1
|
Hanafy NA. Chitosan nanoparticles as drug carriers and gene delivery systems: Advances and challenges. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:267-308. [DOI: 10.1016/b978-0-443-14088-4.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Chakraborty DD, Chakraborty P, Mondal A. An insight into cancer nanomedicine based on polysaccharides. Int J Biol Macromol 2024; 290:138678. [PMID: 39672407 DOI: 10.1016/j.ijbiomac.2024.138678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
With cancer rates on the rise around the world, cancer treatment has dominated scientific discussions in recent years. The toxicity of cytotoxic drugs, their lack of tumor localization, and their uniform dispersion into tumor tissues are the obstacles to cancer therapy. Other cancer treatment drawbacks include short blood circulation half-lives and undesirable pharmacokinetic behavior. Low-molecular-weight drugs conjugated with macromolecular carriers are better distributed in the body. The enhanced permeation and retention (EPR) effect causes natural and synthetic polymers, such as polysaccharides, proteins, antibodies, and poly amino acids, to accumulate in tumor tissue. Many manufactured and natural polymers are attractive polymeric drug carriers, allowing the creation of prodrugs from medicinal substances. Polysaccharides are biological polymers with structural and functional variations. They are also non-toxic, hydrophilic, biodegradable, and efficiently bioactive. Polysaccharides are ideal for synthesizing many nanoparticles due to their functional groups. Their ability to adapt to their microenvironment makes them valuable. Nanoplatforms based on polysaccharides can deliver targeted anticancer drugs for personalized cancer treatment. Unique polysaccharide structures and properties offer chemical and biological advantages for novel drug delivery. Polysaccharide-drug conjugation could revolutionize cancer chemotherapy. This study investigates polysaccharide conjugates and polysaccharides as natural biomaterials for cancer drug delivery.
Collapse
Affiliation(s)
| | - Prithviraj Chakraborty
- Royal School of Pharmacy, The Assam Royal Global University, Betkuchi, Guwahati-781035, India
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha-743234, India.
| |
Collapse
|
3
|
Hamada MA, Mohamed ET. Characterization of Serratia marcescens (OK482790)' prodigiosin along with in vitro and in silico validation for its medicinal bioactivities. BMC Microbiol 2024; 24:495. [PMID: 39587466 PMCID: PMC11587630 DOI: 10.1186/s12866-024-03634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Microbial prodigiosin pigment has been proposed as a promising biomolecule having an antibacterial, immunosuppressive, antimalarial, antineoplastic, and anticancer activities. The good outcome originates from getting natural pigment, which has many medical applications. RESULTS In this investigation, prodigiosin (PG) was extracted, characterized by UV-visible spectroscopy, thin-layer chromatography, mass spectroscopy, Fourier-transform infrared spectroscopy, and tested in various medical applications as an antibacterial, antioxidant, antibiofilm, anticancer, and wound healing agent at different concentrations. Antibacterial activity of PG pigment was shown against both Gram-positive and Gram-negative bacterial strains. Enterococcus faecalis was the most severely impacted, with minimum inhibitory value of 3.9 µg/mL. The formed biofilm by Pseudomonas aeruginosa was suppressed by 58-2.50% at prodigiosin doses ranging from 1000 to 31.25 µg/mL, respectively. The half-maximal inhibitory concentration (IC50) of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) free radical was 74.18 ± 23.77 µg/mL. At 100 µg/mL concentration, OK482790 prodigiosin had no harmful effect on normal skin cells and exhibited mild wound healing properties. Additionally, molecular docking simulations confirmed the prodigiosin's interactions with target proteins, including epidermal growth factor receptor tyrosine kinase (EGFR-TK, PDB ID: 1M17), peptide deformylase from E. faecalis (PDB ID: 2OS1), acidic fibroblast growth factor (FGF-1, PDB ID: 3K1X), PA14_16140 protein from P. aeruginosa (PDB ID: 8Q8O), and human peroxiredoxin 5 (PDB ID: 1HD2) for explaining the anticancer, antibacterial, wound healing, antibiofilm, and antioxidant activities, respectively. Prodigiosin had favorable binding affinities and putative modes of action across various therapeutic domains. CONCLUSION This study pioneers the use of prodigiosin as a natural alternative to synthetic medicine since it fights germs, heals wounds, is antioxidant, and reduces biofilm formation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Marwa A Hamada
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt.
| | - Eslam T Mohamed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| |
Collapse
|
4
|
Zhang X, Zheng G, Zhou Z, Zhu M, Tang S. Co-delivery of siRNA and cisplatin via electrospun Nanofibrous membranes for synergistic treatment of malignant melanoma. Heliyon 2024; 10:e37517. [PMID: 39290263 PMCID: PMC11407083 DOI: 10.1016/j.heliyon.2024.e37517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor recurrence and metastasis remain formidable challenges in clinical oncology. Although surgery is an effective treatment for early-stage solid tumors, residual cancer cells can lead to subsequent recurrence or metastasis. Conventional treatments for melanoma, such as anti-tumor medications and gene therapy, have distinct limitations. The rapid systemic distribution of anti-tumor drugs poses a significant challenge, often resulting in notable side effects and inadequate drug concentrations at the tumor site. Melanoma (MM), a deadly form of skin cancer, is known for its high mortality rate. In this study, we propose a novel strategy for treating MM by combining the controlled release of chemotherapeutic drugs encapsulated within Metal-Organic Frameworks (MOFs) and liposomes with gene therapy targeting Minichromosome Maintenance Proteins 4 (MCM4) using electrospinning and surface modification techniques. In vitro and in vivo results confirmed that this hierarchical membrane system can effectively deliver therapeutic MCM4 siRNA and release cisplatin to inhibit tumor growth. Furthermore, we demonstrated that MCM4 silencing promoted the sensitivity of melanoma cells to ferroptosis both in vitro and in vivo. The proposed strategy, by allowing for a controlled and sustained release of medication, could alleviate the challenges in drug delivery and aid in prevent tumor recurrence.
Collapse
Affiliation(s)
- Xuewei Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Guoxing Zheng
- Department of Spine Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Zibin Zhou
- Department of Spine Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Mingyu Zhu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515000, China
| |
Collapse
|
5
|
Desai VM, Kumbhar P, Kadam AY, Swarup J, Priya S, Jain A, Singhvi G. Exploring the therapeutic modalities of targeted treatment approach for skin carcinoma: cutting-edge strategies and key insights. Expert Opin Drug Deliv 2024; 21:1213-1233. [PMID: 39136542 DOI: 10.1080/17425247.2024.2392799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION Skin carcinoma, including malignant melanoma, basal, squamous, and Merkel cell carcinoma, present significant healthcare challenges. Conventional treatments like surgery and chemotherapy suffer from limitations like non-specificity, toxicity, and adverse effects. The upcoming treatments are dominated by nano-sized delivery systems, which improve treatment outcomes while minimizing side effects. Moving ahead, targeted nanoparticles allow localized delivery of drugs at tumor site, ensuring minimal damage to surrounding tissues. AREAS COVERED This review explores various targeting strategies for specific types of skin cancers. The strategies discussed include nanocarrier-mediated targeted delivery with multiple types of ligands like aptamers, antibodies, peptides, and vitamins and their advantages in skin cancer. Upcoming cutting-edge technologies such as smart delivery systems, microneedle-assisted delivery and three-dimensional printed scaffolds have also been discussed in detail. The findings in this review are summarized from databases like PubMed, Scopus, Web of Science, ClinicalTrials.gov, NIH, and articles published between 2005 and 2024 that discuss targeted therapy for skin cancer. EXPERT OPINION Specific cancer-targeting strategies promise personalized treatments, improving response rates and reducing need for intensive therapies. The review highlights various challenges, their solution, and economic aspects in this dynamic field. It further emphasizes the potential for specialized strategies to revolutionize skin cancer treatment.
Collapse
Affiliation(s)
- Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Pragati Kumbhar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Akanksha Yogesh Kadam
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Jayanti Swarup
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Ankit Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, India
| |
Collapse
|
6
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
7
|
Karimzadeh F, Soltani Fard E, Nadi A, Malekzadeh R, Elahian F, Mirzaei SA. Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review. J Mater Chem B 2024; 12:6033-6062. [PMID: 38887828 DOI: 10.1039/d4tb00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The skin, serving as the body's outermost layer, boasts a vast area and intricate structure, functioning as the primary barrier against external threats. Disruptions in the composition and functionality of the skin can lead to a diverse array of skin conditions, such as wounds, burns, and diabetic ulcers, along with inflammatory disorders, infections, and various types of skin cancer. These disorders not only exacerbate concerns regarding skin health and beauty but also have a significant impact on mental well-being. Due to the complexity of these disorders, conventional treatments often prove insufficient, necessitating the exploration of new therapeutic approaches. Researchers develop new therapies by deciphering these intricacies and gaining a thorough understanding of the protein networks and molecular processes in skin. A new window of opportunity has opened up for improving wound healing processes because of recent advancements in skin gene therapy. To enhance skin regeneration and healing, this extensive review investigates the use of novel dressing scaffolds in conjunction with gene therapy approaches. Scaffolds that do double duty as wound protectors and vectors for therapeutic gene delivery are being developed using innovative biomaterials. To improve cellular responses and speed healing, these state-of-the-art scaffolds allow for the targeted delivery and sustained release of genetic material. The most recent developments in gene therapy techniques include RNA interference, CRISPR-based gene editing, and the utilization of viral and non-viral vectors in conjunction with scaffolds, which were reviewed here to overcome skin disorders and wound complications. In the future, there will be rare chances to develop custom methods for skin health care thanks to the combination of modern technology and collaboration among disciplines.
Collapse
Affiliation(s)
- Fatemeh Karimzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rahim Malekzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Azevedo A, Coelho MP, Pinho JO, Soares PIP, Reis CP, Borges JP, Gaspar MM. An alternative hybrid lipid nanosystem combining cytotoxic and magnetic properties as a tool to potentiate antitumor effect of 5-fluorouracil. Life Sci 2024; 344:122558. [PMID: 38471621 DOI: 10.1016/j.lfs.2024.122558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
AIMS Colorectal cancer is the third most frequent type of cancer and the second leading cause of cancer-related deaths worldwide. The majority of cases are diagnosed at a later stage, leading to the need for more aggressive treatments such as chemotherapy. 5-Fluorouracil (5-FU), known for its high cytotoxic properties has emerged as a chemotherapeutic agent. However, it presents several drawbacks such as lack of specificity and short half-life. To reduce these drawbacks, several strategies have been designed namely chemical modification or association to drug delivery systems. MATERIALS AND METHODS Current research was focused on the design, physicochemical characterization and in vitro evaluation of a lipid-based system loaded with 5-FU. Furthermore, aiming to maximize preferential targeting and release at tumour sites, a hybrid lipid-based system, combining both therapeutic and magnetic properties was developed and validated. For this purpose, liposomes co-loaded with 5-FU and iron oxide (II, III) nanoparticles were accomplished. KEY FINDINGS The characterization of the developed nanoformulation was performed in terms of incorporation parameters, mean size and surface charge. In vitro studies assessed in a murine colon cancer cell line confirmed that 5-FU antiproliferative activity was preserved after incorporation in liposomes. In same model, iron oxide (II, III) nanoparticles did not exhibit cytotoxic properties. Additionally, the presence of these nanoparticles was shown to confer magnetic properties to the liposomes, allowing them to respond to external magnetic fields. SIGNIFICANCE Overall, a lipid nanosystem loading a chemotherapeutic agent displaying magnetic characteristics was successfully designed and physicochemically characterized, for further in vivo applications.
Collapse
Affiliation(s)
- Afonso Azevedo
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Mariana P Coelho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Paula I P Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Catarina P Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal
| | - João P Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
10
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
11
|
Rata DM, Cadinoiu AN, Atanase LI, Popa M, Mihai CT, Vochita G. Peptide-functionalized chitosan-based microcapsules for dual active targeted treatment of lung infections. Int J Biol Macromol 2024; 265:131027. [PMID: 38518936 DOI: 10.1016/j.ijbiomac.2024.131027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Lung infections, such as: pneumonia, chronic obstructive cystic fibrosis, tuberculosis are generally caused by viruses, bacteria and fungi. As these infections are very difficult to treat, new therapeutic approaches are investigated in order to maximize the efficiency of the treatment and to reduce the major complications that can occur. The main objective of this study was focused on the preparation of drug-loaded peptides-functionalized microcapsules, obtained by a double emulsion, based on carboxylated chitosan (CMCS), poly(vinyl alcohol) (PVA) and an activator [4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride] (DMT-MM), for the dual active targeting and treatment of pulmonary infections. The microcapsules were functionalized on the surface with both CGSPGWVRC and indolicidin (IN) peptides, as effective ligands for the active targeting of both alveolar capillary endothelial cells and bacterial cells. FTIR spectroscopy confirmed the formation of ester and amide bonds into the structure of prepared microcapsules. Microcapsules diameter varied between 893 and 965 nm. The swelling degree in PBS, at pH 7.4, ranged between 1760 %- 2100 %. All the analyzed samples showed hemolysis degrees lower than 2 %, which demonstrated their non-hemolytic character. Evaluation of the impact of microcapsules on WI-38 normal human lung cells and RAW 264.7 mouse macrophages revealed a non-toxic or slightly cytotoxic effect. Internalization assay proved that microcapsules were localized at intracellular level.
Collapse
Affiliation(s)
- Delia Mihaela Rata
- "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511, Iasi, Romania
| | | | - Leonard Ionut Atanase
- "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511, Iasi, Romania; Academy of Romanian Scientists, Ilfov Street, No. 3, Sector 5, 050045 Bucharest, Romania
| | - Marcel Popa
- "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511, Iasi, Romania; Academy of Romanian Scientists, Ilfov Street, No. 3, Sector 5, 050045 Bucharest, Romania
| | - Cosmin Teodor Mihai
- NIRDBS - Institute of Biological Research Iasi, Department of Experimental and Applied Biology, Lascar Catargi 47, Iasi 700107, Romania; Praxis Medical Investigations, Moara de Vant St. 35, 700376 Iasi, Romania
| | - Gabriela Vochita
- NIRDBS - Institute of Biological Research Iasi, Department of Experimental and Applied Biology, Lascar Catargi 47, Iasi 700107, Romania
| |
Collapse
|
12
|
Mahmoudian F, Ahmari A, Shabani S, Sadeghi B, Fahimirad S, Fattahi F. Aptamers as an approach to targeted cancer therapy. Cancer Cell Int 2024; 24:108. [PMID: 38493153 PMCID: PMC10943855 DOI: 10.1186/s12935-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azin Ahmari
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Radiation Oncology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shiva Shabani
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Infectious Diseases, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Bahman Sadeghi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Amaral SI, Silva FALS, Costa-Almeida R, Timochenco L, Fernandes JR, Sarmento B, Gonçalves IC, Magalhães FD, Pinto AM. Pharmaceutical Formulations Containing Graphene and 5-Fluorouracil for Light-Emitting Diode-Based Photochemotherapy of Skin Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4333-4347. [PMID: 38240200 DOI: 10.1021/acsami.3c13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide, among which 80% is basal cell carcinoma (BCC). Current therapies' low efficacy, side effects, and high recurrence highlight the need for alternative treatments. In this work, a partially reduced nanographene oxide (p-rGOn) developed in our laboratory was used. It has been achieved through a controlled reduction of nanographene oxide via UV-C irradiation that yields small nanometric particles (below 200 nm) that preserve the original water stability while acquiring high light-to-heat conversion efficiency. The latter is explained by a loss of carbon-oxygen single bonds (C-O) and the re-establishment of sp2 carbon bonds. p-rGOn was incorporated into a Carbopol hydrogel together with the anticancer drug 5-fluorouracil (5-FU) to evaluate a possible combined PTT and chemotherapeutic effect. Carbopol/p-rGOn/5-FU hydrogels were considered noncytotoxic toward normal skin cells (HFF-1). However, when A-431 skin cancer cells were exposed to NIR irradiation for 30 min in the presence of Carbopol/p-rGOn/5-FU hydrogels, almost complete eradication was achieved after 72 h, with a 90% reduction in cell number and 80% cell death of the remaining cells after a single treatment. NIR irradiation was performed with a light-emitting diode (LED) system, developed in our laboratory, which allows adjustment of applied light doses to achieve a safe and selective treatment, instead of the standard laser systems that are associated with damages in the healthy tissues in the tumor surroundings. Those are the first graphene-based materials containing pharmaceutical formulations developed for BCC phototherapy.
Collapse
Affiliation(s)
- Sara I Amaral
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Filipa A L S Silva
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Raquel Costa-Almeida
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Licínia Timochenco
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - José Ramiro Fernandes
- CQVR─Centro de Química Vila Real, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5001-801 Vila Real, Portugal
| | - Bruno Sarmento
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CESPU, IINFACTS-Institute for Research and Advanced Training in Health Sciences and Technologies, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Inês C Gonçalves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Fernão D Magalhães
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
| | - Artur M Pinto
- LEPABE─Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- ALiCE─Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| |
Collapse
|
14
|
Fernandes NB, Velagacherla V, Spandana KJ, N B, Mehta CH, Gadag S, Sabhahit JN, Nayak UY. Co-delivery of lapatinib and 5-fluorouracil transfersomes using transpapillary iontophoresis for breast cancer therapy. Int J Pharm 2024; 650:123686. [PMID: 38070658 DOI: 10.1016/j.ijpharm.2023.123686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Combination chemotherapy, involving the intervention of two or more anti-neoplastic agents has been the cornerstone in breast cancer treatment, owing to the applications it holds in contrast to the mono-therapy approach. This research predominantly focussed on proving the synergy between Lapatinib (LPT) and 5-Fluorouracil (5-FU) and further enhancing its localized permeation via transfersome-loaded delivery and iontophoresis to treat breast tumors. The IC50 values for LPT and 5-FU were found to be 19.38 µg/ml and 5.7 µg/ml respectively and their synergistic effect was proven by the Chou-Talalay assay using CompuSyn software. Furthermore, LPT and 5-FU were encapsulated within transfersomes and administered via the transpapillary route. The drug-loaded carriers were characterized for their particle size, polydispersity index, zeta potential, and entrapment efficiency. The ex vivo rat skin permeation studies indicated that when compared to LPT dispersion and 5-FU solution, drug-loaded transfersomes exhibited better permeability and their transpapillary permeation was enhanced on using iontophoresis. Moreover, both LPT and 5-FU transfersomes were found to be stable for 3 months when stored at a temperature of 5 ± 3 °C. The results indicated that this treatment strategy could be an effective approach in contrast to some of the conventional treatments employed to date.
Collapse
Affiliation(s)
- Neha B Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - K J Spandana
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Bhagya N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayalakshmi N Sabhahit
- Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
15
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
16
|
Saeed W, Shahbaz E, Maqsood Q, Ali SW, Mahnoor M. Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy. Cancer Control 2024; 31:10732748241274978. [PMID: 39133519 PMCID: PMC11320697 DOI: 10.1177/10732748241274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Skin cancer comprises one-third of all diagnosed cancer cases and remains a major health concern. Genetic and environmental parameters serve as the two main risk factors associated with the development of skin cancer, with ultraviolet radiation being the most common environmental risk factor. Studies have also found fair complexion, arsenic toxicity, indoor tanning, and family history among the prevailing causes of skin cancer. Prevention and early diagnosis play a crucial role in reducing the frequency and ensuring effective management of skin cancer. Recent studies have focused on exploring minimally invasive or non-invasive diagnostic technologies along with artificial intelligence to facilitate rapid and accurate diagnosis. The treatment of skin cancer ranges from traditional surgical excision to various advanced methods such as phototherapy, radiotherapy, immunotherapy, targeted therapy, and combination therapy. Recent studies have focused on immunotherapy, with the introduction of new checkpoint inhibitors and personalized immunotherapy enhancing treatment efficacy. Advancements in multi-omics, nanotechnology, and artificial intelligence have further deepened the understanding of the mechanisms underlying tumoral growth and their interaction with therapeutic effects, which has paved the way for precision oncology. This review aims to highlight the recent advancements in the understanding and management of skin cancer, and provide an overview of existing and emerging diagnostic, prognostic, and therapeutic modalities, while highlighting areas that require further research to bridge the existing knowledge gaps.
Collapse
Affiliation(s)
- Wajeeha Saeed
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammada Mahnoor
- Sehat Medical Complex Lake City, University of Lahore, Lahore Pakistan
| |
Collapse
|
17
|
Van den Avont A, Sharma-Walia N. Anti-nucleolin aptamer AS1411: an advancing therapeutic. Front Mol Biosci 2023; 10:1217769. [PMID: 37808518 PMCID: PMC10551449 DOI: 10.3389/fmolb.2023.1217769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 10/10/2023] Open
Abstract
Targeted therapy is highly desirable, as it allows for selective cytotoxicity on diseased cells without off-target side effects. Nucleolin is a remarkable target for cancer therapy given its high abundance, selective presence on the plasma membrane, and multifaceted influence on the initiation and progression of cancer. Nucleolin is a protein overexpressed on the cell membrane in many tumors and serves as a binding protein for several ligands implicated in angiogenesis and tumorigenesis. Nucleolin is present in the cytoplasm, nucleoplasm, and nucleolus and is used by selected pathogens for cell entry. AS1411 is a guanosine-rich oligonucleotide aptamer that binds nucleolin and is internalized in the tumor cells. AS1411 is well tolerated at therapeutic doses and localizes to tumor cells overexpressing nucleolin. AS1411 has a good safety profile with efficacy in relapsed acute myeloid leukemia and renal cell carcinoma producing mild or moderate side effects. The promising potential of AS1411 is its ability to be conjugated to drugs and nanoparticles. When a drug is bound to AS1411, the drug will localize to tumor cells leading to targeted therapy with fewer systemic side effects than traditional practices. AS1411 can also be bound to nanoparticles capable of detecting nucleolin at concentrations far lower than lab techniques used today for cancer diagnosis. AS1411 has a promising potential to change cancer diagnoses and treatment.
Collapse
Affiliation(s)
| | - Neelam Sharma-Walia
- Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
18
|
Mazandarani A, Taravati A, Mohammadnejad J, Yazdian F. Targeted Anticancer Drug Delivery Using Chitosan, Carbon Quantum Dots, and Aptamers to Deliver Ganoderic Acid and 5-Fluorouracil. Chem Biodivers 2023; 20:e202300659. [PMID: 37548485 DOI: 10.1002/cbdv.202300659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Breast cancer is a malignancy that affects mostly females and is among the most lethal types of cancer. The ligand-functionalized nanoparticles used in the nano-drug delivery system offer enormous potential for cancer treatments. This work devised a promising approach to increase drug loading efficacy and produce sustained release of 5-fluorouracil (5-FU) and Ganoderic acid (GA) as model drugs for breast cancer. Chitosan, aptamer, and carbon quantum dot (CS/Apt/COQ) hydrogels were initially synthesized as a pH-sensitive and biocompatible delivery system. Then, CS/Apt/COQ NPs loaded with 5-FU-GA were made using the W/O/W emulsification method. FT-IR, XRD, DLS, zeta potentiometer, and SEM were used to analyze NP's chemical structure, particle size, and shape. Cell viability was measured using MTT assays in vitro using the MCF-7 cell lines. Real-time PCR measured cell apoptotic gene expression. XRD and FT-IR investigations validated nanocarrier production and revealed their crystalline structure and molecular interactions. DLS showed that nanocarriers include NPs with an average size of 250.6 nm and PDI of 0.057. SEM showed their spherical form, and zeta potential studies showed an average surface charge of +37.8 mV. pH 5.4 had a highly effective and prolonged drug release profile, releasing virtually all 5-FU and GA in 48 h. Entrapment efficiency percentages for 5-FU and GA were 84.7±5.2 and 80.2 %±2.3, respectively. The 5-FU-GA-CS-CQD-Apt group induced the highest cell death, with just 57.9 % of the MCF-7 cells surviving following treatment. 5-FU and GA in CS-CQD-Apt enhanced apoptotic induction by flow cytometry. 5-FU-GA-CS-CQD-Apt also elevated Caspase 9 and downregulated Bcl2. Accordingly, the produced NPs may serve as pH-sensitive nano vehicles for the controlled release of 5-FU and GA in treating breast cancer.
Collapse
Affiliation(s)
- Aynaz Mazandarani
- Department of Molecular and cell Biology, Faculty of Basic Sciences, University of Mazandaran, 47416-95447, Babolsar, Iran
| | - Ali Taravati
- Department of Molecular and cell Biology, Faculty of Basic Sciences, University of Mazandaran, 47416-95447, Babolsar, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Mahmoudi A, Hoda Alavizadeh S, Atefeh Hosseini S, Meidany P, Doagooyan M, Abolhasani Y, Saadat Z, Amani F, Kesharwani P, Gheybi F, Sahebkar A. Harnessing aptamers against COVID-19: a therapeutic strategy. Drug Discov Today 2023:103663. [PMID: 37315763 PMCID: PMC10266562 DOI: 10.1016/j.drudis.2023.103663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
The novel coronavirus crisis caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was a global pandemic. Although various therapeutic approaches were developed over the past 2 years, novel strategies with more efficient applicability are required to target new variants. Aptamers are single-stranded (ss)RNA or DNA oligonucleotides capable of folding into unique 3D structures with robust binding affinity to a wide variety of targets following structural recognition. Aptamer-based theranostics have proven excellent capability for diagnosing and treating various viral infections. Herein, we review the current status and future perspective of the potential of aptamers as COVID-19 therapies.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Atefeh Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Pouria Meidany
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maham Doagooyan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Yasaman Abolhasani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Zakieh Saadat
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Fatemeh Amani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Yusefi M, Shameli K, Lee-Kiun MS, Teow SY, Moeini H, Ali RR, Kia P, Jie CJ, Abdullah NH. Chitosan coated magnetic cellulose nanowhisker as a drug delivery system for potential colorectal cancer treatment. Int J Biol Macromol 2023; 233:123388. [PMID: 36706873 DOI: 10.1016/j.ijbiomac.2023.123388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia; Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia; Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany.
| | - Michiele Soon Lee-Kiun
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Quhai, Wenzhou 325060, Zhejiang Province, China
| | - Hassan Moeini
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roshafima Rasit Ali
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Chia Jing Jie
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Nurul Hidayah Abdullah
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Mukhtar M, Almanghadim HG, Sargazi S, Rahdar A, Díez-Pascual AM. Biomedical applications of aptamer-modified chitosan nanomaterials: An updated review. Int J Biol Macromol 2023; 238:124103. [PMID: 36948344 DOI: 10.1016/j.ijbiomac.2023.124103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Among polysaccharides of environmental and economic interest, chitosan (CS) is receiving much attention, particularly in the food and biotechnology industries to encapsulate active food ingredients and immobilize enzymes. CS nanoparticles (CS NPs) combine the intrinsic beneficial properties of both natural polymers and nanoscale particles such as quantum size effect, biocompatibility, biodegradability, and ease of modification, and have great potential for bioimaging, drug delivery, and biosensing applications. Aptamers are single-stranded oligonucleotides that can fold into predetermined structures and bind to the corresponding biomolecules. They are mainly used as targeting ligands in biosensors, disease diagnostic kits and treatment strategies. They can deliver contrast agents and drugs into cancer cells and tissues, control microorganism growth and precisely target pathogens. Aptamer-conjugated CS NPs can significantly improve the efficacy of conventional therapies, minimize their side effects on normal tissues, and overcome the enhanced permeability retention (EPR) effect. Further, aptamer-conjugated carbohydrate-based nanobiopolymers have shown excellent antibacterial and antiviral properties and can be used to develop novel biosensors for the efficient detection of antibiotics, toxins, and other biomolecules. This updated review aims to provide a comprehensive overview of the bioapplications of aptamer-conjugated CS NPs used as innovative diagnostic and therapeutic platforms, their limitations, and potential future directions.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary.
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
22
|
Pinto EP, Menezes RP, de S Tavares W, Ferreira AM, Sousa FFOD, Araújo da Silva G, Zamora RRM, Araújo RS, de Souza TM. Copaiba essential oil loaded-nanocapsules film as a potential candidate for treating skin disorders: preparation, characterization, and antibacterial properties. Int J Pharm 2023; 633:122608. [PMID: 36642350 DOI: 10.1016/j.ijpharm.2023.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Infections have emerged as a novel target in managing skin and mucosa diseases. Bacterial resistance to antimicrobials and biofilm elimination from surfaces remains a challenge. Because polymeric nanocapsules (NC) can increase antimicrobial activity, this study aimed to produce and characterize NC into chitosan films (CSF). Copaiba essential oil (CO) presents antimicrobial activity and was chosen to load NC. In addition, the antibacterial activity was evaluated to obtain a new biodegradable polymeric platform system with the potential to treat topical diseases associated with bacterial infections. The CO-NC produced by nanoprecipitation presented particle size lower than 250 nm, negative charge, and encapsulation efficiency higher than 70 %. Direct incorporation of CO into CSF (CO-CSF) by casting method worsened the film's characteristics. However, incorporating CO-NC into CSF (CO-NC-CSF) avoided these drawbacks demonstrating improved physical, mechanical, morphological, and topographical properties. FTIR results demonstrated possible intermolecular interactions among the polymers and CO. The CO-NC-CSF and CO-CSF presented antibacterial properties against Staphylococcus aureus, and Pseudomonas aeruginosa, especially the formulation containing 1 % of CO. These results indicated that CO-NC-CSF is a promising candidate for treating skin disorders.
Collapse
Affiliation(s)
| | - Rodrigo P Menezes
- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Băcăiță ES, Rață DM, Cadinoiu AN, Ghizdovăț V, Agop M, Luca AC. Drug Release from Nanoparticles (Polymeric Nanocapsules and Liposomes) Mimed through a Multifractal Tunnelling-Type Effect. Polymers (Basel) 2023; 15:polym15041018. [PMID: 36850302 PMCID: PMC9962169 DOI: 10.3390/polym15041018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The present study analyzes (theoretically and experimentally) a drug release process from nanoparticles (polymeric nanocapsules and liposomes). This process is functionalized on the surface with an aptamer. These types of drug release processes can also be included in cream-type formulations. The obtained cream ensures the active targeting of tumor epithelial cells, in the case of skin cancer, because it can be easily administered to the skin by spreading, thus avoiding side effects caused by the toxicity of the drug to healthy cells, increasing both patient compliance and the effectiveness of the treatment. The process of obtaining these formulations is a simple one, easy to use and highly reproductible. The theoretical model, based on the multifractal tunnel effect within the Scale Relativity Theory, considers the system as a complex one. In this model, complexity is replaced with system multifractality, quantified in physical quantities as multifractal dimensions and multifractal functions. The main advantage of this approach consists in the fact that it allows us to obtain information on system behavior at a microscopic level and to evaluate microscopic characteristics of the system, such as intrinsic transparences of the drug molecules, multifractal constants as indicators of the system's complexity, the frequency of interactions within the system and the energy ratio between potential barrier energy and the energy of drug molecules.
Collapse
Affiliation(s)
- Elena Simona Băcăiță
- Faculty of Machine Manufacturing and Industrial Management, Gheorghe Asachi Technical University of Iasi, D. Mangeron Bld. No. 73, 700050 Iasi, Romania
| | - Delia Mihaela Rață
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Muzicii Street No. 2, 700511 Iasi, Romania
| | - Anca Niculina Cadinoiu
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Muzicii Street No. 2, 700511 Iasi, Romania
- Correspondence: (A.N.C.); (M.A.)
| | - Vlad Ghizdovăț
- Department of Biophysics and Medical Physics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maricel Agop
- Faculty of Machine Manufacturing and Industrial Management, Gheorghe Asachi Technical University of Iasi, D. Mangeron Bld. No. 73, 700050 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050094 Bucharest, Romania
- Correspondence: (A.N.C.); (M.A.)
| | - Alina-Costina Luca
- Department of Mother and Child Medicine-Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
24
|
Polymeric Nanoparticles as Tunable Nanocarriers for Targeted Delivery of Drugs to Skin Tissues for Treatment of Topical Skin Diseases. Pharmaceutics 2023; 15:pharmaceutics15020657. [PMID: 36839979 PMCID: PMC9964857 DOI: 10.3390/pharmaceutics15020657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The topical route is the most appropriate route for the targeted delivery of drugs to skin tissues for the treatment of local skin diseases; however, the stratum corneum (SC), the foremost layer of the skin, acts as a major barrier. Numerous passive and active drug delivery techniques have been exploited to overcome this barrier; however, these modalities are associated with several detrimental effects which restrict their clinical applicability. Alternatively, nanotechnology-aided interventions have been extensively investigated for the topical administration of a wide range of therapeutics. In this review, we have mainly focused on the biopharmaceutical significance of polymeric nanoparticles (PNPs) (made from natural polymers) for the treatment of various topical skin diseases such as psoriasis, atopic dermatitis (AD), skin infection, skin cancer, acute-to-chronic wounds, and acne. The encapsulation of drug(s) into the inner core or adsorption onto the shell of PNPs has shown a marked improvement in their physicochemical properties, avoiding premature degradation and controlling the release kinetics, permeation through the SC, and retention in the skin layers. Furthermore, functionalization techniques such as PEGylation, conjugation with targeting ligand, and pH/thermo-responsiveness have shown further success in optimizing the therapeutic efficacy of PNPs for the treatment of skin diseases. Despite enormous progress in the development of PNPs, their clinical translation is still lacking, which could be a potential future perspective for researchers working in this field.
Collapse
|
25
|
Iman M, Moosavian SA, Zamani P, Jaafari MR. Preparation of AS1411 aptamer-modified PEGylated liposomal doxorubicin and evaluation of its anti-cancer effects in vitro and in vivo. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
26
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
27
|
Ashique S, Garg A, Singh V, Rai G, Mishra N, Soni ML, Kumar S, Madamsetty VS. Role of Block Copolymers in Colon Cancer. BLOCK CO-POLYMERIC NANOCARRIERS: DESIGN, CONCEPT, AND THERAPEUTIC APPLICATIONS 2023:181-209. [DOI: 10.1007/978-981-99-6917-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Piasek AM, Musolf P, Sobiepanek A. Aptamer-based Advances in Skin Cancer Research. Curr Med Chem 2023; 30:953-973. [PMID: 35400317 DOI: 10.2174/0929867329666220408112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
Cancer diseases have been one of the biggest health threats for the last two decades. Approximately 9% of all diagnosed cancers are skin cancers, including melanoma and non-melanoma. In all cancer cases, early diagnosis is essential to achieve efficient treatment. New solutions and advanced techniques for rapid diagnosis are constantly being sought. Aptamers are single-stranded RNA or DNA synthetic sequences or peptides, which offer novel possibilities to this area of research by specifically binding selected molecules, the so-called cancer biomarkers. Nowadays, they are widely used as diagnostic probes in imaging and targeted therapy. In this review, we have summarized the recently made advances in diagnostics and treatment of skin cancers, which have been achieved by combining aptamers with basic or modern technologies.
Collapse
Affiliation(s)
- Adrianna Maria Piasek
- Laboratory of Biomolecular Interactions Studies, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Paulina Musolf
- Laboratory of Biomolecular Interactions Studies, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Anna Sobiepanek
- Laboratory of Biomolecular Interactions Studies, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
29
|
Saindane D, Bhattacharya S, Shah R, Prajapati BG. The recent development of topical nanoparticles for annihilating skin cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Dnyanesh Saindane
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Bhupendra G. Prajapati
- Dept. of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K.Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, India
| |
Collapse
|
30
|
Advances in Polymeric Colloids for Cancer Treatment. Polymers (Basel) 2022; 14:polym14245445. [PMID: 36559812 PMCID: PMC9788371 DOI: 10.3390/polym14245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Polymer colloids have remarkable features and are gaining importance in many areas of research including medicinal science. Presently, the innovation of cancer drugs is at the top in the world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment. The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with special emphasis on the different types of colloidal materials and their applications in targeted cancer therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives. This article will be useful for academics, researchers, and regulatory authorities.
Collapse
|
31
|
Nair AB, Dalal P, Kadian V, Kumar S, Kapoor A, Garg M, Rao R, Aldhubiab B, Sreeharsha N, Almuqbil RM, Attimarad M, Elsewedy HS, Shinu P. Formulation, Characterization, Anti-Inflammatory and Cytotoxicity Study of Sesamol-Laden Nanosponges. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4211. [PMID: 36500833 PMCID: PMC9740471 DOI: 10.3390/nano12234211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Sesamol (SES) possesses remarkable chemotherapeutic activity, owing to its anti-inflammatory and antioxidant potential. However, the activity of SES is mainly hampered by its poor physicochemical properties and stability issues. Hence, to improve the efficacy of this natural anti-inflammatory and cytotoxic agent, it was loaded into β-cyclodextrin nanosponges (NS) prepared using different molar ratios of polymer and crosslinker (diphenyl carbonate). The particle size of SES-laden NS (SES-NS) was shown to be in the nano range (200 to 500 nm), with a low polydispersity index, an adequate charge (-17 to -26 mV), and a high payload. Field emission scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the bioactive-loaded selected batch (SES-NS6). This batch of nanoformulations showed improved solubilization efficacy (701.88 µg/mL) in comparison to bare SES (244.36 µg/mL), polymer (β-CD) (261.43 µg/mL), and other fabricated batches. The drug release data displayed the controlled release behavior of SES from NS. The findings of the egg albumin denaturation assay revealed the enhanced anti-inflammatory potential of SES-NS as compared to bare SES. Further, the cytotoxicity assay showed that SES-NS was more effective against B16F12 melanoma cell lines than the bioactive alone. The findings of this assay demonstrated a reduction in the IC50 values of SES-NS (67.38 μg/mL) in comparison to SES (106 μg/mL). The present investigation demonstrated the in vitro controlled release pattern and the enhanced anti-inflammatory and cytotoxic activity of SES-NS, suggesting its potential as a promising drug delivery carrier for topical delivery.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia
| |
Collapse
|
32
|
Panthakkan A, Anzar SM, Jamal S, Mansoor W. Concatenated Xception-ResNet50 - A novel hybrid approach for accurate skin cancer prediction. Comput Biol Med 2022; 150:106170. [PMID: 37859280 DOI: 10.1016/j.compbiomed.2022.106170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
Abstract
Skin cancer is a malignant disease that affects millions of people around the world every year. It is an invasive disease characterised by an abnormal proliferation of skin cells in the body that multiply and spread through the lymph nodes, killing the surrounding tissue. The number of skin cancer cases is on the rise due to lifestyle changes and sun-seeking behaviour. As skin cancer is a deadly disease, early diagnosis and grading are crucial to save lives. In this work, state-of-the-art AI approaches are applied to develop a unique deep learning model that integrates Xception and ResNet50. This network achieves maximum accuracy by combining the properties of two robust networks. The proposed concatenated Xception-ResNet50 (X-R50) model can classify skin tumours as basal cell carcinoma, melanoma, melanocytic nevi, dermatofibroma, actinic keratoses and intraepithelial carcinoma, vascular and non-cancerous benign keratosis-like lesions. The performance of the proposed method is compared with a DeepCNN and other state-of-the-art transfer learning models. The Human Against Machine (HAM10000) dataset assesses the suggested method's performance. For this study, 10,500 skin images were used. The model is trained and tested with the sliding window technique. The proposed concatenated X-R50 model is cutting-edge, with a 97.8% prediction accuracy. The performance of the model is also validated by a statistical hypothesis test using analysis of variance (ANOVA). The reported approach is both accurate and efficient and can help dermatologists and clinicians detect skin cancer at an early stage of the clinical process.
Collapse
Affiliation(s)
| | - S M Anzar
- Department of Electronics and Communication Engineering, TKM College of Engineering, Kollam, 691 005, India.
| | - Sangeetha Jamal
- Department of Computer Science and Engineering, Rajagiri School of Engineering and Technology, Kochi, 682 039, India
| | - Wathiq Mansoor
- College of Engineering and IT, University of Dubai, United Arab Emirates
| |
Collapse
|
33
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
34
|
Xu Y, Cai Y, Meng Y, Wu L, Chen J, Cao W, Chu X. Liposome and microemulsion loaded with ibuprofen: from preparation to mechanism of drug transport. J Microencapsul 2022; 39:539-551. [PMID: 36190415 DOI: 10.1080/02652048.2022.2131920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To compare the difference between liposome (LP) and microemulsion (ME) in delivering ibuprofen (IBU) transdermally and explore relative mechanism. IBU-LP and IBU-ME were prepared by ethanol injection and spontaneous emulsification, respectively. The percutaneous delivery was evaluated using Franz diffusion cells. Fourier transform infra-red spectroscopy (FTIR), differential scanning calorimetry (DSC), activation energy (Ea), and confocal laser scanning microscopy (CLSM) were used to investigate the transdermal mechanism. The particle size and encapsulation efficiency were 228.00 ± 8.60 nm, 86.68 ± 1.43%(w/w) for IBU-LP, and 56.74 ± 7.11 nm, 91.08 ± 3.27%(w/w) for IBU-ME. Percutaneous study showed that formulations enhanced permeation and drug retention in the skin. FTIR and DSC showed that the permeation occurred due to the interaction of the formulations with the lipid bilayer and the protein. The decrease in Ea (1.506 and 0.939 kcal/mol) revealed that the stratum corneum (SC) lipid bilayers were significantly disrupted and this destructive effect of IBU-LP was stronger. IBU-LP was superior to IBU-ME in the aspects of transdermal delivery of IBU.
Collapse
Affiliation(s)
- Yuhang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Ye Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Yun Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Long Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Jingbao Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, PR China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, PR China
| |
Collapse
|
35
|
Formulation and Evaluation of Chitosan-Gelatin Thermosensitive Hydrogels Containing 5FU-Alginate Nanoparticles for Skin Delivery. Gels 2022; 8:gels8090537. [PMID: 36135249 PMCID: PMC9498398 DOI: 10.3390/gels8090537] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Chitosan-gelatin-based thermosensitive hydrogel containing 5FU-alginate nanoparticles was formulated for the effective and sustained delivery of 5FU to the skin. (2) Methods: Alginate, a polysaccharide was used for the formulation of nanoparticles using a spray drying technique. Size, zeta potential, and surface morphology were investigated using a zetasizer and scanning electron microscope. The hydrogel was fabricated using chitosan and gelatin. Several important analyses were used to characterize these prepared topical hydrogels. The pH, visual transparency, rheological behavior, and swelling index of the prepared hydrogels were evaluated. The in vitro release studies were performed at different pH (5.5 and 7.4) and temperature (32 and 37 °C) conditions using a Franz diffusion cell. Ex vivo permeation and in vivo studies were performed using Sprague Dawley rats. (3) Results: Results show that spherical nanoparticles were produced at sizes of 202−254 nm and with zeta potentials of −43 to −38 mV. The prepared nanoparticles were successfully incorporated into chitosan-gelatin-based hydrogels using a glycerol 2-phosphate disodium salt hydrates crosslinker. Drug polymers and excipients compatibility and formulation of hydrogels was confirmed by ATR-FTIR results. The pH of the prepared hydrogels was in accordance with the skin pH. The viscosity of prepared hydrogel increased with temperature increase and phase transition (sol-gel transition) occurred at 34 °C. The release of drug was sustained in case of nanoparticles incorporated hydrogels (5FU-Alg-Np-HG) as compared to nanoparticles (5FU-Alg-Np) and simple hydrogels (5FU-HG) (ANOVA; p < 0.05). The premature and initial burst release of 5FU was prevented using 5FU-Alg-Np-HG. The release mechanism of 5FU from the 5FU-Alg-Np-HG diffusion was followed by swelling and erosion, as suggested by Korsmeyer-Peppas model. The prepared hydrogel proved to be non-irritant. Ex vivo permeation study across rat’s skin suggests that permeability of nanoparticles (5FU-Alg-Np) was higher than the 5FU-Alg-Np-HG (ANOVA; p < 0.05). However, skin-related drug retention of 5FU-Alg-Np-HG was significantly higher than the 5FU solution, 5FU-Alg-Np, and 5FU-HG (ANOVA; p < 0.05). This was due to swelling of hydrogels in the lower layers of skin where the temperature is 37 °C. The higher concentration of 5FU in the skin is helpful for treatment of local skin cancer, such as melanoma, and actinic keratosis. In vivo results also confirmed maximum AUC, t1/2, and skin-related drug retention of 5FU-Alg-Np-HG. (4) Conclusions: Chitosan-gelatin-based hydrogels containing 5FU-Alg-Np possess exceptional properties, and can be used for the sustained delivery of 5FU for the treatment of local skin cancers.
Collapse
|
36
|
Crisóstomo LCCF, Carvalho GSG, Leal LKAM, de Araújo TG, Nogueira KAB, da Silva DA, de Oliveira Silva Ribeiro F, Petrilli R, Eloy JO. Sorbitan Monolaurate-Containing Liposomes Enhance Skin Cancer Cell Cytotoxicity and in Association with Microneedling Increase the Skin Penetration of 5-Fluorouracil. AAPS PharmSciTech 2022; 23:212. [PMID: 35918472 DOI: 10.1208/s12249-022-02356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Squamous cell carcinoma (SCC) represents 20% of cases of non-melanoma skin cancer, and the most common treatment is the removal of the tumor, which can leave large scars. 5-Fluorouracil (5FU) is a drug used in the treatment of SCC, but it is highly hydrophilic, resulting in poor skin penetration in topical treatment. Some strategies can be used to increase the cutaneous penetration of the drug, such as the combination of liposomes containing penetration enhancers, for instance, surfactants, associated with the use of microneedling. Thus, the present work addresses the development of liposomes with penetration enhancers, such as sorbtitan monolaurate, span 20, for topical application of 5-FU and associated or not with the use of microneedling for skin delivery. Liposomes were developed using the lipid film hydration, resulting in particle size, polydispersity index, zeta potential, and 5-FU encapsulation efficiency of 88.08 nm, 0.169, -12.3 mV, and 50.20%, respectively. The presence of span 20 in liposomes potentiated the in vitro release of 5-FU. MTT assay was employed for cytotoxicity evaluation and the IC50 values were 0.62, 30.52, and 24.65 μM for liposomes with and without span 20 and 5-FU solution, respectively after 72-h treatment. Flow cytometry and confocal microscopy analysis evidenced high cell uptake for the formulations. In skin penetration studies, a higher concentration of 5-FU was observed in the epidermis + dermis, corresponding to 1997.71, 1842.20, and 2585.49 ng/cm2 in the passive penetration and 3214.07, 2342.84, and 5018.05 ng/cm2 after pretreatment with microneedles, for solution, liposome without and with span 20, respectively. Therefore, herein, we developed a nanoformulation for 5-FU delivery, with suitable physicochemical characteristics, potent skin cancer cytotoxicity, and cellular uptake. Span 20-based liposomes increased the skin penetration of 5-FU in association of microneedling. Altogether, the results shown herein evidenced the potential of the liposome containing span 20 for topical delivery of 5-FU.
Collapse
Affiliation(s)
| | | | | | - Tamara Gonçalves de Araújo
- Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, Parnaíba, PI, Brazil
| | | | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony- UNILAB, Redenção, CE, Brazil
| | - Josimar O Eloy
- Faculty of Pharmacy, Dentistry and Nursing, Department of Pharmacy, Fortaleza Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
37
|
Haider M, Zaki KZ, El Hamshary MR, Hussain Z, Orive G, Ibrahim HO. Polymeric nanocarriers: A promising tool for early diagnosis and efficient treatment of colorectal cancer. J Adv Res 2022; 39:237-255. [PMID: 35777911 PMCID: PMC9263757 DOI: 10.1016/j.jare.2021.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent type of cancer for incidence and second for mortality worldwide. Late diagnosis and inconvenient and expensive current diagnostic tools largely contribute to the progress of the disease. The use of chemotherapy in the management of CRC significantly reduces tumor growth, metastasis, and morbidity rates. However, poor solubility, low cellular uptake, nonspecific distribution, multiple drug resistance and unwanted adverse effects are still among the major drawbacks of chemotherapy that limit its clinical significance in the treatment of CRC. Owing to their remarkable advantages over conventional therapies, the use of nanotechnology-based delivery systems especially polymeric nanocarriers (PNCs) has revolutionized many fields including disease diagnosis and drug delivery. AIM OF REVIEW In this review, we shed the light on the current status of using PNCs in the diagnosis and treatment of CRC with a special focus on targeting strategies, surface modifications and safety concerns for different types of PNCs in colonic cancer delivery. KEY SCIENTIFIC CONCEPTS OF REVIEW The review explores the current progress on the use of PNCs in the diagnosis and treatment of CRC with a special focus on the role of PNCs in improvement of cellular uptake, drug targeting and co-delivery of chemotherapeutic agents. Possible toxicity and biocompatibility issues related to the use of PNCs and imitations and future recommendation for the use of those smart carriers in the diagnosis and treatment of CRC are also discussed.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 71526, Egypt.
| | - Khaled Zaki Zaki
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mariam Rafat El Hamshary
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Haidy Osama Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
38
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
39
|
Ni D, Lin J, Zhang N, Li S, Xue Y, Wang Z, Liu Q, Liu K, Zhang H, Zhao Y, Chen C, Liu Y. Combinational application of metal-organic frameworks-based nanozyme and nucleic acid delivery in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1773. [PMID: 35014211 DOI: 10.1002/wnan.1773] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of nanotechnology has generated numerous ideas for cancer treatment, and a wide variety of relevant nanoparticle platforms have been reported. Metal-organic frameworks (MOFs) have been widely investigated as an anti-cancer drug delivery vehicle owing to their unique porous hybrid structure, biocompatibility, structural tunability, and multi-functionality. MOF materials with catalytic activity, known as nanozymes, have applications in photodynamic and chemodynamic therapy. Nucleic acids have also attracted increasing research attention owing to their programmability, ease of synthesis, and versatility. A variety of functional DNAs and RNAs have been applied both therapeutically (gene-targeting drugs for cancer treatment) and nontherapeutically (used as modified materials to enhance the therapeutic effects of other nanomedicines). The combined use of MOFs and functional nucleic acids have been extensively investigated and has been associated with excellent tumor-suppressor activity in various treatment methods. In this review, we summarize the progress in the research and development of tumor therapy based on MOFs and nucleic acid delivery over recent years, focusing on the combinational use of different delivery and design strategies for MOF/therapeutic nucleic acid platforms. We further summarize the strategies for combining MOFs (universal carrier, functional carrier) and nucleic acids (therapeutic nucleic acids, nontherapeutic nucleic acids) and discuss the corresponding therapeutic effects in cancer treatment. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Dongqi Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinhui Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nuozi Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianglin Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- GBA National Institute for Nanotechnology Innovation, Guangdong, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- GBA National Institute for Nanotechnology Innovation, Guangdong, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- GBA National Institute for Nanotechnology Innovation, Guangdong, China
| |
Collapse
|
40
|
Recent development of aptamer conjugated chitosan nanoparticles as cancer therapeutics. Int J Pharm 2022; 620:121751. [DOI: 10.1016/j.ijpharm.2022.121751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022]
|
41
|
He Z, Bao K, Zhang J, Ju D, Luo M, Liu L, Gao X. Multifunctional nanoparticles for targeted delivery of apoptin plasmid in cancer treatment. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The systemic toxicity and low efficacy of traditional chemotherapy for hepatocellular carcinoma (HCC) result in poor clinical outcomes. This study was designed to achieve targeted delivery of apoptin plasmid (AP) to liver tumors and killing of cancer cells using multifunctional nanoparticles (MFNPs) having sustained-release properties. The MFNPs featuring a distinct core-shell structure were prepared using poly(lactic-glycolic acid)-ε-polylysine copolymer and loaded with AP by adsorption. Specific targeting of liver tumor cells was achieved by biotinylation of the nanoparticles (NPs), while an improvement in lysosomal escape and nuclear localization enhanced the tumor cell killing capability of AP. Blank MFNPs exhibited good biocompatibility while AP-loaded NPs were found to exert strong inhibitory effects on both tumor cells in vitro and solid tumors in vivo. Taken together, these findings demonstrate a promising route for the development of tumor-targeted NPs which may lead to improved therapeutic strategies for treating HCC.
Collapse
Affiliation(s)
- Zhuanxia He
- School of Biomedical Engineering and Technology, Tianjin Medical University , Tianjin 300070 , China
| | - Ke Bao
- School of Biomedical Engineering and Technology, Tianjin Medical University , Tianjin 300070 , China
| | - Jiawei Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University , Tianjin 300070 , China
| | - Dandan Ju
- School of Biomedical Engineering and Technology, Tianjin Medical University , Tianjin 300070 , China
| | - Mingyan Luo
- School of Biomedical Engineering and Technology, Tianjin Medical University , Tianjin 300070 , China
| | - Liyan Liu
- College of Science, Civil Aviation University of China , Tianjin 300300 , China
| | - Xiujun Gao
- School of Biomedical Engineering and Technology, Tianjin Medical University , No. 22, Meteorological Station Road , Tianjin 300070 , China
| |
Collapse
|
42
|
Yoosefian M, Fouladi M, Atanase LI. Molecular Dynamics Simulations of Docetaxel Adsorption on Graphene Quantum Dots Surface Modified by PEG-b-PLA Copolymers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:926. [PMID: 35335739 PMCID: PMC8955431 DOI: 10.3390/nano12060926] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Cancer is associated with a high level of morbidity and mortality, and has a significant economic burden on health care systems around the world in almost all countries due to poor living and nutritional conditions. In recent years, with the development of nanomaterials, research into the drug delivery system has become a new field of cancer treatment. With increasing interest, much research has been obtained on carbon-based nanomaterials (CBNs); however, their use has been limited, due to their impact on human health and the environment. The scientific community has turned its research efforts towards developing new methods of producing CBN. In this work, by utilizing theoretical methods, including molecular dynamics simulation, graphene quantum dots (GQD) oxide was selected as a carbon-based nanocarriers, and the efficiency and loading of the anticancer drug docetaxel (DTX) onto GQD oxide surfaces in the presence and in the absence of a PEG-b-PLA copolymer, as a surface modifier, were investigated. According to the results and analyzes performed (total energy, potential energy, and RMSD), it can be seen that the two systems have good stability. In addition, it was determined that the presence of the copolymer at the interface of GQD oxide delays the adsorption of the drug at first; but then, in time, both the DTX adsorption and solubility are increased.
Collapse
Affiliation(s)
- Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Mitra Fouladi
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman 7631885356, Iran;
| | | |
Collapse
|
43
|
Pourmanouchehri Z, Ebrahimi S, Limoee M, Jalilian F, Janfaza S, Vosoughi A, Behbood L. Controlled release of 5-fluorouracil to melanoma cells using a hydrogel/micelle composites based on deoxycholic acid and carboxymethyl chitosan. Int J Biol Macromol 2022; 206:159-166. [PMID: 35218806 DOI: 10.1016/j.ijbiomac.2022.02.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/31/2022]
Abstract
5-Fluorouracil (5-FU) is an antimetabolite drug widely used for the treatment of skin cancer. Despite its proven efficacy in treating malignancies, its systemic administration is limited due to severe side effects. To address this issue, topical delivery of 5-FU has been proposed as an alternative approach for the treatment of skin cancer, however, the poor permeability of 5-FU through the skin is still a challenge. Here, we introduced a pH-responsive micellar hydrogel system based on deoxycholic acid micelle (DCA Mic) and carboxymethyl chitosan hydrogel (CMC Hyd) to enhance 5-FU efficacy against skin cancer and reduce its systemic side effects by improving its delivery into the skin. The properties of the Mic/Hyd system were determined by Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta sizer, atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Drug release studies showed pH-dependent properties of the Hyd. The final formulation was demonstrated to have enhanced anticancer activity than 5-FU against the growth of melanoma cells. The 5-FU@Mic-Hyd could be a promising delivery platform with enhanced efficacy in the management of skin cancer without systemic toxicity.
Collapse
Affiliation(s)
- Zahra Pourmanouchehri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sayeh Ebrahimi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mazdak Limoee
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fereshteh Jalilian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; Departments of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Amirhossein Vosoughi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Behbood
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
44
|
Guo Z, Jin B, Fang Y, Deng Y, Chen Z, Chen H, Li S, Leung P, Wang H, Cai L, He N. Selected aptamer specially combing 5-8F cells based on automatic screening instrument. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Aggarwal D, Kumar V, Sharma S. Drug-loaded biomaterials for orthopedic applications: A review. J Control Release 2022; 344:113-133. [DOI: 10.1016/j.jconrel.2022.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
|
46
|
Site-Specific Vesicular Drug Delivery System for Skin Cancer: A Novel Approach for Targeting. Gels 2021; 7:gels7040218. [PMID: 34842689 PMCID: PMC8628733 DOI: 10.3390/gels7040218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Skin cancer, one of the most prevalent cancers worldwide, has demonstrated an alarming increase in prevalence and mortality. Hence, it is a public health issue and a high burden of disease, contributing to the economic burden in its treatment. There are multiple treatment options available for skin cancer, ranging from chemotherapy to surgery. However, these conventional treatment modalities possess several limitations, urging the need for the development of an effective and safe treatment for skin cancer that could provide targeted drug delivery and site-specific tumor penetration and minimize unwanted systemic toxicity. Therefore, it is vital to understand the critical biological barriers involved in skin cancer therapeutics for the optimal development of the formulations. Various nanocarriers for targeted delivery of chemotherapeutic drugs have been developed and extensively studied to overcome the limitations faced by topical conventional dosage forms. A site-specific vesicular drug delivery system appears to be an attractive strategy in topical drug delivery for the treatment of skin malignancies. In this review, vesicular drug delivery systems, including liposomes, niosomes, ethosomes, and transfersomes in developing novel drug delivery for skin cancer therapeutics, are discussed. Firstly, the prevalence statistics, current treatments, and limitations of convention dosage form for skin cancer treatment are discussed. Then, the common type of nanocarriers involved in the research for skin cancer treatment are summarized. Lastly, the utilization of vesicular drug delivery systems in delivering chemotherapeutics is reviewed and discussed, along with their beneficial aspects over other nanocarriers, safety concerns, and clinical aspects against skin cancer treatment.
Collapse
|
47
|
Yuan C, Long X, Li J, Cai Q. Coaxially electrospun 5-fluorouracil-loaded PLGA/PVP fibrous membrane for skin tumor treatment. Biomed Mater 2021; 16. [PMID: 34544064 DOI: 10.1088/1748-605x/ac2887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022]
Abstract
As a biocompatible and biodegradable polymer, poly(lactide-co-glycolide) (PLGA) has been widely used as a carrier to achieve controlled drug delivery in various forms. Focusing on skin tumor treatment, herein 5-fluorouracil (5-FU) was embedded into the core of coaxially electrospun PLGA fibers to get a drug-loaded core-shell fibrous membrane. In the coaxial electrospinning, poly(vinylpyrrolidone) was applied in the inner flow to facilitate the formation of the core-shell structured fibers. The morphology and micro-structure of the fibers were characterized by scanning electron microscope and transmission electron microscope. The influences of the molecular weights and chemical compositions of PLGA copolymers on the release behaviors were studied. The cytotoxicity of the fibers was characterized by cell proliferation and living-dead cell staining experiments. The results showed that faster release rates would be obtained if the copolymers were of lower molecular weights and higher fraction of glycidyl unit. All the prepared 5-FU loaded fibrous membranes were non-cytotoxic, suggesting their potential applications in skin tumor treatment.
Collapse
Affiliation(s)
- Caini Yuan
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xinyun Long
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinghua Li
- Department of Oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
48
|
Cadinoiu AN, Rata DM, Atanase LI, Mihai CT, Bacaita SE, Popa M. Formulations Based on Drug Loaded Aptamer-Conjugated Liposomes as a Viable Strategy for the Topical Treatment of Basal Cell Carcinoma-In Vitro Tests. Pharmaceutics 2021; 13:866. [PMID: 34208362 PMCID: PMC8231244 DOI: 10.3390/pharmaceutics13060866] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Topical liposomal drug formulations containing AS1411-aptamer conjugated liposomes were designed to deliver in a sustained way the 5-fluorouracil to the tumor site but also to increase the compliance of patients with basal cell carcinoma. The 5-fluorouracil penetrability efficiency through the Strat-M membrane and the skin irritation potential of the obtained topical liposomal formulations were evaluated in vitro and the Korsmeyer Peppas equation was considered as the most appropriate to model the drug release. Additionally, the efficiency of cytostatic activity for targeted antitumor therapy and the hemolytic capacity were performed in vitro. The obtained results showed that the optimal liposomal formulation is a crosslinked gel based on sodium alginate and hyaluronic acid containing AS1411-aptamer conjugated liposomes loaded with 5-fluorouracil, which appeared to have favorable biosafety effects and may be used as a new therapeutic approach for the topical treatment of basal cell carcinoma.
Collapse
Affiliation(s)
- Anca N. Cadinoiu
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
| | - Delia M. Rata
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
| | - Leonard I. Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
| | - Cosmin T. Mihai
- Department of Experimental and Applied Biology, NIRDBS—Institute of Biological Research Iasi, 700107 Iasi, Romania;
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” Medicine and Pharmacy University of Iasi, 700454 Iasi, Romania
| | - Simona E. Bacaita
- Faculty of Machine Manufacturing and Industrial Management, Gheorghe Asachi Technical University of Iasi, D. Mangeron Bld. No. 73, 700050 Iasi, Romania;
| | - Marcel Popa
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (A.N.C.); (L.I.A.)
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| |
Collapse
|
49
|
Alamoudi AA, Ahmed OAA, El-Say KM. Investigating the Potential of Transdermal Delivery of Avanafil Using Vitamin E-TPGS Based Mixed Micelles Loaded Films. Pharmaceutics 2021; 13:pharmaceutics13050739. [PMID: 34067893 PMCID: PMC8155967 DOI: 10.3390/pharmaceutics13050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/02/2023] Open
Abstract
To avoid the first-pass metabolism of avanafil (AVA) and its altered absorption in the presence of food after oral administration, this study aimed to investigate the potential of TPGS-based mixed micelle (MM)-loaded film for transdermal delivery and the enhancement of bioavailability. A Box-Behnken design was employed to optimize the permeation behavior of AVA from the transdermal film across the skin. The variables were the hydrophile-lipophile balance (HLB) of the surfactant (X1), the concentration of mixed micelles (MMs) in the film (X2), and the concentration of the permeation enhancer (X3). The initial permeation of AVA after 1 h (Y1), and the cumulative permeation of AVA after 24 h (Y2) were the dependent variables. Ex vivo studies were carried out on freshly isolated rat skin to investigate the drug's permeation potential and results were visualized using a fluorescence laser microscope. Moreover, the pharmacokinetic behavior after a single application on male Wistar rats, in comparison with films loaded with raw AVA, was evaluated. The results showed that the optimum factor levels were 9.4% for the HLB of the surfactant used, and 5.12% MMs and 2.99% penetration enhancer in the film. Imaging with a fluorescence laser microscope indicated the ability of the optimized film to deliver the payload to deeper skin layers. Furthermore, optimized AVA-loaded TPGS-micelles film showed a significant increase (p < 0.05) in the Cmax of AVA and the area under the AVA plasma curve (approximately three-fold). The optimized AVA-loaded TPGS-MM film thus represents a successful delivery system for enhancing the bioavailability of AVA.
Collapse
|
50
|
The Comparison of In Vitro Photosensitizing Efficacy of Curcumin-Loaded Liposomes Following Photodynamic Therapy on Melanoma MUG-Mel2, Squamous Cell Carcinoma SCC-25, and Normal Keratinocyte HaCaT Cells. Pharmaceuticals (Basel) 2021; 14:ph14040374. [PMID: 33920669 PMCID: PMC8072566 DOI: 10.3390/ph14040374] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
The research focused on the investigation of curcumin encapsulated in hydrogenated soy phosphatidylcholine liposomes and its increased photoactive properties in photodynamic therapy (PDT). The goal of this study was two-fold: to emphasize the role of a natural photoactive plant-based derivative in the liposomal formulation as an easily bioavailable, alternative photosensitizer (PS) for the use in PDT of skin malignancies. Furthermore, the goal includes to prove the decreased cytotoxicity of phototoxic agents loaded in liposomes toward normal skin cells. Research was conducted on melanoma (MugMel2), squamous cell carcinoma (SCC-25), and normal human keratinocytes (HaCaT) cell lines. The assessment of viability with MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) evaluated cell death after exposure to blue light irradiation after 4 h of pre-incubation with free and encapsulated curcumin. Additionally, the wound healing assay, flow cytometry, and immunocytochemistry to detect apoptosis were performed. The malignant cells revealed increased phototoxicity after the therapy in comparison to normal cells. Moreover, liposome curcumin-based photodynamic therapy showed an increased ratio of apoptotic and necrotic cells. The study also demonstrated that nanocurcumin significantly decreased malignant cell motility following PDT treatment. Acquired results suggest that liposomal formulation of a poor soluble natural compound may improve photosensitizing properties of curcumin-mediated PDT treatment in skin cancers and reduce toxicity in normal keratinocytes.
Collapse
|