD@MIP probe identifies SCN-. As the concentration of SCN- increased, the RRS-ET was enhanced, and the signal value of the system decreased linearly at 370 nm, with a determination range of 0.87-5.22 μg/L, and a detection limit of 0.37 μg/L SCN-. This detection method has the characteristics of simplicity, sensitivity, and specific recognition. The RRS method was used to determine SCN- in the sample, with relative standard deviation of 1.95-10.98% and recovery of 89.0-102.8%.
Collapse
Affiliation(s)
- Zhenmin Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| | - Qianmiao Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| |
Collapse
|
3
|
Dash S, Majood M, Meena R, Mukherjee M, Dinda AK, Kuanr BK, Mohanty S. Biocompatible polymer-coated magneto-fluorescent super nanoparticles for the homing of mesenchymal stem cells. Int J Biol Macromol 2024; 273:132794. [PMID: 38834114 DOI: 10.1016/j.ijbiomac.2024.132794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Stem cell plays an important role in the clinical field. However, the effective delivery of stem cells to the targeted site relies on the efficient homing of the cells to the site of injury. In view of that, fluorescent magnetic nanoparticles stick out due to their wide range of enabling functions including cellular homing and tracking. The present study unravels the synthesis of polymer-coated biocompatible and fluorescent magnetic nanoparticles (FMNPs) by a single-step hydrothermal synthesis method. Importantly, the facile method developed the biological super nanoparticles consisting of the magnetic core, which is surrounded by the fluorescent nanodot-decorated polymeric shell. The synthesized particles showed an amorphous nature, and superparamagnetic properties, with efficient fluorescence properties of emission at the blue range (̴ 410 nm). The FMNP labeling showed the mesenchymal stem cell (MSC) homing to the desired site in the presence of an external magnetic field. The in-house synthesized nanoparticles showed significant cytocompatibility and hemocompatibility in vitro as well as in vivo conditions owing to their surface coating. This unprecedented work advances the efficient internalization of FMNPs in MSCs and their enhanced migration potential provides a breakthrough in stem cell delivery for therapeutic applications. STATEMENT OF SIGNIFICANCE: The bi-modal fluorescent magnetic nanoparticles hold a promising role in the biomedical field for mesenchymal stem cell homing and tracking. Hence, in this study, for the first time, we have synthesized the fluorescent magnetic nanoparticle with polymer coating via an easy single-step method. The nanoparticle with a polymer coat enhanced the biocompatibility and effortless internalization of the nanoparticle into mesenchymal stem cells without hampering the native stem cell properties. Furthermore, the enhanced migration potential of such magnetized stem cells and their homing at the target site by applying an external magnetic field opened up avenues for the smart delivery of mesenchymal stem cells at complex sites such as retina for the tissue regeneration.
Collapse
Affiliation(s)
- Saumya Dash
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Misba Majood
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India; Amity Institute of Click Chemistry Research and Studies, Amity University, Uttar Pradesh, 201303 Noida, India
| | - Ravindra Meena
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Uttar Pradesh, 201303 Noida, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bijoy K Kuanr
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
4
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
5
|
Nwaji N, Gwak J, Nguyen MC, Nguyen HQ, Kang H, Choi Y, Kim Y, Chen H, Lee J. Emerging potentials of Fe-based nanomaterials for chiral sensing and imaging. Med Res Rev 2024; 44:897-918. [PMID: 38084636 DOI: 10.1002/med.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 04/11/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Fe-based nanostructures have possessed promising properties that make it suitable for chiral sensing and imaging applications owing to their ultra-small size, non-toxicity, biocompatibility, excellent photostability, tunable fluorescence, and water solubility. This review summarizes the recent research progress in the field of Fe-based nanostructures and places special emphases on their applications in chiral sensing and imaging. The synthetic strategies to prepare the targeted Fe-based structures were also introduced. The chiral sensing and imaging applications of the nanostructures are discussed in details.
Collapse
Affiliation(s)
- Njemuwa Nwaji
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Juyong Gwak
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - My-Chi Nguyen
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hyojin Kang
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Youngmi Kim
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Jaebeom Lee
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Shahid H, Shah AA, Shah Bukhari SNU, Naqvi AZ, Arooj I, Javeed M, Aslam M, Chandio AD, Farooq M, Gilani SJ, Bin Jumah MN. Synthesis, Characterization, and Biological Properties of Iron Oxide Nanoparticles Synthesized from Apis mellifera Honey. Molecules 2023; 28:6504. [PMID: 37764280 PMCID: PMC10534332 DOI: 10.3390/molecules28186504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Green approaches for nanoparticle synthesis have emerged as biocompatible, economical, and environment-friendly alternatives to counteract the menace of microbial drug resistance. Recently, the utilization of honey as a green source to synthesize Fe2O3-NPs has been introduced, but its antibacterial activity against one of the opportunistic MDR pathogens, Klebsiella pneumoniae, has not been explored. Therefore, this study employed Apis mellifera honey as a reducing and capping agent for the synthesis of iron oxide nanoparticles (Fe2O3-NPs). Subsequent to the characterization of nanoparticles, their antibacterial, antioxidant, and anti-inflammatory properties were appraised. In UV-Vis spectroscopic analysis, the absorption band ascribed to the SPR peak was observed at 350 nm. XRD analysis confirmed the crystalline nature of Fe2O3-NPs, and the crystal size was deduced to be 36.2 nm. Elemental analysis by EDX validated the presence of iron coupled with oxygen in the nanoparticle composition. In ICP-MS, the highest concentration was of iron (87.15 ppm), followed by sodium (1.49 ppm) and other trace elements (<1 ppm). VSM analysis revealed weak magnetic properties of Fe2O3-NPs. Morphological properties of Fe2O3-NPs revealed by SEM demonstrated that their average size range was 100-150 nm with a non-uniform spherical shape. The antibacterial activity of Fe2O3-NPs was ascertained against 30 clinical isolates of Klebsiella pneumoniae, with the largest inhibition zone recorded being 10 mm. The MIC value for Fe2O3-NPs was 30 µg/mL. However, when mingled with three selected antibiotics, Fe2O3-NPs did not affect any antibacterial activity. Momentous antioxidant (IC50 = 22 µg/mL) and anti-inflammatory (IC50 = 70 µg/mL) activities of Fe2O3-NPs were discerned in comparison with the standard at various concentrations. Consequently, honey-mediated Fe2O3-NP synthesis may serve as a substitute for orthodox antimicrobial drugs and may be explored for prospective biomedical applications.
Collapse
Affiliation(s)
- Hamna Shahid
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan 66000, Pakistan; (H.S.); (M.J.)
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan; (A.A.S.); (A.D.C.)
| | - Syed Nizam Uddin Shah Bukhari
- Department of Basic Science and Humanities, Dawood University of Engineering and Technology, Karachi 74800, Pakistan;
| | - Anjum Zehra Naqvi
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Iqra Arooj
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan 66000, Pakistan; (H.S.); (M.J.)
| | - Mehvish Javeed
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan 66000, Pakistan; (H.S.); (M.J.)
| | - Muhammad Aslam
- Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg, Russia;
| | - Ali Dad Chandio
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan; (A.A.S.); (A.D.C.)
| | - Muhammad Farooq
- Pakistan Council of Scientific and Industrial Research (PCSIR), PCSIR Head Office, 01-Constitution Avenue, Sector G-5/2, Islamabad 44000, Pakistan;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - May Nasser Bin Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
7
|
Einafshar E, Einafshar N, Khazaei M. Recent Advances in MXene Quantum Dots: A Platform with Unique Properties for General-Purpose Functional Materials with Novel Biomedical Applications. Top Curr Chem (Cham) 2023; 381:27. [PMID: 37670112 DOI: 10.1007/s41061-023-00439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Developing new, high-performance materials is a prerequisite for technological advancement. In comparison to bulk materials, quantum dots have a number of good advantages due to their small size, high surface area, and quantum dimensions. Quantum dots, two-dimensional materials with lateral dimensions less than 100 nm, can be generated by the quantum confinement effect. Mxene quantum dots (MQDs) retain some of their two-dimensional characteristics. They also exhibit novel physicochemical properties, including enhanced dispersibility in aqueous and nonaqueous phases, modification or doping capabilities, and photoluminescence. MQDs, due to their unique and diverse properties, have been receiving a great deal of attention as new members of the Mxene group and wide use for biotechnology, bioimaging, optoelectronics, catalysis, cancer therapy, etc. This review aims to provide an overview of the synthesis of MQDs, their optical properties, and their cancer therapy applications. MQDs exhibit remarkable photothermal and photodynamic features and can be suitable for bioimaging. In addition to obtaining bioimaging, photothermal therapy (PTT) and photodynamic therapy (PDT) effects simultaneously, MQDs have high biocompatibility in vitro and in vivo, providing evidence of their potential clinical utility. Herein, recent developments and future prospects concerning MQDs biomedical applications are discussed.
Collapse
Affiliation(s)
- Elham Einafshar
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nafiseh Einafshar
- Faculty of Civil Engineering, Quchan University of Technology, Quchan, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Feye J, Matthias J, Fischer A, Rudolph D, Treptow J, Popescu R, Franke J, Exarhos AL, Boekelheide ZA, Gerthsen D, Feldmann C, Roesky PW, Rösch ES. SMART RHESINs-Superparamagnetic Magnetite Architecture Made of Phenolic Resin Hollow Spheres Coated with Eu(III) Containing Silica Nanoparticles for Future Quantitative Magnetic Particle Imaging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301997. [PMID: 37203272 DOI: 10.1002/smll.202301997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Magnetic particle imaging (MPI) is a powerful and rapidly growing tomographic imaging technique that allows for the non-invasive visualization of superparamagnetic nanoparticles (NPs) in living matter. Despite its potential for a wide range of applications, the intrinsic quantitative nature of MPI has not been fully exploited in biological environments. In this study, a novel NP architecture that overcomes this limitation by maintaining a virtually unchanged effective relaxation (Brownian plus Néel) even when immobilized is presented. This superparamagnetic magnetite architecture made of phenolic resin hollow spheres coated with Eu(III) containing silica nanoparticles (SMART RHESINs) was synthesized and studied. Magnetic particle spectroscopy (MPS) measurements confirm their suitability for potential MPI applications. Photobleaching studies show an unexpected photodynamic due to the fluorescence emission peak of the europium ion in combination with the phenol formaldehyde resin (PFR). Cell metabolic activity and proliferation behavior are not affected. Colocalization experiments reveal the distinct accumulation of SMART RHESINs near the Golgi apparatus. Overall, SMART RHESINs show superparamagnetic behavior and special luminescent properties without acute cytotoxicity, making them suitable for bimodal imaging probes for medical use like cancer diagnosis and treatment. SMART RHESINs have the potential to enable quantitative MPS and MPI measurements both in mobile and immobilized environments.
Collapse
Affiliation(s)
- Julia Feye
- Faculty of Engineering, Baden-Württemberg Cooperative State University Karlsruhe, 76133, Karlsruhe, Germany
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jessica Matthias
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Alena Fischer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - David Rudolph
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jens Treptow
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Jochen Franke
- Bruker, BioSpin MRI GmbH, Preclinical Imaging Division, 76275, Ettlingen, Germany
| | | | | | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Esther S Rösch
- Faculty of Engineering, Baden-Württemberg Cooperative State University Karlsruhe, 76133, Karlsruhe, Germany
| |
Collapse
|
9
|
Burmatova A, Khannanov A, Gerasimov A, Ignateva K, Khaldeeva E, Gorovaia A, Kiiamov A, Evtugyn V, Kutyreva M. A Hyperbranched Polyol Process for Designing and Manufacturing Nontoxic Cobalt Nanocomposite. Polymers (Basel) 2023; 15:3248. [PMID: 37571141 PMCID: PMC10421248 DOI: 10.3390/polym15153248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
A method for the design and synthesis of a metallopolymer composite (CoNP) based on cobalt nanoparticles using the hyperbranched polyol process was developed. It was shown that hyperbranched polyester polyols in a melted state can be both a reducing agent and a stabilizer of metal nanoparticles at the same time. The mechanism of oxidation of hyperbranched polyol was studied using diffuse reflectance IR spectroscopy. The process of oxidation of OH groups in G4-OH started from 90 °C and finished with the oxidation of aldehyde groups. The composition and properties of nanomaterials were determined with FT-IR and UV-Vis spectroscopy, Nanoparticle Tracking Analysis (NTA), thermogravimetric analysis (TG), powder X-ray diffraction (XRD), NMR relaxation, and in vitro biological tests. The cobalt-containing nanocomposite (CoNP) had a high colloidal stability and contained spheroid polymer aggregates with a diameter of 35-50 nm with immobilized cobalt nanoparticles of 5-7 nm. The values of R2 and R1 according to the NMR relaxation method for CoNPs were 6.77 mM·ms-1 × 10-5 and 4.14 mM·ms-1 × 10-5 for, respectively. The ratio R2/R1 = 0.61 defines the cobalt-containing nanocomposite as a T1 contrast agent. The synthesized CoNPs were nonhemotoxic (HC50 > 8 g/mL) multifunctional reagents and exhibited the properties of synthetic modulators of the enzymatic activity of chymosin aspartic proteinase and exhibited antimycotic activity against Aspergillus fumigatus. The results of the study show the unique prospects of the developed two-component method of the hyperbranched polyol process for the creation of colloidal multifunctional metal-polymer nanocomposites for theranostics.
Collapse
Affiliation(s)
- Anastasia Burmatova
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Artur Khannanov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Alexander Gerasimov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Klara Ignateva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Elena Khaldeeva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
- Kazan Research Institute of Epidemiology and Microbiology, 67 Bolshaya Krasnaya Str., 420015 Kazan, Russia
| | - Arina Gorovaia
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Airat Kiiamov
- Quantum Simulators Lab, Institute of Physics, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia;
| | - Vladimir Evtugyn
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| | - Marianna Kutyreva
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.B.); (A.G.); (K.I.); (E.K.); (A.G.); (V.E.); (M.K.)
| |
Collapse
|
10
|
Kaur N, Tiwari P, Kumar P, Biswas M, Sonawane A, Mobin SM. Multifaceted Carbon Dots: toward pH-Responsive Delivery of 5-Fluorouracil for In Vitro Antiproliferative Activity. ACS APPLIED BIO MATERIALS 2023. [PMID: 37366546 DOI: 10.1021/acsabm.3c00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The synthesis of smart hybrid material to assimilate diagnosis and treatment is crucial in nanomedicine. Herein, we present a simple and facile method to synthesize multitalented blue-emissive nitrogen-doped carbon dots N@PEGCDs. The as-prepared carbon dots N@PEGCDs show enhanced biocompatibility, small size, high fluorescence, and high quantum yield. The N@PEGCDs are used as a drug carrier for 5-fluorouracil (5-FU) with more release at acidic pH. Furthermore, the mode of action of drug-loaded CD (5FU-N@PEGCDs) has also been explored by performing wound healing assay, DCFDA assay for ROS generation, and Hoechst staining. The drug loaded with carbon dots showed less toxicity to normal cells compared to cancer cells, making it a perfect candidate to be studied for designing next-generation drug delivery systems.
Collapse
Affiliation(s)
- Navpreet Kaur
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pranav Tiwari
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pawan Kumar
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India
| | - Avinash Sonawane
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Shaikh M Mobin
- Discipline of Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
11
|
Chen J, Jiang J, Liang J, Wu H, Chen L, Xu Z, Lei H, Li X. Bifunctional magnetic ZnCdSe/ZnS quantum dots nanocomposite-based lateral flow immunoassay for ultrasensitive detection of streptomycin and dihydrostreptomycin in milk, muscle, liver, kidney, and honey. Food Chem 2023; 406:135022. [PMID: 36455313 DOI: 10.1016/j.foodchem.2022.135022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
In this study, bifunctional magnetic ZnCdSe/ZnS quantum dots nanocomposite (MQNs) were synthesized, and firstly used to develop a lateral flow immunoassay (LFIA) for streptomycin (STR) and dihydrostreptomycin (DHSTR) detection in milk, muscle, liver, kidney, and honey simultaneously. The fluorescence signal of MQNs was 9-fold stronger than that of the original quantum dots. The detection limits of the established MQNs-LFIA for STR and DHSTR in five samples were 0.08-1.78 μg/kg, the quantitation limits were 0.26-5.87 μg/kg, the recoveries were between 85.0% and 120.0%, and the coefficient of variations were between 0.8% and 19.3%, respectively. The sensitivity was up to 42-fold more sensitive than the reported LFIAs. The single blind test results of 25 samples were consistent with that of the confirmation method (R2 ≥ 0.99). Besides, a portable reader was self-developed and used for rapid quantification. Our study demonstrated MQNs as a promising signal-amplifying tag can be used for ultrasensitive detection of chemical contaminants in foods.
Collapse
Affiliation(s)
- Jiayi Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Jiang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinxuan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Han Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Liping Chen
- Shenzhen Zhenrui Biological Technology Co., Ltd., Shenzhen 518109, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm (Beijing) 2023; 4:e253. [PMID: 37025253 PMCID: PMC10072971 DOI: 10.1002/mco2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Monu Kumar Shukla
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | | | | | - Rajiv K. Tonk
- School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research UniversityNew DelhiDelhiIndia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of Health, University of Technology SydneySydneyAustralia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneySydneyAustralia
| | - Faheem Ahmed
- Department of PhysicsCollege of ScienceKing Faisal UniversityAl‐HofufAl‐AhsaSaudi Arabia
| | | | - Deepak Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
13
|
Qureshi A, Shaikh T, Niazi JH. Semiconductor quantum dots in photoelectrochemical sensors from fabrication to biosensing applications. Analyst 2023; 148:1633-1652. [PMID: 36880521 DOI: 10.1039/d2an01690g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Semiconductor quantum dots (QDs) are a promising class of nanomaterials for developing new photoelectrodes and photoelectrochemistry systems for energy storage, transfer, and biosensing applications. These materials have unique electronic and photophysical properties and can be used as optical nanoprobes in displays, biosensors, imaging, optoelectronics, energy storage and energy harvesting. Researchers have recently been exploring the use of QDs in photoelectrochemical (PEC) sensors, which involve exciting a QD-interfaced photoactive material with a flashlight source and generating a photoelectrical current as an output signal. The simple surface properties of QDs also make them suitable for addressing issues related to sensitivity, miniaturization, and cost-effectiveness. This technology has the potential to replace current laboratory practices and equipment, such as spectrophotometers, used for testing sample absorption and emission. Semiconductor QD-based PEC sensors offer simple, fast, and easily miniaturized sensors for analyzing a variety of analytes. This review summarizes the various strategies for interfacing QD nanoarchitectures for PEC sensing, as well as their signal amplification. PEC sensing devices, particularly those used for the detection of disease biomarkers, biomolecules (glucose, dopamine), drugs, and various pathogens, have the potential to revolutionize the biomedical field. This review discusses the advantages of semiconductor QD-based PEC biosensors and their fabrication methods, with a focus on disease diagnostics and the detection of various biomolecules. Finally, the review provides prospects and considerations for QD-based photoelectrochemical sensor systems in terms of their sensitivity, speed, and portability for biomedical applications.
Collapse
Affiliation(s)
- Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| | - Tayyaba Shaikh
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
14
|
Song Y, Zhu Y, Jiang K, Liu X, Dong L, Li D, Chen S, Xing H, Yan X, Lu Y, Yang X, Wang J, Xu Y. Self-assembling ferrimagnetic fluorescent micelles for bioimaging guided efficient magnetic hyperthermia therapy. NANOSCALE 2022; 15:365-375. [PMID: 36508179 DOI: 10.1039/d2nr02059a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Multifunctional magnet-fluorescent nanocomposites are widely applied in biomedical applications. Incorporating biocompatible quantum dots with highly ferrimagnetic magnetic nanoparticles into one nanoplatform for achieving efficient magnetic hyperthermia therapy (MHT) is very important. Herein, we reported an amphiphilic block copolymer with a flowable hydrophobic chain to encapsulate highly ferrimagnetic magnetic nanoparticles and ZnS/InP quantum dots via a facile self-assembly method. The obtained ferrimagnetic fluorescent micelle (FMFM) exhibited a uniform diameter of about 180 nm. In stark contrast, larger aggregation (400 nm in diameter) inevitably occurred using common poly(D,L-lactide) (PLA)-based amphiphilic block copolymer with a rigid hydrophobic chain, which was readily cleared by the reticuloendothelial system (RES). The flowable FMFM exhibited long-term colloidal stability within one month and desired fluorescent stability within 84 h. Benefiting from the high ferrimagnetism, the FMFM revealed excellent magnetic heating effect and magnetic resonance imaging capability. With accurate manipulation under an external magnetic field, FMFM realized in vitro enhanced fluorescence imaging sensitivity and accumulation efficiency at the tumor region, achieving in vitro and vivo improved MHT efficacy.
Collapse
Affiliation(s)
- Yonghong Song
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, Division of Nanomaterials & Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Yueqiang Zhu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Kun Jiang
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Xingyu Liu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Liang Dong
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, Division of Nanomaterials & Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Dongdong Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Sheng Chen
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Hanye Xing
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Xu Yan
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yang Lu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Junxia Wang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510006 Guangzhou, P. R. China.
| | - Yunjun Xu
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, Division of Nanomaterials & Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
15
|
Yaashikaa PR, Kumar PS. Fabrication and characterization of magnetic nanomaterials for the removal of toxic pollutants from water environment: A review. CHEMOSPHERE 2022; 303:135067. [PMID: 35623434 DOI: 10.1016/j.chemosphere.2022.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The success of any sustainable growth represents an advancement of novel approaches and new methodologies for managing any ecological concern. Magnetic nanoparticles have gained recent interest owing to their versatile properties such as controlled size, shape, quantum and surface effect, etc, and outcome in wastewater treatment and pollutant removal. Developments have progressed in synthesizing magnetic nanoparticles with the required size, shape and morphology, surface and chemical composition. Magnetic nanoparticles are target specific and inexpensive compared to conventional treatment techniques. This review insight into the synthesis of magnetic nanoparticles using physical, chemical, and biological methods. The biological method of synthesizing magnetic nanoparticles serves to be cost-effective, green process, and eco-friendly for various applications. Characterization studies of synthesized nanoparticles using TEM, XRD, SARS, SANS, DLS, etc are discussed in detail. Magnetic nanoparticles are widely utilized in recent research for removing organic and inorganic contaminants. It was found that the magnetic nanosorption approach together with redox reactions proves to be an effective and flexible mechanism for the removal of pollutants from waste effluents.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
16
|
A novel IONP-decorated two-dimensional [Zn2+]:[Insulin] nanosheet with ordered array of surface channels and cellular uptake potential. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Rehman Y, Qutaish H, Kim JH, Huang XF, Alvi S, Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2462. [PMID: 35889688 PMCID: PMC9319169 DOI: 10.3390/nano12142462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.
Collapse
Affiliation(s)
- Yaser Rehman
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Jung Ho Kim
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Xu-Feng Huang
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| |
Collapse
|
18
|
Shi M, Liu Y, Huang J, Chen Z, Ni C, Lu J, Zhang Y, Liu Z, Bai J. Multifunctional theranostic nanoplatform loaded with autophagy inhibitor for enhanced photothermal cancer therapy under mild near-infrared irradiation. BIOMATERIALS ADVANCES 2022; 138:212919. [PMID: 35913232 DOI: 10.1016/j.bioadv.2022.212919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Photothermal therapy (PTT) usually causes hyperthermia and damages healthy tissues. Developing a PTT platform with enhanced therapeutic effects and reduced side effects to normal tissues attracts increasing attention. Herein, we developed a multifunctional theranostic nanoplatform using poly(lactic-co-glycolic acid) (PLGA) loaded with near-infrared (NIR) photothermal agent (new indocyanine green IR820), fluorescence imaging agent (ZnCdSe/ZnS quantum dots, QDs) and autophagy inhibitor (chloroquine, CQ). These PLGA/IR820/Fluorescence imaging agent/CQ co-loading nanoparticles (termed PIFC NPs) displayed photothermal effects, enhanced the stability of IR820 in vivo, and enabled QDs to have stable fluorescent signals in vitro and in vivo. The PIFC NPs with particle size around 240 nm aggregated to tumor sites through the high permeability and retention effects of solid tumors. The intracellular delivery of CQ molecules through PIFC NPs significantly attenuated the degradation of autophagic lysosomes in tumor cells and effectively inhibited the autophagy mediated repair of photothermal damaged cells. Under milder NIR irradiation conditions, PIFC NPs exhibited high antitumor effect. By regulating autophagy, PTT can be effectively sensitized, which will provide a new idea for future cancer treatment research.
Collapse
Affiliation(s)
- Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Yawen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jie Huang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhian Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chen Ni
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiahui Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
19
|
Bhattacharjee S. Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacol Transl Sci 2022; 5:278-298. [PMID: 35592431 PMCID: PMC9112416 DOI: 10.1021/acsptsci.2c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/19/2022]
Abstract
Achieving synergism, often by combination therapy via codelivery of chemotherapeutic agents, remains the mainstay of treating multidrug-resistance cases in cancer and microbial strains. With a typical core-shell architecture and surface functionalization to ensure facilitated targeting of tissues, nanocarriers are emerging as a promising platform toward gaining such synergism. Co-encapsulation of disparate theranostic agents in nanocarriers-from chemotherapeutic molecules to imaging or photothermal modalities-can not only address the issue of protecting the labile drug payload from a hostile biochemical environment but may also ensure optimized drug release as a mainstay of synergistic effect. However, the fate of co-encapsulated molecules, influenced by temporospatial proximity, remains unpredictable and marred with events with deleterious impact on therapeutic efficacy, including molecular rearrangement, aggregation, and denaturation. Thus, more than just an art of confining multiple therapeutics into a 3D nanoscale space, a co-encapsulated nanocarrier, while aiming for synergism, should strive toward achieving a harmonious cohabitation of the encapsulated molecules that, despite proximity and opportunities for interaction, remain innocuous toward each other and ensure molecular integrity. This account will inspect the current progress in co-encapsulation in nanocarriers and distill out the key points toward accomplishing such synergism through reciprocity.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Ali TH, Mandal AM, Heidelberg T, Hussen RSD. Sugar based cationic magnetic core-shell silica nanoparticles for nucleic acid extraction. RSC Adv 2022; 12:13566-13579. [PMID: 35530382 PMCID: PMC9069700 DOI: 10.1039/d2ra01139e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/19/2022] [Indexed: 01/09/2023] Open
Abstract
Nucleic acid (NA) extraction is an essential step in molecular testing for a wide range of applications. Conventional extraction protocols usually suffer from time consuming removal of non-nucleic acid impurities. In this study, a new magnetic nanoparticle (MNP) is presented to simplify the NA extraction. A core-shell design, comprising of a ferromagnetic core coated with mesoporous silica, forms the basis of the functional nanoparticle. Chemical functionalization of the silica coating includes a multistep synthesis, in which an activated nanoparticle is coupled with a triethylene glycol spaced glycosyl imidazole. The molecular design aims for charge interactions between the imidazolium-based positive nanoparticle surface and nucleic acids, with specific hydrogen bonding between the surface bonded carbohydrate and nucleic acid targets to ensure nucleic acid selectivity and avoid protein contamination. Two different carbohydrates, differing in molecular size, were selected to compare the efficiency in terms of NA extraction. A triethylene glycol spacer provides sufficient flexibility to remove particle surface constraints for the interaction. The Brunauer-Emmett-Teller (BET) analysis shows a significantly larger surface area for the disaccharide-based particles NpFeSiImMalt (∼181 m2 g-1) compared to the monosaccharide analogue NpFeSiImGlc (∼116 m2 g-1) at small particles sizes (range ∼ 15 nm) and sufficient magnetization (29 emu g-1) for easy isolation by an external magnetic field. The particles enabled a high DNA particle loading ratio of 30-45 wt% (MNP/DNA ratio), reflecting an efficient extraction process. A high desorption rate (7 min) with more than 86% of unchanged DNA loading was recorded, indicating low damage to the target extract.
Collapse
Affiliation(s)
- Tammar Hussein Ali
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Al-Muthanna University 66001 Samawah Al Muthanna Iraq
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Amar Mousa Mandal
- College of Basic Education, Science Department, Al-Muthanna University 66001 Samawah Al Muthanna Iraq
| | - Thorsten Heidelberg
- Chemistry Department, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | | |
Collapse
|
21
|
Xiong J, Zhang H, Qin L, Zhang S, Cao J, Jiang H. Magnetic Fluorescent Quantum Dots Nanocomposites in Food Contaminants Analysis: Current Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms23084088. [PMID: 35456904 PMCID: PMC9028821 DOI: 10.3390/ijms23084088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
The presence of food contaminants can cause foodborne illnesses, posing a severe threat to human health. Therefore, a rapid, sensitive, and convenient method for monitoring food contaminants is eagerly needed. The complex matrix interferences of food samples and poor performance of existing sensing probes bring significant challenges to improving detection performances. Nanocomposites with multifunctional features provide a solution to these problems. The combination of the superior characteristics of magnetic nanoparticles (MNPs) and quantum dots (QDs) to fabricate magnetic fluorescent quantum dots (MNPs@QDs) nanocomposites are regarded as an ideal multifunctional probe for food contaminants analysis. The high-efficiency pretreatment and rapid fluorescence detection are concurrently integrated into one sensing platform using MNPs@QDs nanocomposites. In this review, the contemporary synthetic strategies to fabricate MNPs@QDs, including hetero-crystalline growth, template embedding, layer-by-layer assembly, microemulsion technique, and one-pot method, are described in detail, and their advantages and limitations are discussed. The recent advances of MNPs@QDs nanocomposites in detecting metal ions, foodborne pathogens, toxins, pesticides, antibiotics, and illegal additives are comprehensively introduced from the perspectives of modes and detection performances. The review ends with current challenges and opportunities in practical applications and prospects in food contaminants analysis, aiming to promote the enthusiasm for multifunctional sensing platform research.
Collapse
Affiliation(s)
- Jincheng Xiong
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Huixia Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Linqian Qin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Shuai Zhang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; (J.X.); (H.Z.); (L.Q.); (S.Z.)
- Correspondence: ; Tel.: +86-010-6273-4478; Fax: +86-010-6273-1032
| |
Collapse
|
22
|
Time- and Spectrally-Resolved Photoluminescence Study of Alloyed Cd xZn 1-xSe yS 1-y/ZnS Quantum Dots and Their Nanocomposites with SPIONs in Living Cells. Int J Mol Sci 2022; 23:ijms23074061. [PMID: 35409422 PMCID: PMC8999546 DOI: 10.3390/ijms23074061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetic-luminescent composites based on semiconductor quantum dots (QDs) and superparamagnetic iron oxide nanoparticles (SPIONs) can serve as a platform combining visualization and therapy. Here, we report the construction of QD-SPION nanocomposites based on synthesized SPIONs and alloyed QDs (CdxZn1−xSeyS1−y)/ZnS solubilized with L-cysteine molecules. The study of the spectral-luminescence characteristics, the kinetics of luminescence decay show the composite’s stability in a solution. After incubation with HeLa cells, QDs, SPIONs, and their composites form clusters on the cell surface and associate with endosomes inside the cells. Component-wise analysis of the photoluminescence decay of cell-associated QDs/SPIONs provides information about their localization and aggregate status.
Collapse
|
23
|
Wang K, Dong E, Fang M, Chen T, Zhu W, Li C. Construction of ratio fluorescence sensor based on CdTe quantum dots and benzocoumarin-3-carboxylic acid for Hg2+ detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Effect of precipitating agents on the magnetic and structural properties of the synthesized ferrimagnetic nanoparticles by co-precipitation method. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Harnessing chlorin e6 loaded by functionalized iron oxide nanoparticles linked with glucose for target photodynamic therapy and improving of the immunogenicity of lung cancer. J Cancer Res Clin Oncol 2022; 148:867-879. [PMID: 34997349 DOI: 10.1007/s00432-021-03879-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is the most common malignant lung tumor and is difficult to be eradicated due to its immunosuppressive microenvironment. Chlorin e6 (Ce6)-mediated photodynamic therapy (PDT) could improve immunogenicity while destroying malignant tumor cells. However, the clinic application of Ce6-mediated PDT is limited by Ce6's poor water solubility and insufficient accumulation in lung cancer. To address this issue, Ce6 was loaded onto functionalized iron oxide nanoparticles linked with glucose to improve the distribution of Ce6 in lung cancer. MATERIALS AND RESULTS The results of transmission electron microscopy (TEM), UV-Vis spectrophotometry, dynamic light scattering and near-infrared (NIR) spectroscopy confirmed the successful preparation of the composites. Confocal and flow cytometry showed IO-PG-GLU-Ce6 significantly enhanced the uptake of Ce6 by lung cancer cells and produced more reactive oxygen species (ROS) under NIR light irradiation. In addition, the detection of cell viability, proliferation and apoptosis indicated IO-PG-GLU-Ce6 achieved stronger photo-toxicity to lung cancer cells. Moreover, IO-PG-GLU-Ce6 treatment effectively damaged the DNA of lung cancer cells and thereby activated STING, up-regulated the expression of IFN-β, HMGB1 and HSP90, indicating augmented immunogenicity of lung cancer cells. Further results of in vivo, organ imaging and tissue fluorescence sections demonstrated IO-PG-GLU-Ce6 significantly improved the distribution of Ce6 in tumor tissues of lung cancer-bearing mice as well. Finally, the findings of in vivo study and immunohistochemistry confirmed the better efficacy of IO-PG-GLU-Ce6. HE staining results of vital organs suggested that the composites were less toxic. CONCLUSION In conclusion, Ce6 loaded by functionalized iron oxide nanoparticles linked with glucose exhibited both target photodynamic efficacy and the ability to enhance its immunogenicity in lung cancer. This study provides a promising strategy for augment of the targeting delivery of Ce6 and its mediated photodynamic and immunotherapy.
Collapse
|
26
|
Li D, Luo Y, Onidas D, He L, Jin M, Gazeau F, Pinson J, Mangeney C. Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Adv Colloid Interface Sci 2021; 294:102479. [PMID: 34237631 DOI: 10.1016/j.cis.2021.102479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Nanoparticles (NPs) can be prepared by simple reactions and methods from a number of materials. Their small size opens up a number of applications in different fields, among which biomedicine, including: i) drug delivery, ii) biosensors, iii) bioimaging, iv) antibacterial activity. To be able to perform such tasks, NPs must be modified with a variety of functional molecules, such as drugs, targeting groups, chemical tags or antibacterial agents, and must also be prevented from aggregation. The attachment must be stable to resist during the transportation to the targeted location. Diazonium salts, which have been widely used for coupling applications and surface modification, fulfil such criteria. Moreover, they are simple to prepare and can be easily substituted with a large number of organic groups. This review describes the use of these compounds in nanomedicine with a focus on the construction of nanohybrids derived from metal, oxide and carbon-based NPs as well as viruses.
Collapse
Affiliation(s)
- Da Li
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Yun Luo
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France.
| | | | - Li He
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | - Ming Jin
- Université de Paris, LCBPT, CNRS, F-75006 Paris, France
| | | | - Jean Pinson
- Université de Paris, ITODYS, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
27
|
Shehzad F, Hussain SMS, Adewunmi AA, Mahboob A, Murtaza M, Kamal MS. Magnetic surfactants: A review of recent progress in synthesis and applications. Adv Colloid Interface Sci 2021; 293:102441. [PMID: 34051602 DOI: 10.1016/j.cis.2021.102441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/26/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
Magnetic surfactants are a special class of surfactants with magneto-responsive properties. These surfactants possess lower critical micelle concentrations and are more effective in reducing surface tension as compared to conventional surfactants. Such surfactants' ability to manipulate self-assembly in a controlled way by tuning the magnetic field makes them an attractive choice for several applications, including drug delivery, catalysis, separation, oilfield, and water treatment. In this work, we reviewed the properties of magnetic surfactants and possible explanations of magnetic behavior. This article also covers the synthesis methods that can be used to synthesize different types of cationic, anionic, nonionic, and zwitterionic magnetic surfactants. The applications of magnetic surfactants in different fields such as biotechnology, water treatment, catalysis, and oilfield have been discussed in detail.
Collapse
Affiliation(s)
- Farrukh Shehzad
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Syed Muhammad Shakil Hussain
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Ahmad A Adewunmi
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Ahmad Mahboob
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Mobeen Murtaza
- Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Muhammad Shahzad Kamal
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia.
| |
Collapse
|
28
|
Ximendes E, Marin R, Shen Y, Ruiz D, Gómez‐Cerezo D, Rodríguez‐Sevilla P, Lifante J, Viveros‐Méndez PX, Gámez F, García‐Soriano D, Salas G, Zalbidea C, Espinosa A, Benayas A, García‐Carrillo N, Cussó L, Desco M, Teran FJ, Juárez BH, Jaque D. Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100077. [PMID: 34117667 PMCID: PMC11468761 DOI: 10.1002/adma.202100077] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/10/2021] [Indexed: 05/05/2023]
Abstract
Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.
Collapse
Affiliation(s)
- Erving Ximendes
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Yingli Shen
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Diego Ruiz
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Present address:
Madrid Institute of Materials Science(ICMM)CSIC. Sor Juana Inés de la CruzMadridCantoblanco28049Spain
| | | | | | - Jose Lifante
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Perla X. Viveros‐Méndez
- Universidad Autónoma de ZacatecasUnidad Académica de Ciencia y Tecnología de la Luz y la MateriaCarretera Zacatecas‐Guadalajara km. 6Ejido la escondidaZacatecasZacatecas98160México
| | - Francisco Gámez
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
- Present address:
Department of Physical Chemistry, Faculty of ScienceUniversity of GranadaAvenida de la Fuente Nueva S/NGranada18071Spain
| | | | - Gorka Salas
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Carmen Zalbidea
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Ana Espinosa
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Antonio Benayas
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | | | - Lorena Cussó
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Francisco J. Teran
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Beatriz H. Juárez
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| |
Collapse
|
29
|
Wang Y, Li M, Luo T, Jiao M, Jin S, Dou P, Zuo F, Wu C, Han C, Li J, Xu K, Zheng S. Development of FL/MR dual-modal Au nanobipyramids for targeted cancer imaging and photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112190. [PMID: 34225846 DOI: 10.1016/j.msec.2021.112190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/15/2021] [Accepted: 05/13/2021] [Indexed: 01/07/2023]
Abstract
Multifunctional nanodrugs have emerged as an effective platform to integrate multiple imaging and therapeutic functions for tremendous biomedical applications. However, the development of a simple potent theranostic nanoplatform is still an intractable challenge. Herein, a novel theranostic nanoplatform was developed by coupling prepared Au nanobipyramids with Gd2O3, Au nanoclusters and denatured bovine serum albumin (AuNBP-Gd2O3/Au-dBSA) for FL/MR dual-modal imaging guided photothermal therapy. AS1411 aptamers were conjugated to enhance its targetability towards breast cancer. The AS1411-AuNBP-Gd2O3/Au-dBSA suspension could be readily heated above 40 °C at a low concentration (2 mg/L) and NIR density (1 W/cm2). The AS1411-AuNBP-Gd2O3/Au-dBSA revealed a fluorescence quantum yield of 4.2% and higher longitudinal relaxivity rate of 6.75 mM-1 s-1 compared to Gd-DTPA of 4.45 mM-1 s-1. As a result, the AS1411-AuNBP-Gd2O3/Au-dBSA functions as a multimodal nanoprobe of photothermal, fluorescence and MR imaging for specific tumor diagnosis and guidance of therapy, which was validated via in vitro and in vivo tests. Moreover, AS1411-AuNBP-Gd2O3/Au-dBSA nanoparticles indicated excellent photothermal anticancer effect more than 95% in both in vitro and in vivo tests. Besides, the low toxicity of AS1411-AuNBP-Gd2O3/Au-dBSA nanocomposites was further confirmed in vitro and in vivo. Thus, these results demonstrated the AS1411-AuNBP-Gd2O3/Au-dBSA nanocomposites as a rational design of multifunctional nanoplatform to enable multimodal imaging guided photothermal therapy.
Collapse
Affiliation(s)
- Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Mengshuang Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Tao Luo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Min Jiao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Shang Jin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Peipei Dou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Fengmei Zuo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - Changyu Wu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China; Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou 221004, People's Republic of China.
| |
Collapse
|
30
|
Hydroxyapatite-Based Magnetic Bionanocomposite as Pharmaceuticals Carriers in Chitosan Scaffolds. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5020037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydroxyapatite (HA) is a bioceramic very similar to the mineral component of bones and teeth. It is well established that osteoblasts grow better onto HA-coated metals than on metals alone. Herein, the preparation of a new system consisting of magnetite (Fe3O4) and HA functionalized with oleic acid and simvastatin (SIMV), and incorporated in chitosan (CHI) scaffolds, was undertaken. HA was synthesized by the hydrothermal method, while Fe3O4 was synthesized by co-precipitation. The polymer matrix was obtained using a 2% CHI solution, and allowed to stir for 2 h. The final material was freeze-dried to produce scaffolds. The magnetic properties remained unchanged after the formation of the composite, as well as after the preparation of the scaffolds, maintaining the superparamagnetism. CHI scaffolds were analyzed by scanning electronic spectroscopy (SEM) and showed a high porosity, with very evident cavities, which provides the functionality of bone growth support during the remineralization process in possible regions affected by bone tissue losses. The synthesized composite showed an average particle size between 15 and 23 nm for particles (HA and Fe3O4). The scaffolds showed considerable porosity, which is important for the performance of various functions of the tissue structure. Moreover, the addition of simvastatin in the system can promote bone formation.
Collapse
|
31
|
Xiao J, Lu Q, Cong H, Shen Y, Yu B. Microporous poly(glycidyl methacrylate- co-ethylene glycol dimethyl acrylate) microspheres: synthesis, functionalization and applications. Polym Chem 2021. [DOI: 10.1039/d1py00834j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a new kind of functional material, micron-sized porous polymer microspheres are a hot research topic in the field of polymer materials.
Collapse
Affiliation(s)
- Jingyuan Xiao
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qingbiao Lu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
32
|
Sichamnan A, Yong N, Sillapaprayoon S, Pimtong W, Tang IM, Maneeprakorn W, Pon-On W. Fabrication of biocompatible magneto-fluorescence nanoparticles as a platform for fluorescent sensor and magnetic hyperthermia applications. RSC Adv 2021; 11:35258-35267. [PMID: 35493192 PMCID: PMC9042993 DOI: 10.1039/d1ra07389c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Multifunctional nanoparticles with special magnetic and optical properties have been attracting a great deal of attention due to their important applications in the bioanalytical and biomedical fields. In this study, we report the fabrication of biocompatible magneto-fluorescence nanoparticles consisting of carbon dots (CDots) and silica-coated cobalt–manganese nanoferrites (Co0.5Mn0.5Fe2O4) (CoMnF@Si@CDots) (MagSiCDots) by a facile hydrothermal method. The as-prepared MagSiCDots have a particle size of 100–120 nm and show a negative zeta potential of −35.50 mV at a neutral pH. The fluorescence spectrum of the MagSiCDots nanoparticles consists of sharp excitation at 365 nm and broad blue light emission with a maximum wavelength of 442.5 nm and the MagSiCDots exhibit superparamagnetic behaviour with a saturation magnetization of 11.6 emu g−1. The potential of MagSiCDots as a fluorescent sensor and be used for magnetic hyperthermia applications. It is seen that the fluorescent intensity of a colloidal solution (a hydrogen sulfide (H2S) solution containing MagSiCDots nanoparticles) has a linear relationship with the H2S concentration range of 0.2–2 μM. The limit of detection (LOD) of H2S by our MagSiCDots particles is 0.26 μM and they remain stable for at least 90 min. To test the suitability of the MagSiCDots nanoparticles for use in hyperthermia application, induction heating using an AMF was done. It was observed that these nanoparticles had a specific absorption rate (SAR) of 28.25 W g−1. The in vitro and in vivo cytotoxicity of MagSiCDots were tested on HeLa cells lines. The results show a cell viability of about 85% when exposed to 100 μg mL−1 concentration of the particles. The in vivo cytotoxicity using zebrafish assay also confirmed the non-toxicity and biocompatibility of the nanoparticles to living cells. The reported data demonstrate that by combining CoMnF@Si and fluorescent CDots into a single system, not only nontoxic multifunctional nanomaterials but also multimodal nanoparticles for several applications, such as hazard gas detection and acting as a biocompatible heat source for therapeutic treatment of cancer, are provided. Multifunctional nanoparticles with special magnetic and optical properties have been attracting a great deal of attention due to their important applications in the bioanalytical and biomedical fields.![]()
Collapse
Affiliation(s)
- Arphaphon Sichamnan
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nararat Yong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwapech Sillapaprayoon
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - I.-Ming Tang
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Weerakanya Maneeprakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Weeraphat Pon-On
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|