1
|
Cao X, Feng N, Huang Q, Liu Y. Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers: From Synthesis to Cancer Therapy and Biomedical Imaging. ACS APPLIED BIO MATERIALS 2024; 7:7965-7986. [PMID: 38382060 DOI: 10.1021/acsabm.3c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recently, there has been significant interest in nanoscale metal-organic frameworks (NMOFs) characterized by ordered crystal structures and nanoscale coordination polymers (NCPs) featuring amorphous structures. These structures arise from the coordination interactions between inorganic metal ions or clusters and organic ligands. Their advantages, such as the ability to tailor composition and structure, efficiently encapsulate diverse therapeutic or imaging agents within porous frameworks, inherent biodegradability, and surface functionalization capability, position them as promising carriers in the biomedical fields. This review provides an overview of the synthesis and surface modification strategies employed for NMOFs and NCPs, along with their applications in cancer treatment and biological imaging. Finally, future directions and challenges associated with the utilization of NMOFs and NCPs in cancer treatment and diagnosis are also discussed.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Nana Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Lafi Z, Matalqah S, Abu-Saleem E, Asha N, Mhaidat H, Asha S, Al-Nashash L, Janabi HS. Metal-organic frameworks as nanoplatforms for combination therapy in cancer treatment. Med Oncol 2024; 42:26. [PMID: 39653960 DOI: 10.1007/s12032-024-02567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
The integration of nanotechnology into cancer treatment has revolutionized chemotherapy, boosted its effectiveness while reduced side effects. Among the various nanotherapeutic approaches, metal-organic frameworks (MOFs) stand out as promising carriers for targeted chemotherapy, with the added benefit of enabling combination therapies. MOFs, composed of metal ions or clusters linked by coordination bonds, tackle critical issues in traditional cancer treatments, such as poor stability, limited efficacy, and severe side effects. Their key advantages include customizable size and shape, diverse compositions, controlled porosity, large surface areas, ease of modification, and biocompatibility. This review highlights recent advancements in the use of MOFs for cancer therapy, showcasing their role in both monotherapies and combination strategies. Additionally, it explores the future potential and challenges of MOF-based platforms in tumor treatment.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan.
| | - Sina Matalqah
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Ebaa Abu-Saleem
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Nisreen Asha
- The University of Oklahoma Health Sciences, Oklahoma, USA
| | - Hala Mhaidat
- King Abdullah University Hospital, Irbid, Jordan
| | | | - Lara Al-Nashash
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Hussein S Janabi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| |
Collapse
|
3
|
Zhuang J, Liu S, Li B, Li Z, Wu C, Xu D, Pan W, Li Z, Liu X, Liu B. Electron Transfer Mediator Modulates Type II Porphyrin-Based Metal-Organic Framework Photosensitizers for Type I Photodynamic Therapy. Angew Chem Int Ed Engl 2024:e202420643. [PMID: 39560938 DOI: 10.1002/anie.202420643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Photodynamic therapy (PDT), a minimally invasive and effective local treatment, heavily depends on photosensitizer (PS) performance and oxygen availability. Despite the use of PS-based metal-organic frameworks (MOFs) to address the solubility and aggregation issues of PSs, the inherent hypoxic intolerance of mainstream Type II PDT remains challenging. Herein, we report an electron transfer strategy for the fabrication of hypoxia-tolerant Type I MOFs by encapsulating thymoquinone (TQ) into existing Type II MOFs. With TQ serving as an effective electron transfer mediator, it facilitates the electron transfer process from the MOF ligand PS to oxygen, establishing the Type I pathway and attenuating the original Type II pathway. Four representative porphyrin-based MOFs are synthesized to demonstrate the proposed strategy. Our findings reveal that TQ@MOF-1 nanoparticles (NPs) exhibit enhanced anticancer activity under hypoxic conditions and superior in vivo antitumor efficacy compared to parent MOF-1 NPs. This work offers an effective and universal strategy to modulate ROS generation in PS-based MOFs, endowing hypoxic tolerance with improved PDT performance against solid tumors.
Collapse
Affiliation(s)
- Jiahao Zhuang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Shitai Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhiyao Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Chongzhi Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Duo Xu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xiaogang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
4
|
Li J, Lei D, Cao Y, Xin F, Zhang Z, Liu X, Wu M, Yao C. Nanozyme Decorated Metal-Organic Framework Nanosheet for Enhanced Photodynamic Therapy Against Hypoxic Tumor. Int J Nanomedicine 2024; 19:9727-9739. [PMID: 39315364 PMCID: PMC11418915 DOI: 10.2147/ijn.s466011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Photodynamic therapy (PDT) has attracted increasing attention in the clinical treatment of epidermal and luminal tumors. However, the PDT efficacy in practice is severely impeded by tumor hypoxia and the adverse factors associated with hydrophobic photosensitizers (PSs), including low delivery capacity, poor photoactivity and limited ROS diffusion. In this study, Pt nanozymes decorated two-dimensional (2D) porphyrin metal-organic framework (MOF) nanosheets (PMOF@HA) were fabricated and investigated to conquer the obstacles of PDT against hypoxic tumors. Materials and Methods PMOF@HA was synthesized by the coordination of transition metal iron (Zr4+) and PS (TCPP), in situ generation of Pt nanozyme and surface modification with hyaluronic acid (HA). The abilities of hypoxic relief and ROS generation were evaluated by detecting the changes of O2 and 1O2 concentration. The cellular uptake was investigated using flow cytometry and confocal laser scanning microscopy. The SMMC-7721 cells and the subcutaneous tumor-bearing mice were used to demonstrate the PDT efficacy of PMOF@HA in vitro and in vivo, respectively. Results Benefiting from the 2D structure and inherent properties of MOF materials, the prepared PMOF@HA could not only serve as nano-PS with high PS loading but also ensure the rational distance between PS molecules to avoid aggregation-induced quenching, enhance the photosensitive activity and promote the rapid diffusion of generated radical oxide species (ROS). Meanwhile, Pt nanozymes with catalase-like activity effectively catalyzed intratumoral overproduced H2O2 into O2 to alleviate tumor hypoxia. Additionally, PMOF@HA, with the help of externally coated HA, significantly improved the stability and increased the cell uptake by CD44 overexpressed tumor cells to strengthen O2 self-supply and PDT efficacy. Conclusion This study provided a new strategy of integrating 2D porphyrin MOF nanosheets with nanozymes to conquer the obstacles of PDT against hypoxic tumors.
Collapse
Affiliation(s)
- Jiong Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Dongqin Lei
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Yanbing Cao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People’s Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People’s Republic of China
| | - Fuli Xin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People’s Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People’s Republic of China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People’s Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People’s Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People’s Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, People’s Republic of China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| |
Collapse
|
5
|
Shano LB, Karthikeyan S, Kennedy LJ, Chinnathambi S, Pandian GN. MOFs for next-generation cancer therapeutics through a biophysical approach-a review. Front Bioeng Biotechnol 2024; 12:1397804. [PMID: 38938982 PMCID: PMC11208718 DOI: 10.3389/fbioe.2024.1397804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Leon Bernet Shano
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Lourdusamy John Kennedy
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Yu L, Liu Z, Xu W, Jin K, Liu J, Zhu X, Zhang Y, Wu Y. Towards overcoming obstacles of type II photodynamic therapy: Endogenous production of light, photosensitizer, and oxygen. Acta Pharm Sin B 2024; 14:1111-1131. [PMID: 38486983 PMCID: PMC10935104 DOI: 10.1016/j.apsb.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 03/17/2024] Open
Abstract
Conventional photodynamic therapy (PDT) approaches face challenges including limited light penetration, low uptake of photosensitizers by tumors, and lack of oxygen in tumor microenvironments. One promising solution is to internally generate light, photosensitizers, and oxygen. This can be accomplished through endogenous production, such as using bioluminescence as an endogenous light source, synthesizing genetically encodable photosensitizers in situ, and modifying cells genetically to express catalase enzymes. Furthermore, these strategies have been reinforced by the recent rapid advancements in synthetic biology. In this review, we summarize and discuss the approaches to overcome PDT obstacles by means of endogenous production of excitation light, photosensitizers, and oxygen. We envision that as synthetic biology advances, genetically engineered cells could act as precise and targeted "living factories" to produce PDT components, leading to enhanced performance of PDT.
Collapse
Affiliation(s)
- Lin Yu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Zhen Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Wei Xu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| |
Collapse
|
7
|
Li Y, Li Y, Song Y, Liu S. Advances in research and application of photodynamic therapy in cholangiocarcinoma (Review). Oncol Rep 2024; 51:53. [PMID: 38334150 DOI: 10.3892/or.2024.8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a disease characterized by insidious clinical manifestations and challenging to diagnose. Patients are usually diagnosed at an advanced stage and miss the opportunity for radical surgery. Therefore, effective palliative therapy is the main treatment approach for unresectable CCA. Current common palliative treatments include biliary drainage, chemotherapy, radiotherapy, targeted therapy and immunotherapy. However, these treatments only offer limited improvement in quality of life and survival. Photodynamic therapy (PDT) is a novel local treatment method that is considered a safe tumor ablation method for numerous cancers. It has shown good efficacy in various studies of CCA and is expected to become an important treatment for CCA. In the present study, the mechanisms of PDT in the treatment of CCA were systematically explored and the progress in the research of photosensitizers was discussed. The current study focused on the various PDT protocols and their therapeutic effects in CCA, with the objective of providing a new horizon for future research and clinical applications of PDT in the treatment of CCA.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
8
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Nady DS, Hassan A, Amin MU, Bakowsky U, Fahmy SA. Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics 2023; 16:14. [PMID: 38276492 PMCID: PMC10821275 DOI: 10.3390/pharmaceutics16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells.
Collapse
Affiliation(s)
- Doaa Sayed Nady
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| |
Collapse
|
10
|
Chen S, Yan Y, Chen Y, Wang K, Zhang Y, Wang X, Li X, Wen J, Yuan Y. All-in-one HN@Cu-MOF nanoparticles with enhanced reactive oxygen species generation and GSH depletion for effective tumor treatment. J Mater Chem B 2023; 11:11519-11531. [PMID: 38047895 DOI: 10.1039/d3tb02433d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Non-invasive cancer therapies, especially those based on reactive oxygen species, including photodynamic therapy (PDT), have gained much interest. As emerging photodynamic nanocarriers, metal-organic frameworks (MOFs) based on porphyrin can release reactive oxygen species (ROS) to destroy cancer cells. However, due to the inefficient production of ROS by photosensitizers and the over-expression of glutathione (GSH) in the tumor microenvironment (TME), their therapeutic effect is not satisfactory. Therefore, herein, we developed a multi-functional nanoparticle, HN@Cu-MOF, to enhance the efficacy of PDT. We combined chemical dynamic therapy (CDT) and nitric oxide (NO) therapy by initiating sensitization to PDT and cell apoptosis in the treatment of tumors. The Cu2+-doped MOF reacted with GSH to form Cu+, exhibiting a strong CDT ability to generate hydroxyl radicals (˙OH). The Cu-MOF was coated with HN, which is hyaluronic acid (HA) modified by a nitric oxide donor. HN can target tumor cells over-expressing the CD44 receptor and consume GSH in the cells to release NO. Both cell experiments and in vivo experiments showed an excellent tumor inhibitory effect upon the treatment. Overall, the HN@Cu-MOF nanoparticle-integrated NO gas therapy and CDT with PDT led to a significant enhancement in GSH consumption and a remarkable elevation in ROS production.
Collapse
Affiliation(s)
- Shuhui Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| | - Yu Yan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| | - Yixuan Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| | - Kaili Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| | - Yawen Zhang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| | - Xinlong Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| | - Xurui Li
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Shenyang, Liaoning, 110032, P. R. China.
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, P. R. China.
| |
Collapse
|
11
|
Yang C, Wang K, Liang G, Tian S, Peng J, Mo L, Lin W. A versatile MOF-derived theranostic for dual-miRNA controlled accurate cancer cell recognition and photodynamic therapy. Talanta 2023; 265:124805. [PMID: 37331042 DOI: 10.1016/j.talanta.2023.124805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Precise detection and monitoring of microRNAs (miRNAs) in living tumor cells is significant for the prompt diagnosis of cancer and provides important information for treatment of cancer. A significant challenge is developing methods for imaging different miRNAs simultaneously to further enhance diagnostic and treatment accuracy. In this work, a versatile MOF-derived theranostic system (DAPM) was constructed using photosensitive metal-organic frameworks (PMOF, PM) and a DNA AND logic gate (DA). The DAPM exhibited excellent biostability and enabled sensitive detection of miR-21 and miR-155, achieving a low limit of detection (LOD) for miR-21 (89.10 pM) and miR-155 (54.02 pM). The DAPM probe generated a fluorescence signal in tumor cells where miR-21 and miR-155 co-existed, demonstrating the enhanced ability of tumor cell recognition. Additionally, the DAPM achieved efficient ROS generation and concentration-dependent cytotoxicity under light irradiation, providing effective photodynamic therapy for anti-tumors. The proposed DAPM theranostic system enables accurate cancer diagnosis, and provides spatial and temporal information for PDT.
Collapse
Affiliation(s)
- Chan Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Kun Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Guohan Liang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Shuo Tian
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Juanjuan Peng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Liuting Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
12
|
Marras E, Balacchi CJ, Orlandi V, Caruso E, Brivio MF, Bolognese F, Mastore M, Malacarne MC, Rossi M, Caruso F, Vivona V, Ferrario N, Gariboldi MB. Ruthenium(II)-Arene Curcuminoid Complexes as Photosensitizer Agents for Antineoplastic and Antimicrobial Photodynamic Therapy: In Vitro and In Vivo Insights. Molecules 2023; 28:7537. [PMID: 38005258 PMCID: PMC10673066 DOI: 10.3390/molecules28227537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Photodynamic therapy (PDT) is an anticancer/antibacterial strategy in which photosensitizers (PSs), light, and molecular oxygen generate reactive oxygen species and induce cell death. PDT presents greater selectivity towards tumor cells than conventional chemotherapy; however, PSs have limitations that have prompted the search for new molecules featuring more favorable chemical-physical characteristics. Curcumin and its derivatives have been used in PDT. However, low water solubility, rapid metabolism, interference with other drugs, and low stability limit curcumin use. Chemical modifications have been proposed to improve curcumin activity, and metal-based PSs, especially ruthenium(II) complexes, have attracted considerable attention. This study aimed to characterize six Ru(II)-arene curcuminoids for anticancer and/or antibacterial PDT. The hydrophilicity, photodegradation rates, and singlet oxygen generation of the compounds were evaluated. The photodynamic effects on human colorectal cancer cell lines were also assessed, along with the ability of the compounds to induce ROS production, apoptotic, necrotic, and/or autophagic cell death. Overall, our encouraging results indicate that the Ru(II)-arene curcuminoid derivatives are worthy of further investigation and could represent an interesting option for cancer PDT. Additionally, the lack of significant in vivo toxicity on the larvae of Galleria mellonella is an important finding. Finally, the photoantimicrobial activity of HCurc I against Gram-positive bacteria is indeed promising.
Collapse
Affiliation(s)
- Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Camilla J. Balacchi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Maurizio F. Brivio
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (M.F.B.); (M.M.)
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (M.F.B.); (M.M.)
| | - Miryam C. Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA; (M.R.)
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA; (M.R.)
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| | - Marzia B. Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy; (E.M.); (C.J.B.); (V.O.); (E.C.); (F.B.); (M.C.M.); (V.V.); (N.F.)
| |
Collapse
|
13
|
Mishra N, Quon AS, Nguyen A, Papazyan EK, Hao Y, Liu Y. Constructing Physiological Defense Systems against Infectious Disease with Metal-Organic Frameworks: A Review. ACS APPLIED BIO MATERIALS 2023; 6:3052-3065. [PMID: 37560923 PMCID: PMC10445270 DOI: 10.1021/acsabm.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
The swift and deadly spread of infectious diseases, alongside the rapid advancement of scientific technology in the past several centuries, has led to the invention of various methods for protecting people from infection. In recent years, a class of crystalline porous materials, metal-organic frameworks (MOFs), has shown great potential in constructing defense systems against infectious diseases. This review addresses current approaches to combating infectious diseases through the utilization of MOFs in vaccine development, antiviral and antibacterial treatment, and personal protective equipment (PPE). Along with an updated account of MOFs used for designing defense systems against infectious diseases, directions are also suggested for expanding avenues of current MOF research to develop more effective approaches and tools to prevent the widespread nature of infectious diseases.
Collapse
Affiliation(s)
- Nikita
O. Mishra
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Alisa S. Quon
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Anna Nguyen
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Edgar K. Papazyan
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Yajiao Hao
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| | - Yangyang Liu
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, United States
| |
Collapse
|
14
|
Ghoochani SH, Hosseini HA, Sabouri Z, Soheilifar MH, Neghab HK, Hashemzadeh A, Velayati M, Darroudi M. Zn(II) porphyrin-encapsulated MIL-101 for photodynamic therapy of breast cancer cells. Lasers Med Sci 2023; 38:151. [PMID: 37378703 DOI: 10.1007/s10103-023-03813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The photodynamic treatment is a non-aggressive and clinically accepted procedure for removing selected cancer cells with the activation of a photosensitizer agent at a specific light. In this study, the zinc porphyrin (Zn[TPP]) was prepared and encapsulated into the MIL-101 (Zn[TPP]@MIL-101). It was used in photodynamic therapy (PDT) against MCF-7 breast cancer cells under a red light-emitting diode. The structure, morphology, surface area, and compositional changes were investigated using conventional characterization methods including FTIR, FESEM, EDX, and BET analyses. The MTT assay was performed under light and dark conditions to explore the ability of Zn[TPP]@MIL-101 in PDT. The results have demonstrated the IC50 of 14.3 and 81.6 mg/mL for light and dark groups, respectively. As the IC50 revealed, the Zn[TPP]@MIL-101 could efficiently eradicate cancer cells using PDT.
Collapse
Affiliation(s)
| | | | - Zahra Sabouri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Alireza Hashemzadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Velayati
- Chemistry Department, Payame Noor University, Tehran, 19395-4697, Iran
| | - Majid Darroudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
15
|
Ji M, Liu H, Gou J, Yin T, He H, Zhang Y, Tang X. Recent advances in nanoscale metal-organic frameworks for cancer chemodynamic therapy. NANOSCALE 2023; 15:8948-8971. [PMID: 37129051 DOI: 10.1039/d3nr00867c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemodynamic therapy (CDT), a novel therapeutic approach based on Fenton (Fenton-like) reaction, has been widely employed for tumor therapy. This approach utilizes Fe, Cu, or other metal ions (Mn, Zn, Co, or Mo) to react with the excess hydrogen peroxide (H2O2) in tumor microenvironments (TME), and form highly cytotoxic hydroxyl radical (˙OH) to kill cancer cells. Recently, nanoscale metal-organic frameworks (nMOFs) have attracted considerable attention as promising CDT agents with the rapid development of cancer CDT. This review focuses on summarizing the latest advances (2020-2022) on the design of nMOFs as nanomedicine for CDT or combination therapy of CDT and other therapies. The future development and challenges of CDT are also proposed based on recent progress. Our group hopes that this review will enlighten the research and development of nMOFs for CDT.
Collapse
Affiliation(s)
- Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| |
Collapse
|
16
|
Kubovics M, Careta O, Vallcorba O, Romo-Islas G, Rodríguez L, Ayllón JA, Domingo C, Nogués C, López-Periago AM. Supercritical CO 2 Synthesis of Porous Metalloporphyrin Frameworks: Application in Photodynamic Therapy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1080-1093. [PMID: 36818591 PMCID: PMC9933429 DOI: 10.1021/acs.chemmater.2c03018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
A series of porous metalloporphyrin frameworks prepared from the 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) linker and four metal complexes, M(hfac)2 M = Cu(II), Zn(II), Co(II), and Ni(II) (hfac: 1,1,1,5,5,5-hexafluoroacetylacetonate), were obtained using supercritical CO2 (scCO2) as a solvent. All the materials, named generically as [M-TPyP] n , formed porous metal-organic frameworks (MOFs), with surface areas of ∼450 m2 g-1. All MOFs were formed through the coordination of the metal to the exocyclic pyridine moieties in the porphyrin linker. For Cu(II), Zn(II), and Co(II), incomplete metal coordination of the inner pyrrole ring throughout the structure was observed, giving place to MOFs with substitutional defects and leading to a certain level of disorder and limited crystallinity. These samples, prepared using scCO2, were precipitated as nano- to micrometric powders. Separately, a layering technique from a mixture of organic solvents was used to crystallize high-quality crystals of the Co(II) based MOF, obtained with the formula [{Co(hfac)2}2H2TPyP] n . The crystal structure of this MOF was elucidated by single-crystal synchrotron X-ray diffraction. The Zn(II)-based MOF was selected as a potential photodynamic therapy drug in the SKBR-3 tumoral cell line showing outstanding performance. This MOF resulted to be nontoxic, but after 15 min of irradiation at 630 nm, using either 1 or 5 μM concentration of the product, almost 70% of tumor cells died after 72 h.
Collapse
Affiliation(s)
- Márta Kubovics
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB s/n, 08193Bellaterra, Spain
| | - Oriol Careta
- Department
de Biologia Cel·lular, Fisiologia i Immunologia. Universtitat Autònoma de Barcelona (UAB), Campus UAB s/n, 08193Bellaterra, Spain
| | - Oriol Vallcorba
- ALBA
Synchrotron Light Source, 08290Cerdanyola del Vallés, Spain
| | - Guillermo Romo-Islas
- Department
of Inorganic and Organic Chemistry, Barcelona
University, Martí
i Franquès 1-11, 08028Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Barcelona University, Campus UB s/n, 08028Barcelona, Spain
| | - Laura Rodríguez
- Department
of Inorganic and Organic Chemistry, Barcelona
University, Martí
i Franquès 1-11, 08028Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), Barcelona University, Campus UB s/n, 08028Barcelona, Spain
| | - Jose A. Ayllón
- Department
de Química, Universtitat Autònoma
de Barcelona (UAB), Campus
UAB s/n, 08193Bellaterra, Spain
| | - Concepción Domingo
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB s/n, 08193Bellaterra, Spain
| | - Carme Nogués
- Department
de Biologia Cel·lular, Fisiologia i Immunologia. Universtitat Autònoma de Barcelona (UAB), Campus UAB s/n, 08193Bellaterra, Spain
| | - Ana M. López-Periago
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB s/n, 08193Bellaterra, Spain
| |
Collapse
|
17
|
Li X, Chen L, Huang M, Zeng S, Zheng J, Peng S, Wang Y, Cheng H, Li S. Innovative strategies for photodynamic therapy against hypoxic tumor. Asian J Pharm Sci 2023; 18:100775. [PMID: 36896447 PMCID: PMC9989661 DOI: 10.1016/j.ajps.2023.100775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Photodynamic therapy (PDT) is applied as a robust therapeutic option for tumor, which exhibits some advantages of unique selectivity and irreversible damage to tumor cells. Among which, photosensitizer (PS), appropriate laser irradiation and oxygen (O2) are three essential components for PDT, but the hypoxic tumor microenvironment (TME) restricts the O2 supply in tumor tissues. Even worse, tumor metastasis and drug resistance frequently happen under hypoxic condition, which further deteriorate the antitumor effect of PDT. To enhance the PDT efficiency, critical attention has been received by relieving tumor hypoxia, and innovative strategies on this topic continue to emerge. Traditionally, the O2 supplement strategy is considered as a direct and effective strategy to relieve TME, whereas it is confronted with great challenges for continuous O2 supply. Recently, O2-independent PDT provides a brand new strategy to enhance the antitumor efficiency, which can avoid the influence of TME. In addition, PDT can synergize with other antitumor strategies, such as chemotherapy, immunotherapy, photothermal therapy (PTT) and starvation therapy, to remedy the inadequate PDT effect under hypoxia conditions. In this paper, we summarized the latest progresses in the development of innovative strategies to improve PDT efficacy against hypoxic tumor, which were classified into O2-dependent PDT, O2-independent PDT and synergistic therapy. Furthermore, the advantages and deficiencies of various strategies were also discussed to envisage the prospects and challenges in future study.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Chen
- Department of Anesthesiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Miaoting Huang
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shaoting Zeng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Jiayi Zheng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuyi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Yuqing Wang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
18
|
Alves SR, Calori IR, Bi H, Tedesco AC. Characterization of glioblastoma spheroid models for drug screening and phototherapy assays. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
The combination of in situ photodynamic promotion and ion-interference to improve the efficacy of cancer therapy. J Colloid Interface Sci 2023; 629:522-533. [PMID: 36088697 DOI: 10.1016/j.jcis.2022.08.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Photodynamic therapy (PDT) is proved to be a promising modality for clinical cancer treatment. However, it also suffers from a key obstacle in association with its oxygen-dependent nature which greatly limits its effective application against hypoxic tumors. Herein, on the basis of the unique property of calcium peroxide (CaO2), we propose an O2-self-supply strategy for the promotion of PDT by combining the in situ O2-generation characteristic of calcium peroxide with the photosensitive nature of porphyrin. A shell of ZIF-8 was synthesized surround the CaO2 core to prevent the CaO2 from premature decomposition and increased the loading of THPP efficiently. Depending on the in situ self-supply of O2, the photosensitizer was able to exhibit an enhanced PDT effect that significantly inhibit the growth of tumor. Moreover, the enrichment of free calcium ions derived from the decomposition of CaO2 under acidic tumor microenvironment also shows the unique ion-interference effect and contributes to the obvious inhibition against tumor growth. This work presents a synergistic strategy for the construction of a photodynamic promotion/ion-interference combined nano-platform which can also serve as an inspiration for the future design of effective nanocomposites in tumor treatment.
Collapse
|
20
|
Lu Z, Xu G, Yang X, Liu S, Sun Y, Chen L, Liu Q, Liu J. Dual-Activated Nano-Prodrug for Chemo-Photodynamic Combination Therapy of Breast Cancer. Int J Mol Sci 2022; 23:ijms232415656. [PMID: 36555298 PMCID: PMC9779597 DOI: 10.3390/ijms232415656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Herein, we developed a dual-activated prodrug, BTC, that contains three functional components: a glutathione (GSH)-responsive BODIPY-based photosensitizer with a photoinduced electron transfer (PET) effect between BODIPY and the 2,4-dinitrobenzenesulfonate (DNBS) group, and an ROS-responsive thioketal linker connecting BODIPY and the chemotherapeutic agent camptothecin (CPT). Interestingly, CPT displayed low toxicity because the active site of CPT was modified by the BODIPY-based macrocycle. Additionally, BTC was encapsulated with the amphiphilic polymer DSPE-mPEG2000 to improve drug solubility and tumor selectivity. The resulting nano-prodrug passively targeted tumor cells through enhanced permeability and retention (EPR) effects, and then the photosensitizing ability of the BODIPY dye was restored by removing the DNBS group with the high concentration of GSH in tumor cells. Light-triggered ROS from activated BODIPY can not only induce apoptosis or necrosis of tumor cells but also sever the thioketal linker to release CPT, achieving the combination treatment of selective photodynamic therapy and chemotherapy. The antitumor activity of the prodrug has been demonstrated in mouse mammary carcinoma 4T1 and human breast cancer MCF-7 cell lines and 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Ziyao Lu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Gan Xu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaozhen Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shijia Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Correspondence: (Q.L.); (J.L.)
| | - Jianyong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Correspondence: (Q.L.); (J.L.)
| |
Collapse
|
21
|
García A, Rodríguez B, Rosales M, Quintero YM, G. Saiz P, Reizabal A, Wuttke S, Celaya-Azcoaga L, Valverde A, Fernández de Luis R. A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4263. [PMID: 36500886 PMCID: PMC9738636 DOI: 10.3390/nano12234263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a highly mobile cancerogenic and teratogenic heavy metal ion. Among the varied technologies applied today to address chromium water pollution, photocatalysis offers a rapid reduction of Cr(VI) to the less toxic Cr(III). In contrast to classic photocatalysts, Metal-Organic frameworks (MOFs) are porous semiconductors that can couple the Cr(VI) to Cr(III) photoreduction to the chromium species immobilization. In this minireview, we wish to discuss and analyze the state-of-the-art of MOFs for Cr(VI) detoxification and contextualizing it to the most recent advances and strategies of MOFs for photocatalysis purposes. The minireview has been structured in three sections: (i) a detailed discussion of the specific experimental techniques employed to characterize MOF photocatalysts, (ii) a description and identification of the key characteristics of MOFs for Cr(VI) photoreduction, and (iii) an outlook and perspective section in order to identify future trends.
Collapse
Affiliation(s)
- Andreina García
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
- Mining Engineering Department, Faculty of Physical and Mathematical Sciences (FCFM), Universidad de Chile, Av. Tupper 2069, Santiago 8370451, Chile
| | - Bárbara Rodríguez
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 8320000, Chile;
| | - Maibelin Rosales
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Yurieth M. Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Paula G. Saiz
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Ander Reizabal
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Stefan Wuttke
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Celaya-Azcoaga
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ainara Valverde
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Roberto Fernández de Luis
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| |
Collapse
|
22
|
Sun S, Zhao Y, Wang J, Pei R. Lanthanide-based MOFs: synthesis approaches and applications in cancer diagnosis and therapy. J Mater Chem B 2022; 10:9535-9564. [PMID: 36385652 DOI: 10.1039/d2tb01884e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks (MOFs) have attracted considerable attention as emerging nanomaterials. Based on their tunable size, high porosity, and large specific surface area, MOFs have a wide range of applications in the fields of chemistry, energy, and biomedicine. However, the MOF materials obtained from lanthanides with a unique electronic configuration as inorganic building units have unique properties such as optics, magnetism, and radioactivity. In this study, various synthetic methods for preparing MOF materials using lanthanides as inorganic building units are described. Combined with the characteristics of lanthanides, their application prospects of lanthanide-based MOFs in tumor diagnosis and treatment are emphasized. The authors hope to provide methodological reference for the construction of MOF materials of rare-earth elements, and to provide ideas and inspiration for their practical applications in the field of biomedicine.
Collapse
Affiliation(s)
- Shengkai Sun
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. .,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
23
|
Yan R, Liu J, Dong Z, Peng Q. Nanomaterials-mediated photodynamic therapy and its applications in treating oral diseases. BIOMATERIALS ADVANCES 2022; 144:213218. [PMID: 36436431 DOI: 10.1016/j.bioadv.2022.213218] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Oral diseases, such as dental caries, periodontitis and oral cancer, have a very high morbidity over the world. Basically, many oral diseases are commonly related to bacterial infections or cell malignant proliferation, and usually located on the superficial positions. These features allow the convenient and efficient application of photodynamic therapy (PDT) for oral diseases, since PDT is ideally suitable for the diseases on superficial sites and has been widely used for antimicrobial and anticancer therapy. Photosensitizers (PSs) are an essential element in PDT, which induce the generation of a large number of reactive oxygen species (ROS) upon absorption of specific lights. Almost all the PSs are small molecules and commonly suffered from various problems in the PDT environment, such as low solubility and poor stability. Recently, reports on the nanomedicine-based PDT have been well documented. Various functionalized nanomaterials can serve either as the PSs carriers or the direct PSs, thus enhancing the PDT efficacy. Herein, we aim to provide a comprehensive understanding of the features of different oral diseases and discuss the potential applications of nanomedicine-based PDT in the treatment of some common oral diseases. Also, the concerns and possible solutions for nanomaterials-mediated PDT are discussed.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Li Y, Nie J, Dai J, Yin J, Huang B, Liu J, Chen G, Ren L. pH/Redox Dual-Responsive Drug Delivery System with on-Demand RGD Exposure for Photochemotherapy of Tumors. Int J Nanomedicine 2022; 17:5621-5639. [DOI: 10.2147/ijn.s388342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
|
25
|
Teeuwen PCP, Melissari Z, Senge MO, Williams RM. Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers. Molecules 2022; 27:molecules27206967. [PMID: 36296559 PMCID: PMC9610856 DOI: 10.3390/molecules27206967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Within this work, we review the metal coordination effect on the photophysics of metal dipyrrinato complexes. Dipyrrinato complexes are promising candidates in the search for alternative transition metal photosensitizers for application in photodynamic therapy (PDT). These complexes can be activated by irradiation with light of a specific wavelength, after which, cytotoxic reactive oxygen species (ROS) are generated. The metal coordination allows for the use of the heavy atom effect, which can enhance the triplet generation necessary for generation of ROS. Additionally, the flexibility of these complexes for metal ions, substitutions and ligands allows the possibility to tune their photophysical properties. A general overview of the mechanism of photodynamic therapy and the properties of the triplet photosensitizers is given, followed by further details of dipyrrinato complexes described in the literature that show relevance as photosensitizers for PDT. In particular, the photophysical properties of Re(I), Ru(II), Rh(III), Ir(III), Zn(II), Pd(II), Pt(II), Ni(II), Cu(II), Ga(III), In(III) and Al(III) dipyrrinato complexes are discussed. The potential for future development in the field of (dipyrrinato)metal complexes is addressed, and several new research topics are suggested throughout this work. We propose that significant advances could be made for heteroleptic bis(dipyrrinato)zinc(II) and homoleptic bis(dipyrrinato)palladium(II) complexes and their application as photosensitizers for PDT.
Collapse
Affiliation(s)
- Paula C. P. Teeuwen
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Zoi Melissari
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin St James’s Hospital, D08 RX0X Dublin, Ireland
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenberg-Str. 2a, 85748 Garching, Germany
- Correspondence: (M.O.S.); (R.M.W.)
| | - René M. Williams
- Molecular Photonics Group, Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
- Correspondence: (M.O.S.); (R.M.W.)
| |
Collapse
|
26
|
Zeng L, Huang L, Han G. Dye Doped Metal-Organic Frameworks for Enhanced Phototherapy. Adv Drug Deliv Rev 2022; 189:114479. [PMID: 35932906 DOI: 10.1016/j.addr.2022.114479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Phototherapy is a noninvasive cancer treatment that relies on the interaction between light and photoactive agents. These photoactive agents are typically organic dyes, but their hydrophobic nature and self-aggregation tendency in biological media greatly restricts the development of highly effective phototherapeutic systems. In the past decade, functional dye-doped metal-organic framework (MOF)-based phototherapy has attracted enormous interest because organic dyes can be encapsulated and isolated within the MOF structure to show superior treatment efficacy. In addition to incorporating the reported phototherapeutic dyes into MOF as the ligand or the guest in the pores, the construction of an MOF-based phototherapy agent can also be extended to these dye units that are previously inactive for phototherapy. Thus, this review focuses on the emerging development of phototherapeutic MOFs that exhibited better performance than the involving dye units due to the controlled dye aggregation within the MOF. The related mechanisms and some emerging future directions of dye-doped MOF-based phototherapy are also discussed and summarized.
Collapse
Affiliation(s)
- Le Zeng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, United States.
| |
Collapse
|
27
|
Matlou GG, Abrahamse H. Nanoscale metal–organic frameworks as photosensitizers and nanocarriers in photodynamic therapy. Front Chem 2022; 10:971747. [PMID: 36092660 PMCID: PMC9458963 DOI: 10.3389/fchem.2022.971747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a new therapeutic system for cancer treatment that is less invasive and offers greater selectivity than chemotherapy, surgery, and radiation therapy. PDT employs irradiation light of known wavelength to excite a photosensitizer (PS) agent that undergoes photochemical reactions to release cytotoxic reactive oxygen species (ROS) that could trigger apoptosis or necrosis-induced cell death in tumor tissue. Nanoscale metal–organic frameworks (NMOFs) have unique structural advantages such as high porosity, large surface area, and tunable compositions that have attracted attention toward their use as photosensitizers or nanocarriers in PDT. They can be tailored for specific drug loading, targeting and release, hypoxia resistance, and with photoactive properties for efficient response to optical stimuli that enhance the efficacy of PDT. In this review, an overview of the basic chemistry of NMOFs, their design and use as photosensitizers in PDT, and as nanocarriers in synergistic therapies is presented. The review also discusses the morphology and size of NMOFs and their ability to improve photosensitizing properties and localize within a targeted tissue for effective and selective cancer cell death over healthy cells. Furthermore, targeting strategies that improve the overall PDT efficacy through stimulus-activated release and sub-cellular internalization are outlined with relevance to in vitro and in vivo studies from recent years.
Collapse
|
28
|
Cheng K, Guo Q, Shen Z, Yang W, Wang Y, Sun Z, Wu H. Bibliometric Analysis of Global Research on Cancer Photodynamic Therapy: Focus on Nano-Related Research. Front Pharmacol 2022; 13:927219. [PMID: 35784740 PMCID: PMC9243586 DOI: 10.3389/fphar.2022.927219] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/30/2022] [Indexed: 01/10/2023] Open
Abstract
A growing body of research has illuminated that photodynamic therapy (PDT) serves as an important therapeutic strategy in oncology and has become a hot topic in recent years. Although numerous papers related to cancer PDT (CPDT) have been published, no bibliometric studies have been conducted to summarize the research landscape, and highlight the research trends and hotspots in this field. This study collected 5,804 records on CPDT published between 2000 and 2021 from Web of Science Core Collection. Bibliometric analysis and visualization were conducted using VOSviewer, CiteSpace, and one online platform. The annual publication and citation results revealed significant increasing trends over the past 22 years. China and the United States, contributing 56.24% of the total publications, were the main driving force in this field. Chinese Academy of Sciences was the most prolific institution. Photodiagnosis and Photodynamic Therapy and Photochemistry and Photobiology were the most productive and most co-cited journals, respectively. All keywords were categorized into four clusters including studies on nanomaterial technology, clinical applications, mechanism, and photosensitizers. “nanotech-based PDT” and “enhanced PDT” were current research hotspots. In addition to several nano-related topics such as “nanosphere,” “nanoparticle,” “nanomaterial,” “nanoplatform,” “nanomedicine” and “gold nanoparticle,” the following topics including “photothermal therapy,” “metal organic framework,” “checkpoint blockade,” “tumor microenvironment,” “prodrug” also deserve further attention in the near future.
Collapse
Affiliation(s)
- Kunming Cheng
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Guo
- Department of Orthopaedics, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Zefeng Shen
- Department of Graduate School, Sun Yat-sen University, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Weiguang Yang
- Department of Graduate School of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Department of Graduate School of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- *Correspondence: Kunming Cheng, ; Zaijie Sun, ; Haiyang Wu,
| | - Haiyang Wu
- Department of Graduate School of Tianjin Medical University, Tianjin, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- *Correspondence: Kunming Cheng, ; Zaijie Sun, ; Haiyang Wu,
| |
Collapse
|
29
|
Demirbaş Ü, Öztürk D, Akçay HT, Durmuş M, Menteşe E, Kantekin H. Metallo-phthalocyanines containing triazole substituents: Synthesis, spectroscopic and photophysicochemical properties. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ümit Demirbaş
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Dilek Öztürk
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Hakkı Türker Akçay
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Emre Menteşe
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Halit Kantekin
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
30
|
Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. BIOMATERIALS ADVANCES 2022; 135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
The increasing cancer morbidity and mortality requires the development of high-efficiency and low-toxicity anticancer approaches. In recent years, photodynamic therapy (PDT) has attracted much attention in cancer therapy due to its non-invasive features and low side effects. Photosensitizer (PS) is one of the key factors of PDT, and its successful delivery largely determines the outcome of PDT. Although a few PS molecules have been approved for clinical use, PDT is still limited by the low stability and poor tumor targeting capacity of PSs. Various nanomaterial systems have shown great potentials in improving PDT, such as metal nanoparticles, graphene-based nanomaterials, liposomes, ROS-sensitive nanocarriers and supramolecular nanomaterials. The small molecular PSs can be loaded in functional nanomaterials to enhance the PS stability and tumor targeted delivery, and some functionalized nanomaterials themselves can be directly used as PSs. Herein, we aim to provide a comprehensive understanding of PDT, and summarize the recent progress of nanomaterials-based PSs and delivery systems in anticancer PDT. In addition, the concerns of nanomaterials-based PDT including low tumor targeting capacity, limited light penetration, hypoxia and nonspecific protein corona formation are discussed. The possible solutions to these concerns are also discussed.
Collapse
Affiliation(s)
- Xiao-Tong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shang-Yan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu-Xuan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
31
|
Luo T, Fan Y, Mao J, Yuan E, You E, Xu Z, Lin W. Dimensional Reduction Enhances Photodynamic Therapy of Metal-Organic Nanophotosensitizers. J Am Chem Soc 2022; 144:5241-5246. [PMID: 35297640 PMCID: PMC9396732 DOI: 10.1021/jacs.2c00384] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we report that dimensional reduction from three-dimensional nanoscale metal-organic frameworks (nMOFs) to two-dimensional nanoscale metal-organic layers (nMOLs) increases the frequency of encounters between photosensitizers and oxygen and facilitates the diffusion of singlet oxygen from the nMOL to significantly enhance photodynamic therapy. The nMOFs and nMOLs share the same M12-oxo (M = Zr, Hf) secondary building units and 5,15-di-p-benzoatoporphyrin (DBP) ligands but exhibit three-dimensional and two-dimensional topologies, respectively. Molecular dynamics simulations and experimental studies revealed that the nMOLs with a monolayer morphology enhanced the generation of reactive oxygen species and exhibited over an order of magnitude higher cytotoxicity over the nMOFs. In a mouse model of triple-negative breast cancer, Hf-DBP nMOL showed 49.1% more tumor inhibition, an 80% higher cure rate, and 16.3-fold lower metastasis potential than Hf-DBP nMOF.
Collapse
Affiliation(s)
- Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yingjie Fan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jianming Mao
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Eric Yuan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Eric You
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
32
|
Kakoulidou C, Chasapis CT, Hatzidimitriou AG, Fylaktakidou KC, Psomas G. Transition metal( ii) complexes of halogenated derivatives of ( E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline: structure, antioxidant activity, DNA-binding DNA photocleavage, interaction with albumin and in silico studies. Dalton Trans 2022; 51:16688-16705. [DOI: 10.1039/d2dt02622h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six transition metal(ii) complexes with halogenated quinazoline derivatives as ligands were characterized and evaluated for interaction with calf-thymus DNA, photocleavage of plasmid-DNA, affinity for bovine serum albumin, and antioxidant activity.
Collapse
Affiliation(s)
- Chrisoula Kakoulidou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christos T. Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Greece
| | - Antonios G. Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|