1
|
Wang N, Tao Y, Yang Y, Jin Y, Zhang H, Li C, Qin H, Chen Q. Disrupting the activity of endogenous gas neurotransmitters: a therapeutic strategy using engineered metal-organic frameworks for cancer. Med Gas Res 2025; 15:142-144. [PMID: 39436187 PMCID: PMC11515053 DOI: 10.4103/mgr.medgasres-d-24-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Nan Wang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yichao Tao
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Yang Yang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuqin Jin
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huanlong Qin
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Qian Chen
- Department of Anesthesiology and Perioperative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Yang T, Dai L, Liu J, Lu Y, Pan M, Pan L, Ye L, Yuan L, Li X, Bei Z, Qian Z. Metal-phenolic-network-coated gold nanoclusters for enhanced photothermal/chemodynamic/immunogenic cancer therapy. Bioact Mater 2025; 44:447-460. [PMID: 39534788 PMCID: PMC11555603 DOI: 10.1016/j.bioactmat.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterised by a short survival period, high malignancy, strong invasiveness, and high rates of recurrence and metastasis. Due to its unique molecular phenotype, TNBC is insensitive to endocrine therapy or molecular targeted therapy. The conventional treatment approach involves systemic chemotherapy for overall management; however, adjuvant chemotherapy after surgery has shown poor efficacy as residual lesions can easily lead to tumour recurrence. Therefore, there is an urgent need to find more effective treatment strategies. Herein, we designed a gold nanocluster coated with a metal-phenol formaldehyde network structure (AuNCs@PDA-Mn) for tumour Photothermal therapy and chemodynamic therapy (PTT and CDT), which induces systemic immune responses to suppress tumour metastasis. Experimental results show that after continuous irradiation for 10 min under an 808 nm laser (1.0W/cm2), AuNCs@PDA-Mn not only exhibits better tumour inhibition both in vitro and in vivo but also triggers stronger immune effects systemically. Therefore, this combined PTT and CDT treatment approach has great potential and provides a clinically relevant and valuable option for triple-negative breast cancer.
Collapse
Affiliation(s)
- Tingyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Ye
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liping Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xicheng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Li Y, Zhu Q, He P, Wu T, Ouyang Z, Zhu L, Wang F, Zhou X, Jiang ZX, Chen S. Multifunctional "Add-On" Module Enabled NIR-II Imaging-Guided Synergistic Photothermal and Chemotherapy of Drug-Resistant Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67275-67288. [PMID: 39611718 DOI: 10.1021/acsami.4c14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Imaging-guided chemo-photothermal combination therapy (chemo-PTT) is recognized for its synergistic therapeutic effects, reduced side effects, and minimal drug resistance, while the development of such theranostics has been hampered by poor imaging and therapy performance and tedious formulation. Herein, we introduce an all-in-one "add-on" module (BBT-C6) for the convenient construction of doxorubicin (DOX)-loaded nanoparticles (DOX@BBT) and efficient second near-infrared (NIR-II) fluorescence imaging (FLI)-guided synergistic chemo-PTT of drug-resistant lung cancer. The delicate Janus amphiphilic structure of BBT-C6 enables multifunctionality, including NIR-II FLI, aggregation-induced emission (AIE) characteristics, moderate photothermal conversion efficiency (PCE), excellent photostability, and polyethylene glycolation (PEGylation), which could improve the NIR-II FLI and PTT performance, relieve the complexity in theranostics, and enable high reproducibility of the multifunctional theranostics. Confocal microscopy revealed that BBT@DOX efficiently delivers DOX into cells, resulting in an increased accumulation of DOX that exceeds the efflux capacity of DOX-resistant cells. Both in vitro and in vivo studies demonstrate that BBT-C6 enhances the effectiveness of BBT@DOX, achieving highly effective photothermal-chemo synergistic therapy against DOX-resistant lung cancer. Beyond developing a versatile "add-on" module for conveniently constructing multifunctional nanosystems, this study provides new insights into the design of advanced theranostics for precise biomedical applications.
Collapse
Affiliation(s)
- Yu Li
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Qiang Zhu
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei He
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Tingjuan Wu
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Zhen Ouyang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lijun Zhu
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Fang Wang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Xin Zhou
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Xing Jiang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Chen
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Hong Z, Zhang L, Liang H, Huang FP. Recent advances in discrete Cu complexes for enhanced chemodynamic therapy. Dalton Trans 2024; 53:19075-19080. [PMID: 39552523 DOI: 10.1039/d4dt02380c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Since the concept of metal ion stimulation-mediated chemodynamic therapy was proposed by Bu and Shi's group in 2016, increasing attention has been directed toward the fabrication of efficient, safe and stable Fenton/Fenton-like catalysts to advance clinical translation. In particular, metal-based complexes with inherent metal catalytic centers have received extensive attention as potential alternatives/complements for traditional CDT agents. Among them, copper-based complexes, which possess excellent redox properties, extensive adaptability and abundant availability, enable the efficient generation of ROS through Fenton-like reactions in CDT, thereby causing oxidative damage to lipids, proteins, and DNA in cancer cells. In this brief review, we summarize the recent progress on various discrete copper-based metal complexes aimed at enhancing the therapeutic efficacy of CDT as well as their application in combination therapy. We hope that this review will attract active attention toward metal complexes in advancing more accurate and efficient chemodynamic therapy and encourage further in-depth research to facilitate clinical translation.
Collapse
Affiliation(s)
- Zhaoguo Hong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, 541004, China
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, 541004, China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
5
|
Ren L, Zhang J, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO, Sun Y, Jiang G. Platelet Membrane-Camouflaged Copper Doped CaO 2 Biomimetic Nanomedicines for Breast Cancer Combination Treatment. ACS Biomater Sci Eng 2024; 10:7492-7506. [PMID: 39491550 DOI: 10.1021/acsbiomaterials.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide. Chemodynamic therapy (CDT), photothermal therapy (PTT), and ion interference therapy (IIT), used in combination, represent a common treatment. In this study, platelet membrane-camouflaged copper-doped CaO2 biomimetic nanomedicines have been developed for breast cancer treatments. Copper-doped CaO2 nanoparticles were first coated by polydopamine (PDA) and subsequently camouflaged by platelet membrane (PM) to form platelet membrane-camouflaged copper doped CaO2 biomimetic nanomedicines (Cu-CaO2@PDA/PM). The as-fabricated Cu-CaO2@PDA/PM multifunctional nanomedicines could decompose within the tumor microenvironment to release Ca2+ for ion interference therapy, and the generated H2O2 could perform a Fenton-like reaction with the assistance of loaded copper ions to produce ·OH, thus realizing chemodynamic therapy. In addition, the copper ions could also consume glutathione and weaken its ability to scavenge reactive oxygen species, which was conducive to amplifying the effect of oxidative stress. The coating of the polydopamine layer could achieve local hyperthermia of the tumor site, and the surface modification of the platelet membrane could enhance the targeting and biocompatibility of nanomedicines. In vivo and in vitro tests demonstrated that the developed Cu-CaO2@PDA/PM biomimetic nanomedicines offer a promising biomimetic nanoplatform for efficient multimodal combination therapy for breast cancer.
Collapse
Affiliation(s)
- Luping Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Junhao Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Armin Shavandi
- Université libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
6
|
Kang W, Wang Y, Xin L, Chen L, Zhao K, Yu L, Song X, Zheng Z, Dai R, Zhang W, Zhang R. Biodegradable Cascade-Amplified Nanotheranostics for Photoacoustic-Guided Synergistic PTT/CDT/Starvation Antitumor in the NIR-II Window. Adv Healthc Mater 2024; 13:e2401459. [PMID: 38938149 DOI: 10.1002/adhm.202401459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Indexed: 06/29/2024]
Abstract
The development of nanoassemblies, activated by the tumor microenvironment, capable of generating photothermal therapy (PTT) and amplifying the "ROS (·OH) storm," is essential for precise and effective synergistic tumor treatment. Herein, an innovative cascade-amplified nanotheranostics based on biodegradable Pd-BSA-GOx nanocomposite for NIR-II photoacoustic imaging (PAI) guides self-enhanced NIR-II PTT/chemodynamic therapy (CDT)/starvation synergistic therapy. The Pd-BSA-GOx demonstrates the ability to selectively convert overexpressed H2O2 into strongly toxic ·OH by a Pd/Pd2+-mediated Fenton-like reaction at a lower pH level. Simultaneously, the GOx generates H2O2 and gluconic acid, effectively disrupting nutrient supply and instigating tumor starvation therapy. More importantly, the heightened levels of H2O2 and increased acidity greatly enhance the Fenton-like reactivity, generating a significant "·OH storm," thereby achieving Pd2+-mediated cascade-amplifying CDT. The specific PTT facilitated by undegraded Pd accelerates the Fenton-like reaction, establishing a positive feedback process for self-enhancing synergetic PTT/CDT/starvation therapy via the NIR-II guided-PAI. Therefore, the multifunctional nanotheranostics presents a simple and versatile strategy for the precision diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Weiwei Kang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuhang Wang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lei Xin
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lin Chen
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Keqi Zhao
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lujie Yu
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaorui Song
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziliang Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| | - Rong Dai
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Weiwei Zhang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030000, China
| |
Collapse
|
7
|
Ma R, Zhang P, Chen X, Zhang M, Han Q, Yuan Q. Dual-responsive nanoplatform for integrated cancer diagnosis and therapy: Unleashing the power of tumor microenvironment. Front Chem 2024; 12:1475131. [PMID: 39391835 PMCID: PMC11464441 DOI: 10.3389/fchem.2024.1475131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Chemodynamic therapy (CDT), designed to trigger a tumor-specific hydrogen peroxide (H2O2) reaction generating highly toxic hydroxyl radicals (·OH), has been investigated for cancer treatment. Unfortunately, the limited Fenton or Fenton-like reaction rate and the significant impact of excessive reducing glutathione (GSH) in the tumor microenvironment (TME) have severely compromised the effectiveness of CDT. To address this issue, we designed a dual-responsive nanoplatform utilizing a metal-polyphenol network (MPN) -coated multi-caged IrOx for efficient anti-tumor therapy in response to the acidic TME and intracellular excess of GSH, in which MPN composed of Fe3+ and tannic acid (TA). Initially, the acidic TME and intracellular excess of GSH lead to the degradation of the MPN shell, resulting in the release of Fe3+ and exposure of the IrOx core, facilitating the efficient dual-pathway CDT. Subsequently, the nanoplatform can mitigate the attenuation of CDT by consuming the excessive GSH within the tumor. Finally, the multi-caged structure of IrOx is advantageous for effectively implementing photothermal therapy (PTT) in coordination with CDT, further enhancing the therapeutic efficacy of tumors. Moreover, the outstanding Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) (T1/T2) multimodal imaging capabilities of IrOx@MPN enable early diagnosis and timely treatment. This work provides a typical example of the construction of a novel multifunctional platform for dual-responsive treatment of tumors.
Collapse
Affiliation(s)
| | | | | | | | - Qinghe Han
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Qinghai Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Ahmad W, Sajjad W, Zhou Q, Ge Z. Nanomedicine for combination of chemodynamic therapy and immunotherapy of cancers. Biomater Sci 2024; 12:4607-4629. [PMID: 39115141 DOI: 10.1039/d3bm02133e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chemodynamic therapy (CDT), as a new type of therapy, has received more and more attention in the field of tumor therapy in recent years. By virtue of the characteristics of weak acidity and excess H2O2 in the tumor microenvironment, CDT uses the Fenton or Fenton-like reactions to catalyze the transformation of H2O2 into strongly oxidizing ˙OH, resulting in increased intracellular oxidative stress for lipid oxidation, protein inactivation, or DNA damage, and finally inducing apoptosis of cancer cells. In particular, CDT has the advantage of tumor specificity. However, the therapeutic efficacy of CDT frequently depends on the catalytic efficiency of the Fenton reaction, which needs the presence of sufficient H2O2 and catalytic metal ions. Relatively low concentrations of H2O2 and the lack of catalytic metal ions usually limit the final therapeutic effect. The combination of CDT with immunotherapy will be an effective means to improve the therapeutic effect. In this review paper, the recent progress related to nanomedicine for the combination of CDT and immunotherapy is summarized. Immunogenic death of tumor cells, immune checkpoint inhibitors, and stimulator of interferon gene (STING) activation as the main immunotherapy strategies to combine with CDT are discussed. Finally, the challenges and prospects for the clinical translation and future development direction are discussed.
Collapse
Affiliation(s)
- Waqas Ahmad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wasim Sajjad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
9
|
Wang Y, Yuan Y, Wang R, Wang T, Guo F, Bian Y, Wang T, Ma Q, Yuan H, Du Y, Jin J, Jiang H, Han F, Jiang J, Pan Y, Wang L, Wu F. Injectable Thermosensitive Gel CH-BPNs-NBP for Effective Periodontitis Treatment through ROS-Scavenging and Jaw Vascular Unit Protection. Adv Healthc Mater 2024; 13:e2400533. [PMID: 38722018 DOI: 10.1002/adhm.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Periodontitis, a prevalent inflammatory condition in the oral cavity, is closely associated with oxidative stress-induced tissue damage mediated by excessive reactive oxygen species (ROS) production. The jaw vascular unit (JVU), encompassing both vascular and lymphatic vessels, plays a crucial role in maintaining tissue fluid homeostasis and contributes to the pathological process in inflammatory diseases of the jaw. This study presents a novel approach for treating periodontitis through the development of an injectable thermosensitive gel (CH-BPNs-NBP). The gel formulation incorporates black phosphorus nanosheets (BPNs), which are notable for their ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator that promotes lymphatic vessel function within the JVU. These results demonstrate that the designed thermosensitive gel serve as a controlled release system, delivering BPNs and NBP to the site of inflammation. CH-BPNs-NBP not only protects macrophages and human lymphatic endothelial cells from ROS attack but also promotes M2 polarization and lymphatic function. In in vivo studies, this work observes a significant reduction in inflammation and tissue damage, accompanied by a notable promotion of alveolar bone regeneration. This research introduces a promising therapeutic strategy for periodontitis, leveraging the unique properties of BPNs and NBP within an injectable thermosensitive gel.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuqing Yuan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tianyao Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qian Ma
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
10
|
Yu Y, Zhang L, Hu B, Wang Z, Gu Q, Wang W, Zhu C, Wang S. Borate bonds-containing pH-responsive chitosan hydrogel for postoperative tumor recurrence and wound infection prevention. Carbohydr Polym 2024; 339:122262. [PMID: 38823926 DOI: 10.1016/j.carbpol.2024.122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Chitosan has been widely used in biomedical fields due to its good antibacterial properties, excellent biocompatibility, and biodegradability. In this study, a pH-responsive and self-healing hydrogel was synthesized from 3-carboxyphenylboronic acid grafted with chitosan (CS-BA) and polyvinyl alcohol (PVA). The dynamic boronic ester bonds and intermolecular hydrogen bonds are responsible for the hydrogel formation. By changing the mass ratio of CS-BA and PVA, the tensile stress and compressive stress of hydrogel can controlled in the range of 0.61 kPa - 0.74 kPa and 295.28 kPa - 1108.1 kPa, respectively. After doping with tannic acid (TA)/iron nanocomplex (TAFe), the hydrogel successful killed tumor cells through the near infrared laser-induced photothermal conversion and the TAFe-triggered reactive oxygen species generation. Moreover, the photothermal conversion of the hydrogel and the antibacterial effect of CS and TA give the hydrogel a good antibacterial effect. The CS-BA/PVA/TAFe hydrogel exhibit good in vivo and in vitro anti-tumor recurrence and antibacterial ability, and therefore has the potential to be used as a powerful tool for the prevention of local tumor recurrence and bacterial infection after surgery.
Collapse
Affiliation(s)
- Yang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Liang Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong Special Administrative Region of China
| | - Qiuping Gu
- Department of Gastroenterology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, PR China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, Hong Kong Special Administrative Region of China.
| | - Chunping Zhu
- Department of Gastroenterology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, PR China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
11
|
Tian H, Zhu H, Xue Y, Wang M, Xing K, Li Z, Loh XJ, Ye E, Ding X, Li BL, Yin X, Leong DT. White light powered antimicrobial nanoagents for triple photothermal, chemodynamic and photodynamic based sterilization. NANOSCALE HORIZONS 2024; 9:1190-1199. [PMID: 38757185 DOI: 10.1039/d4nh00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Antibacterial nanoagents have been increasingly developed due to their favorable biocompatibility, cost-effective raw materials, and alternative chemical or optical properties. Nevertheless, there is still a pressing need for antibacterial nanoagents that exhibit outstanding bacteria-binding capabilities and high antibacterial efficiency. In this study, we constructed a multifunctional cascade bioreactor (GCDCO) as a novel antibacterial agent. This involved incorporating carbon dots (CDs), cobalt sulfide quantum dots (CoSx QDs), and glucose oxidase (GOx) to enhance bacterial inhibition under sunlight irradiation. The GCDCO demonstrated highly efficient antibacterial capabilities attributed to its favorable photothermal properties, photodynamic activity, as well as the synergistic effects of hyperthermia, glucose-augmented chemodynamic action, and additional photodynamic activity. Within this cascade bioreactor, CDs played the role of a photosensitizer for photodynamic therapy (PDT), capable of generating ˙O2- even under solar light irradiation. The CoSx QDs not only functioned as a catalytic component to decompose hydrogen peroxide (H2O2) and generate hydroxyl radicals (˙OH), but they also served as heat generators to enhance the Fenton-like catalysis process. Furthermore, GOx was incorporated into this cascade bioreactor to internally supply H2O2 by consuming glucose for a Fenton-like reaction. As a result, GCDCO could generate a substantial amount of reactive oxygen species (ROS), leading to a significant synergistic effect that greatly induced bacterial death. Furthermore, the in vitro antibacterial experiment revealed that GCDCO displayed notably enhanced antibacterial activity against E. coli (99+ %) when combined with glucose under simulated sunlight, surpassing the efficacy of the individual components. This underscores its remarkable efficiency in combating bacterial growth. Taken together, our GCDCO demonstrates significant potential for use in the routine treatment of skin infections among diabetic patients.
Collapse
Affiliation(s)
- Hua Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
- Hainan Provincial Fine Chemical Engineering Research Centre, Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Centre, Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
12
|
Chen X, He L, Zhang C, Zheng G, Lin S, Zou Y, Lu Y, Feng Y, Zheng D. Exploring new avenues of health protection: plant-derived nanovesicles reshape microbial communities. J Nanobiotechnology 2024; 22:269. [PMID: 38764018 PMCID: PMC11103870 DOI: 10.1186/s12951-024-02500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024] Open
Abstract
Symbiotic microbial communities are crucial for human health, and dysbiosis is associated with various diseases. Plant-derived nanovesicles (PDNVs) have a lipid bilayer structure and contain lipids, metabolites, proteins, and RNA. They offer unique advantages in regulating microbial community homeostasis and treating diseases related to dysbiosis compared to traditional drugs. On the one hand, lipids on PDNVs serve as the primary substances that mediate specific recognition and uptake by bacteria. On the other hand, due to the multifactorial nature of PDNVs, they have the potential to enhance growth and survival of beneficial bacterial while simultaneously reducing the pathogenicity of harmful bacteria. In addition, PDNVs have the capacity to modulate bacterial metabolism, thus facilitating the establishment of a harmonious microbial equilibrium and promoting stability within the microbiota. These remarkable attributes make PDNVs a promising therapeutic approach for various conditions, including periodontitis, inflammatory bowel disease, and skin infection diseases. However, challenges such as consistency, isolation methods, and storage need to be addressed before clinical application. This review aims to explore the value of PDNVs in regulating microbial community homeostasis and provide recommendations for their use as novel therapeutic agents for health protection.
Collapse
Affiliation(s)
- Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lianghang He
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chaochao Zhang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Genggeng Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuoqi Lin
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuchun Zou
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yan Feng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
13
|
Yin J, Liu C, Guo J, Li M, Chen B, Zhang X, Wang B, Zhu X, Chen D. A copper-loaded self-assembled nanoparticle for disturbing the tumor redox balance and triple anti-tumor therapy. J Mater Chem B 2024; 12:3509-3520. [PMID: 38516824 DOI: 10.1039/d3tb02576d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Both chemodynamic therapy and photodynamic therapy, based on the production of reactive oxygen (ROS), have excellent potential in cancer therapy. However, the abnormal redox homeostasis in tumor cells, especially the overexpressed glutathione (GSH) could scavenge ROS and reduce the anti-tumor efficiency. Therefore, it is essential to develop a simple and effective tumor-specific drug delivery system for modulating the tumor microenvironment (TME) and achieving synergistic therapy at the tumor site. In this study, self-assembled nanoparticles (named CDZP NPs) were developed using copper ion (Cu2+), doxorubicin (Dox), zinc phthalocyanine (ZnPc) and a trace amount of poly(2-(di-methylamino)ethylmethacrylate)-poly[(R)-3-hydroxybutyrate]-poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA-PHB-PDMAEMA) through chelation, π-π stacking and hydrophobic interaction. These triple factor-responsive (pH, laser and GSH) nanoparticles demonstrated unique advantages through the synergistic effect. Highly controllable drug release ensured its effectiveness at the tumor site, Dox-induced chemotherapy and ZnPc-mediated fluorescence (FL) imaging exhibited the distribution of nanoparticles. Meanwhile, Cu2+-mediated GSH-consumption not only reduced the intracellular ROS elimination but also produced Cu+ to catalyze hydrogen peroxide (H2O2) and generated hydroxyl radicals (˙OH), thereby enhancing the chemodynamic and photodynamic therapy. Herein, this study provides a green and relatively simple method for preparing multifunctional nanoparticles that can effectively modulate the TME and improve synergetic cancer therapy.
Collapse
Affiliation(s)
- Jieli Yin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Chen Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Jiaqi Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Mao Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Baoyin Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Xuewen Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Bing Wang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, P. R. China
| | - Xuan Zhu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Dengyue Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
14
|
Özcan Z, Hazar Yoruç AB. Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:256-269. [PMID: 38440320 PMCID: PMC10910576 DOI: 10.3762/bjnano.15.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
In this study, a multifunctional therapeutic agent combining chemotherapy and photothermal therapy on a single platform has been developed in the form of vinorelbine-loaded polydopamine-coated iron oxide nanoparticles. Vinorelbine (VNB) is loaded on the surface of iron oxide nanoparticles produced by a solvothermal technique after coating with polydopamine (PDA) with varying weight ratios as a result of dopamine polymerisation and covalent bonding of thiol-polyethylene glycol (SH-PEG). The VNB/PDA/Fe3O4 nanoparticles have a saturation magnetisation value of 60.40 emu/g in vibrating sample magnetometry, which proves their magnetisation. Vinorelbine, which is used as an effective cancer therapy agent, is included in the nanocomposite structure, and in vitro drug release studies under different pH conditions (pH 5.5 and 7.4) and photothermal activity at 808 nm NIR laser irradiation are investigated. The comprehensive integration of precise multifunctional nanoparticles design, magnetic response, and controlled drug release with photothermal effect brings a different perspective to advanced cancer treatment research.
Collapse
Affiliation(s)
- Zeynep Özcan
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Metallurgical and Materials Engineering, 34210, Istanbul, Turkey
| | - Afife Binnaz Hazar Yoruç
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Metallurgical and Materials Engineering, 34210, Istanbul, Turkey
| |
Collapse
|
15
|
Shi TM, Chen XF, Ti H. Ferroptosis-Based Therapeutic Strategies toward Precision Medicine for Cancer. J Med Chem 2024; 67:2238-2263. [PMID: 38306267 DOI: 10.1021/acs.jmedchem.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by the dysregulation of iron metabolism and the accumulation of lipid peroxides. This nonapoptotic mode of cell death is implicated in various physiological and pathological processes. Recent findings have underscored its potential as an innovative strategy for cancer treatment, particularly against recalcitrant malignancies that are resistant to conventional therapies. This article focuses on ferroptosis-based therapeutic strategies for precision cancer treatment, covering the molecular mechanisms of ferroptosis, four major types of ferroptosis inducers and their inhibitory effects on diverse carcinomas, the detection of ferroptosis by fluorescent probes, and their implementation in image-guided therapy. These state-of-the-art tactics have manifested enhanced selectivity and efficacy against malignant carcinomas. Given that the administration of ferroptosis in cancer therapy is still at a burgeoning stage, some major challenges and future perspectives are discussed for the clinical translation of ferroptosis into precision cancer treatment.
Collapse
Affiliation(s)
- Tong-Mei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou, Guangzhou 510070, P. R. China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
16
|
Feng C, Zheng W, Jiang Y, Fu W, Huang W, Shen C, Wang Y, Qian H. Au Nanorods Activated the Zn/Ce Composites with Cancer Cell Specific Cytotoxicity for Enhanced Chemodynamic Therapy. NANO LETTERS 2024; 24:295-304. [PMID: 38117248 DOI: 10.1021/acs.nanolett.3c04031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemodynamic therapy based on the Fenton reaction has been developed as an extremely promising modality for cancer therapeutics. In this study, a core-shell structure nanoplatform was constructed by a Au nanorod externally encapsulating Ce/Zn-based composites (ACZO). The nanoparticles can catalyze the generation of reactive oxygen species (ROS) under acidic conditions and effectively consume existing glutathione (GSH) to destroy the redox balance within the tumor. Moreover, the decomposition of the nanocomplexes under acidic conditions releases large amounts of zinc ions, leading to zinc overload in cancer cells. The photothermal effect generated by the Au nanorods not only provides photothermal therapy (PTT) but also augments the catalytic reaction and ions action mentioned above. This facile strategy to improve the efficacy of chemodynamic therapy by the photothermal enhancement of catalytic activity and zinc ion release provides a promising perspective for potential tumor treatment.
Collapse
Affiliation(s)
- Chengcheng Feng
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, P. R. China
| | - Yechun Jiang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, P. R. China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, P. R. China
| | - Wenkai Huang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
| | - Yuanyin Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, P. R. China
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, P. R. China
| |
Collapse
|
17
|
Zhang Y, Song Q, Zhang Y, Xiao J, Deng X, Xing X, Hu H, Zhang Y. Iron-Based Nanovehicle Delivering Fin56 for Hyperthermia-Boosted Ferroptosis Therapy Against Osteosarcoma. Int J Nanomedicine 2024; 19:91-107. [PMID: 38192634 PMCID: PMC10773462 DOI: 10.2147/ijn.s441112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Background Although systemic chemotherapy is a standard approach for osteosarcoma (OS) treatment, its efficacy is limited by the inherent or acquired resistance to apoptosis of tumor cells. Ferroptosis is considered as an effective strategy capable of stimulating alternative pathways of cancer cell demise. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods and Results A novel nanovehicle composed of arginine-glycine-aspartate (RGD) modified mesoporous silica-coated iron oxide loading Fin56 was rationally prepared (FSR-Fin56). With the RGD-mediated targeting affinity, FSR-Fin56 could achieve selective accumulation and accurate delivery of cargos into cancer cells. Upon exposure to NIR light, the nanovehicle could generate localized hyperthermia and disintegrate to liberate the therapeutic payload. The released Fin56 triggered the degradation of GPX4, while Fe3+ depleted the intracellular GSH pool, producing Fe2+ as a Fenton agent. The local rise in temperature, in conjunction with Fe2+-mediated Fenton reaction, led to a rapid and significant accumulation of ROS, culminating in LPOs and ferroptotic death. The outstanding therapeutic efficacy and safety of the nanovehicle were validated both in vitro and in vivo. Conclusion The Fin56-loaded FSR nanovehicle could effectively disturb the redox balance in cancer cells. Coupled with NIR laser irradiation, the cooperative CDT and PTT achieved a boosted ferroptosis-inducing therapy. Taken together, this study offers a compelling strategy for cancer treatment, particularly for ferroptosis-sensitive tumors like osteosarcoma.
Collapse
Affiliation(s)
- Yiran Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People’s Republic of China
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- HeBei Ex&Invivo Biotechnology Co. Ltd, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qingcheng Song
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yueyao Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Jiheng Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiangtian Deng
- Orthopaedics Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xin Xing
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yingze Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People’s Republic of China
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
18
|
Wang Y, Wang J, Jiao Y, Chen K, Chen T, Wu X, Jiang X, Bu W, Liu C, Qu X. Redox-active polyphenol nanoparticles deprive endogenous glutathione of electrons for ROS generation and tumor chemodynamic therapy. Acta Biomater 2023; 172:423-440. [PMID: 37778486 DOI: 10.1016/j.actbio.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Chemodynamic therapy (CDT) based on generating reactive oxygen species (ROS) is promising for cancer treatment. However, the intrinsic H2O2 is deficient for CDT, and glutathione (GSH) eliminates ROS to protect tumor cells from ROS cytotoxicity. Herein, we propose a strategy to switch the electron flow direction of GSH for O2 reduction and ROS generation rather than ROS clearance by using P(DA-Fc) nanoparticles, which are polymerized from ferrocenecarboxylic acid (Fc) coupled dopamine. P(DA-Fc) NPs with phenol-quinone conversion ability mimic NOX enzyme to deprive electrons from GSH to reduce O2 for H2O2 generation; the following •OH release can be triggered by Fc. Semiquinone radicals in P(DA-Fc) are significantly enhanced after GSH treatment, further demonstrated with strong single-electron reduction ability by calculation. In vitro and in vivo experiments indicate that P(DA-Fc) can consume intrinsic GSH to produce endogenous ROS; ROS generation strongly depends on GSH/pH level and eventually causes tumor cell death. Our work makes the first attempt to reverse the function of GSH from ROS scavenger to ROS producer, explores new roles of PDA-based nanomaterials in CDT beyond photothermal reagents and drug carriers, and provides a new strategy to improve the efficiency of CDT. STATEMENT OF SIGNIFICANCE: P(DA-Fc) nanoparticles performing tumor microenvironment response capacity and tumor reductive power utilize ability were fabricated for CDT tumor suppression. After endocytosis by tumor cells, P(DA-Fc) deprived GSH of electrons for H2O2 and •OH release, mimicking the intrinsic ROS production conducted by NADPH, further inducing tumor cell necrosis and apoptosis. Our work makes the first attempt to reverse the function of GSH from ROS scavenger to producer, explores new functions of PDA-based nanomaterials in CDT beyond photothermal reagents and drug carriers, and provides a new strategy to improve CDT efficiency.
Collapse
Affiliation(s)
- Yifei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jia Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yunke Jiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Kangli Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Tianhao Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xinping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China.
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China; Wenzhou Institute of Shanghai University, Wenzhou 325000, PR China; Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai 200237, PR China.
| |
Collapse
|
19
|
Liu M, Xu H, Zhou F, Gong X, Tan S, He Y. A tetrasulfide bond-bridged mesoporous organosilica-based nanoplatform for triple-enhanced chemodynamic therapy combined with chemotherapy and H 2S therapy. J Mater Chem B 2023; 11:10822-10835. [PMID: 37920970 DOI: 10.1039/d3tb02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The high glutathione (GSH) concentration and insufficient H2O2 content in tumor cells strongly constrict the efficacy of Fenton reaction-based chemodynamic therapy (CDT). Despite numerous efforts, it still remains a formidable challenge for achieving satisfactory efficacy using CDT alone. Herein, an intelligent tetrasulfide bond-bridged mesoporous organosilica-based nanoplatform that integrates GSH-depletion, H2S generation, self-supplied H2O2, co-delivery of doxorubicin (DOX) and Fenton reagent Fe2+ is presented for synergistic triple-enhanced CDT/chemotherapy/H2S therapy. Because the tetrasulfide bond is sensitive to GSH, the nanoplatform can effectively consume GSH, leading to ROS accumulation and H2S generation in the GSH-overexpressed tumor microenvironment. Meanwhile, tetrasulfide bond-induced GSH-depletion triggers the degradation of nanoparticles and the release of DOX and Fe2+. Immediately, Fe2+ catalyzes endogenous H2O2 to highly toxic hydroxyl radicals (˙OH) for CDT, and H2S induces mitochondria injury and causes energy deficiency. Of note, H2S can also decrease the decomposition of H2O2 to augment CDT by downregulating catalase. DOX elicits chemotherapy and promotes H2O2 production to provide a sufficient substrate for enhanced CDT. Importantly, the GSH depletion significantly weakens the scavenging effect on the produced ˙OH, guaranteeing the enhanced and highly efficient CDT. Based on the synergistic effect of triple-augmented CDT, H2S therapy and DOX-mediated chemotherapy, the treatment with this nanoplatform gives rise to a superior antitumor outcome.
Collapse
Affiliation(s)
- Mingzhe Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Hui Xu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - FangFang Zhou
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiyu Gong
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
20
|
He R, Yang P, Liu A, Zhang Y, Chen Y, Chang C, Lu B. Cascade strategy for glucose oxidase-based synergistic cancer therapy using nanomaterials. J Mater Chem B 2023; 11:9798-9839. [PMID: 37842806 DOI: 10.1039/d3tb01325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nanomaterial-based cancer therapy faces significant limitations due to the complex nature of the tumor microenvironment (TME). Starvation therapy is an emerging therapeutic approach that targets tumor cell metabolism using glucose oxidase (GOx). Importantly, it can provide a material or environmental foundation for other diverse therapeutic methods by manipulating the properties of the TME, such as acidity, hydrogen peroxide (H2O2) levels, and hypoxia degree. In recent years, this cascade strategy has been extensively applied in nanoplatforms for ongoing synergetic therapy and still holds undeniable potential. However, only a few review articles comprehensively elucidate the rational designs of nanoplatforms for synergetic therapeutic regimens revolving around the conception of the cascade strategy. Therefore, this review focuses on innovative cascade strategies for GOx-based synergetic therapy from representative paradigms to state-of-the-art reports to provide an instructive, comprehensive, and insightful reference for readers. Thereafter, we discuss the remaining challenges and offer a critical perspective on the further advancement of GOx-facilitated cancer treatment toward clinical translation.
Collapse
Affiliation(s)
- Ruixuan He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Peida Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Aoxue Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yueli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yuqi Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
21
|
Chu X, Duan M, Hou H, Zhang Y, Liu P, Chen H, Liu Y, Li SL. Recent strategies of carbon dot-based nanodrugs for enhanced emerging antitumor modalities. J Mater Chem B 2023; 11:9128-9154. [PMID: 37698045 DOI: 10.1039/d3tb00718a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Nanomaterial-based cancer therapy has recently emerged as a new therapeutic modality with the advantages of minimal invasiveness and negligible normal tissue toxicity over traditional cancer treatments. However, the complex microenvironment and self-protective mechanisms of tumors have suppressed the therapeutic effect of emerging antitumor modalities, which seriously hindered the transformation of these modalities to clinical settings. Due to the excellent biocompatibility, unique physicochemical properties and easy surface modification, carbon dots, as promising nanomaterials in the biomedical field, can effectively improve the therapeutic effect of emerging antitumor modalities as multifunctional nanoplatforms. In this review, the mechanism and limitations of emerging therapeutic modalities are described. Further, the recent advances related to carbon dot-based nanoplatforms in overcoming the therapeutic barriers of various emerging therapies are systematically summarized. Finally, the prospects and potential obstacles for the clinical translation of carbon dot-based nanoplatforms in tumor therapy are also discussed. This review is expected to provide a reference for nanomaterial design and its development for the efficacy enhancement of emerging therapeutic modalities.
Collapse
Affiliation(s)
- Xu Chu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
| | - Mengdie Duan
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemical Engineering and technology & School of Electronic and Information Engineering & School of Life Science, Tiangong University, Tianjin 300378, P. R. China
| | - Huaying Hou
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemical Engineering and technology & School of Electronic and Information Engineering & School of Life Science, Tiangong University, Tianjin 300378, P. R. China
| | - Yujuan Zhang
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemical Engineering and technology & School of Electronic and Information Engineering & School of Life Science, Tiangong University, Tianjin 300378, P. R. China
| | - Pai Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
| | - Hongli Chen
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemical Engineering and technology & School of Electronic and Information Engineering & School of Life Science, Tiangong University, Tianjin 300378, P. R. China
| | - Yi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Shu-Lan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering & School of Chemistry, Tiangong University, Tianjin 300387, P. R. China.
| |
Collapse
|
22
|
Zhang Z, Ding D, Liu J, Huang C, Li W, Lu K, Cheng N. Supramolecular Nanozyme System Based on Polydopamine and Polyoxometalate for Photothermal-Enhanced Multienzyme Cascade Catalytic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38214-38229. [PMID: 37535452 DOI: 10.1021/acsami.3c04723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The advent of enzyme-facilitated cascade events in which endogenous substrates within the human body are used to generate reactive oxygen species (ROS) has spawned novel cancer treatment possibilities. In this study, a supramolecular cascade catalytic nanozyme system was successfully developed, exhibiting photothermal-enhanced multienzyme cascade catalytic and glutathione (GSH) depletion activities and ultimately triggering the apoptosis-ferroptosis synergistic tumor therapy. The nanozyme system was fabricated using β-cyclodextrin-functionalized polydopamine (PDA) as the substrate, which was then entangled with polyoxometalate (POM) via electrostatic forces and assembled with adamantane-grafted hyaluronic acid and glucose oxidase (GOx) via host-guest supramolecular interaction for tumor targeting and GOx loading. The catalytic function of GOx facilitates the conversion of glucose to H2O2 and gluconic acid. In turn, this process affirms the propitious generation of hydroxyl radical (•OH) through the POM-mediated cascade catalysis. Additionally, the POM species actively deplete the intracellular GSH pool, initiating a cascade catalytic tumor therapy. In addition, the PDA-POM-mediated photothermal hyperthermia boosted the cascade catalytic effect and increased ROS production. This confers considerable promise for photothermal therapy (PTT)/nanocatalytic cancer therapy on supramolecular nanozyme systems. The in vitro and in vivo antitumor efficacy studies demonstrated that the supramolecular cascade catalytic nanozyme system was effective at reducing tumor development while maintaining an acceptable level of biocompatibility. Henceforth, this study is to widen the scope of cascade catalytic nanoenzyme production using supramolecular techniques, as well as endeavor to delineate a prospective pathway for the application of PTT-enhanced nanocatalytic tumor therapy.
Collapse
Affiliation(s)
- Zhengchao Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Jinxiang Liu
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P. R. China
- Department of Special Inspection, Changyi People's Hospital, Weifang, Shandong 261399, P. R. China
| | - Changbao Huang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Wentong Li
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Keliang Lu
- School of Anesthesiology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
| |
Collapse
|
23
|
Ren W, Tang Q, Cao H, Wang L, Zheng X. Biological Preparation of Chitosan-Loaded Silver Nanoparticles: Study of Methylene Blue Adsorption as Well as Antibacterial Properties under Light. ACS OMEGA 2023; 8:22998-23007. [PMID: 37396237 PMCID: PMC10308547 DOI: 10.1021/acsomega.3c02111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
Human beings have made significant progress in the medical field since antibiotics were widely used. However, the consequences caused by antibiotics abuse have gradually shown their negative effects. Antibacterial photodynamic therapy (aPDT) has the ability to resist drug-resistant bacteria without antibiotics, and as it is increasingly recognized that nanoparticles can effectively solve the deficiency problem of singlet oxygen produced by photosensitizers, the application performance and scope of aPDT are gradually being expanded. In this study, we used a biological template method to reduce Ag+ to silver atoms in situ with bovine serum albumin (BSA) rich in various functional groups in a 50 °C water bath. The aggregation of nanomaterials was inhibited by the protein's multistage structure so that the formed nanomaterials have good dispersion and stability. It is unexpected that we used chitosan microspheres (CMs) loaded with silver nanoparticles (AgNPs) to adsorb methylene blue (MB), which is both a pollutant and photosensitive substance. The Langmuir adsorption isothermal curve was used to fit the adsorption capacity. The exceptional multi-bond angle chelating forceps of chitosan make it have a powerful physical adsorption capacity, and dehydrogenated functional groups of proteins with negative charge can also bond to positively charged MB to form a certain amount of ionic bonds. Compared with single bacteriostatic materials, the bacteriostatic capacity of the composite materials adsorbing MB under light was significantly improved. This composite material not only has a strong inhibitory effect on Gram-negative bacteria but also has a good inhibitory effect on the growth of Gram-positive bacteria poorly affected by conventional bacteriostatic agents. In conclusion, the CMs loaded with MB and AgNPs have some possible applications in the purification or treatment of wastewater in the future.
Collapse
Affiliation(s)
- Wensheng Ren
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Qian Tang
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
- College
of Life and healthy, Dalian University, Dalian 116622, China
| | - Hongyu Cao
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
- College
of Life and healthy, Dalian University, Dalian 116622, China
| | - Lihao Wang
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
| | - Xuefang Zheng
- College
of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Liaoning
Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, China
| |
Collapse
|
24
|
Zheng X, Wu H, Wang S, Zhao J, Hu L. Preparation and Characterization of Biocompatible Iron/Zirconium/Polydopamine/Carboxymethyl Chitosan Hydrogel with Fenton Catalytic Properties and Photothermal Efficacy. Gels 2023; 9:452. [PMID: 37367123 DOI: 10.3390/gels9060452] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, multifunctional hydrogel nanoplatforms for the synergistic treatment of tumors have received a great deal of attention. Here, we prepared an iron/zirconium/polydopamine/carboxymethyl chitosan hydrogel with Fenton and photothermal effects, promising for future use in the field of synergistic therapy and prevention of tumor recurrence. The iron (Fe)-zirconium (Zr)@ polydopamine (PDA) nanoparticles were synthesized by a simple one-pot hydrothermal method using iron (III) chloride hexahydrate (FeCl3•6H2O), zirconium tetrachloride (ZrCl4), and dopamine, followed by activation of the carboxyl group of carboxymethyl chitosan (CMCS) using 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)/N(4)-hydroxycytidine (NHS). Finally, the Fe-Zr@PDA nanoparticles and the activated CMCS were mixed to form a hydrogel. On the one side, Fe ions can use hydrogen peroxide (H2O2) which is rich in the tumor microenvironment (TME) to produce toxic hydroxyl radicals (•OH) and kill tumor cells, and Zr can also enhance the Fenton effect; on the other side, the excellent photothermal conversion efficiency of the incorporated PDA is used to kill tumor cells under the irradiation of near-infrared light. The ability of Fe-Zr@PDA@CMCS hydrogel to produce •OH and the ability of photothermal conversion were verified in vitro, and swelling and degradation experiments confirmed the effective release and good degradation of this hydrogel in an acidic environment. The multifunctional hydrogel is biologically safe at both cellular and animal levels. Therefore, this hydrogel has a wide range of applications in the synergistic treatment of tumors and the prevention of recurrence.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Pudong New Area, No. 219 Miao Pu Road, Shanghai 200135, China
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Hang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
25
|
Manivasagan P, Ashokkumar S, Manohar A, Joe A, Han HW, Seo SH, Thambi T, Duong HS, Kaushik NK, Kim KH, Choi EH, Jang ES. Biocompatible Calcium Ion-Doped Magnesium Ferrite Nanoparticles as a New Family of Photothermal Therapeutic Materials for Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15051555. [PMID: 37242798 DOI: 10.3390/pharmaceutics15051555] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Novel biocompatible and efficient photothermal (PT) therapeutic materials for cancer treatment have recently garnered significant attention, owing to their effective ablation of cancer cells, minimal invasiveness, quick recovery, and minimal damage to healthy cells. In this study, we designed and developed calcium ion-doped magnesium ferrite nanoparticles (Ca2+-doped MgFe2O4 NPs) as novel and effective PT therapeutic materials for cancer treatment, owing to their good biocompatibility, biosafety, high near-infrared (NIR) absorption, easy localization, short treatment period, remote controllability, high efficiency, and high specificity. The studied Ca2+-doped MgFe2O4 NPs exhibited a uniform spherical morphology with particle sizes of 14.24 ± 1.32 nm and a strong PT conversion efficiency (30.12%), making them promising for cancer photothermal therapy (PTT). In vitro experiments showed that Ca2+-doped MgFe2O4 NPs had no significant cytotoxic effects on non-laser-irradiated MDA-MB-231 cells, confirming that Ca2+-doped MgFe2O4 NPs exhibited high biocompatibility. More interestingly, Ca2+-doped MgFe2O4 NPs exhibited superior cytotoxicity to laser-irradiated MDA-MB-231 cells, inducing significant cell death. Our study proposes novel, safe, high-efficiency, and biocompatible PT therapeutics for treating cancers, opening new vistas for the future development of cancer PTT.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi 39177, Republic of Korea
| | - Sekar Ashokkumar
- Plasma Bioscience Research Centre, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ala Manohar
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ara Joe
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi 39177, Republic of Korea
| | - Hyo-Won Han
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi 39177, Republic of Korea
| | - Sun-Hwa Seo
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi 39177, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hai-Sang Duong
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Centre, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Ki Hyeon Kim
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Centre, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi 39177, Republic of Korea
| |
Collapse
|
26
|
Zou Q, Pan H, Zhang X, Zhang C. Flower-like Cu 9S 8 nanocatalysts with highly active sites for synergistic NIR-II photothermal therapy and chemodynamic therapy. J Mater Chem B 2023; 11:4740-4751. [PMID: 37171201 DOI: 10.1039/d3tb00488k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chemodynamic therapy (CDT) is a promising reactive oxygen species-based therapeutic strategy for tumor therapy. However, the poor reaction kinetics of CDT agents severely restricts its further application. Herein, protamine stabilized flower-like Cu9S8 (PS@Cu9S8) nanocatalysts are fabricated via a one-pot biomineralization strategy for synergistic second near-infrared (NIR-II) photothermal therapy (PTT) and CDT of tumor. The PS@Cu9S8 nanocatalysts possess a high surface area (40.10 m2 g-1), which is higher than those of the previously reported solid and hollow copper sulfide nanoparticles. The high surface area of PS@Cu9S8 nanocatalysts increases the number of active sites during the Fenton-like reaction, thereby accelerating the efficiency of CDT. Meanwhile, the PS@Cu9S8 nanocatalysts show a high extinction coefficient (21.41 L g-1 cm-1) and photothermal conversion efficiency (42.34%), which results in an outstanding PTT efficiency and facilitate ˙OH generation for CDT. Furthermore, RNA-sequencing unveils the whole-genome expression change of 4T1 cells after PS@Cu9S8 nanocatalyst treatment, revealing the apparent changes in ROS, cell cycle, and apoptosis-related pathways. In vivo experiments proved the good therapeutic efficiency and negligible systematic toxicity of PS@Cu9S8 nanocatalysts. This work not only develops a superior multifunctional nanocatalyst for synergistic PTT and CDT of tumor, but also provides a facile approach to construct high-performance agents for cancer therapy.
Collapse
Affiliation(s)
- Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Haiyan Pan
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
27
|
Zhang Z, Lo H, Zhao X, Li W, Wu K, Zeng F, Li S, Sun H. Mild photothermal/radiation therapy potentiates ferroptosis effect for ablation of breast cancer via MRI/PA imaging guided all-in-one strategy. J Nanobiotechnology 2023; 21:150. [PMID: 37158923 PMCID: PMC10169499 DOI: 10.1186/s12951-023-01910-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Nanotheranostics advances anticancer management by providing therapeutic and diagnostic functions, that combine programmed cell death (PCD) initiation and imaging-guided treatment, thus increasing the efficacy of tumor ablation and efficiently fighting against cancer. However, mild photothermal/radiation therapy with imaging-guided precise mediating PCD in solid tumors, involving processes related to apoptosis and ferroptosis, enhanced the effect of breast cancer inhibition is not fully understood. RESULTS Herein, targeted peptide conjugated gold nano cages, iRGD-PEG/AuNCs@FePt NPs ternary metallic nanoparticles (Au@FePt NPs) were designed to achieve photoacoustic imaging (PAI)/Magnetic resonance imaging (MRI) guided synergistic therapy. Tumor-targeting Au@FePt forms reactive oxygen species (ROS), initiated by X-ray-induced dynamic therapy (XDT) in collaboration with photothermal therapy (PTT), inducing ferroptosis-augmented apoptosis to realize effective antitumor therapeutics. The relatively high photothermal conversion ability of Au@FePt increases the temperature in the tumor region and hastens Fenton-like processes to achieve enhanced synergistic therapy. Especially, RNA sequencing found Au@FePt inducting the apoptosis pathway in the transcriptome profile. CONCLUSION Au@FePt combined XDT/PTT therapy activate apoptosis and ferroptosis related proteins in tumors to achieve breast cancer ablation in vitro and in vivo. PAI/MRI images demonstrated Au@FePt has real-time guidance for monitoring synergistic anti-cancer therapy effect. Therefore, we have provided a multifunctional nanotheranostics modality for tumor inhibition and cancer management with high efficacy and limited side effects.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, China
| | - Hsuan Lo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xingyang Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wenya Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ke Wu
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, China
| | - Fanchu Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shiying Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, China.
| |
Collapse
|
28
|
Ji M, Liu H, Gou J, Yin T, He H, Zhang Y, Tang X. Recent advances in nanoscale metal-organic frameworks for cancer chemodynamic therapy. NANOSCALE 2023; 15:8948-8971. [PMID: 37129051 DOI: 10.1039/d3nr00867c] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemodynamic therapy (CDT), a novel therapeutic approach based on Fenton (Fenton-like) reaction, has been widely employed for tumor therapy. This approach utilizes Fe, Cu, or other metal ions (Mn, Zn, Co, or Mo) to react with the excess hydrogen peroxide (H2O2) in tumor microenvironments (TME), and form highly cytotoxic hydroxyl radical (˙OH) to kill cancer cells. Recently, nanoscale metal-organic frameworks (nMOFs) have attracted considerable attention as promising CDT agents with the rapid development of cancer CDT. This review focuses on summarizing the latest advances (2020-2022) on the design of nMOFs as nanomedicine for CDT or combination therapy of CDT and other therapies. The future development and challenges of CDT are also proposed based on recent progress. Our group hopes that this review will enlighten the research and development of nMOFs for CDT.
Collapse
Affiliation(s)
- Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang, China.
| |
Collapse
|
29
|
Min Jung J, Lip Jung Y, Han Kim S, Sung Lee D, Thambi T. Injectable hydrogel imbibed with camptothecin-loaded mesoporous silica nanoparticles as an implantable sustained delivery depot for cancer therapy. J Colloid Interface Sci 2023; 636:328-340. [PMID: 36638572 DOI: 10.1016/j.jcis.2023.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
In recent years, injectable stimuli-sensitive hydrogels are employed as suitable drug delivery carriers for the release of various anti-cancer drugs. However, large pore size of the microporous hydrogel trigger release of small molecular anticancer drug that limits hydrogel application in cancer therapy. Therefore, introducing reinforcing fillers such as mesoporous silica nanoparticles (MSNs) can not only load different type of anticancer drugs but also prevent the premature release of drugs due to the strengthening of the networks. Furthermore, high specific surface area, suitable size, large pore volume, and stable physicochemical properties of MSNs can improve the therapeutic efficacy. In this study, to sustain the release of hydrophobic anticancer drug, camptothecin (CPT) was loaded into MSNs, and then imbibed into the physiological stimuli-sensitive poly(ethylene glycol)-poly(β-aminoester urethane) (PAEU) hydrogels. MSN-imbibed PAEU hydrogels exhibited prolonged release of CPT than MSNs and PAEU hydrogel alone. Furthermore, MSN-imbibed PAEU copolymers form stable viscoelastic gel depot into the subcutaneous layers of Sprague-Dawley rats and found to be safe and not induced toxicity to healthy organs, implying biodegradability and safety of the hydrogels. Interestingly, CPT-loaded hydrogels shown dose-dependent toxicity to A549 and B16F10 cells. These results demonstrated that MSN-imbibed PAEU hydrogel with biocompatible, biodegradable, and in situ gel forming property could be a useful drug delivery depot for sustained release of anticancer drugs.
Collapse
Affiliation(s)
- Jae Min Jung
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yu Lip Jung
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seong Han Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea; Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| |
Collapse
|
30
|
Shukla AK, Randhawa S, Saini TC, Acharya A. Carbon nanosphere based bifunctional oxidoreductase nano-catalytic agent to mitigate hypoxia in cancer cells. Int J Biol Macromol 2023; 233:123466. [PMID: 36739044 DOI: 10.1016/j.ijbiomac.2023.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Developing metal-free carbon nanozyme for tumor hypoxia is difficult. In biomedical applications, especially in the case of biomolecular detection, extensive research has been done on nanozymes with enzyme-mimicking catalytic activity. However, there are considerably fewer investigations on targeted nano-catalytic tumor therapy. Nano catalytic medicine-enabled chemotherapy is a safe and promising treatment strategy that involves the conversion of excess H2O2 into O2 in a tumor environment. Here we have synthesized carbon nanosphere (CNS) using the Camellia sinensis plant (CS-CNS). Further surface functionalization was achieved via nitrilotriacetic acid conjugation (NTA@CS-CNS). A stability study of synthesized nanozyme in the presence of various cations, anions, and 5 different pH range suggested the robustness of carbon based nanoassembly. The catalytic in vitro study shows that NTA@CS-CNS mimics peroxidase and catalase using TMB and H2O2 as substrates. NTA@CS-CNS showed Km and Vmax values of ~ 193.2 μM and 0.43 μM/s, ~ 413 μM and 1.42 μM/s, and ~ 378 μM and 1.63 μM/s, respectively when H2O2 and TMB was used for CAT and POD activity. Results showed that NTA@CS-CNS in combination with SFN and laser irradiation reduces hypoxia. Hence, our study could pave the path for the development of different non-toxic nano catalytic therapy for tumors in cancerous cells.
Collapse
Affiliation(s)
- Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
31
|
Li B, Ye X, Fu Y, Feng L, Xu J, Niu X, Ye H, You Z. Hollow MnO 2-Based Nanoprobes for Enhanced Photothermal/Photodynamic /Chemodynamic Co-Therapy of Hepatocellular Carcinoma. Pharm Res 2023; 40:1271-1282. [PMID: 36991228 DOI: 10.1007/s11095-023-03501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE The effect of monotherapy in cancer is frequently influenced by the tumor's unique hypoxic microenvironment, insufficient drug concentration at the treatment site, and tumour cells' increased drug tolerance. In this work, we expect to design a novel therapeutic nanoprobe with the ability to solve these problems and improve the efficacy of antitumor therapy. METHODS We have prepared a hollow manganese dioxide nanoprobes loaded with photosensitive drug IR780 for the photothermal/photodynamic/chemodynamic co-therapy of liver cancer. RESULTS The nanoprobe demonstrates efficient thermal transformation ability under a single laser irradiation, and under the synergistic influence of photo heat, accelerates the Fenton/ Fenton-like reaction efficiency based on Mn2+ ions to produce more ·OH under the synergistic effect of photo heat. Moreover, the oxygen released under the degradation of manganese dioxide further promotes the ability of photosensitive drugs to produce singlet oxygen (ROS). The nanoprobe has been found to efficiently destroy tumour cells in vivo and in vitro experiments when used in combination with photothermal/photodynamic/ chemodynamic modes of treatment under laser irradiation. CONCLUSION In all, this research shows that a therapeutic strategy based on this nanoprobe could be a viable alternative for cancer treatment in the near future.
Collapse
Affiliation(s)
- Bei Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiwen Ye
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lei Feng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Jianrong Xu
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoya Niu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Hui Ye
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610041, China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
32
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023; 62:e202210415. [PMID: 36650984 DOI: 10.1002/anie.202210415] [Citation(s) in RCA: 107] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Since the insight to fuse Fenton chemistry and nanomedicine into cancer therapy, great signs of progress have been made in the field of chemodynamic therapy (CDT). However, the exact mechanism of CDT is obscured by the unique tumor chemical environment and inevitable nanoparticle-cell interactions, thus impeding further development. In this Scientific Perspective, the significance of CDT is clarified, the complex mechanism is deconstructed into primitive chemical and biological interactions, and the mechanism research directions based on the chemical kinetics and biological signaling pathways are discussed in detail. Moreover, beneficial outlooks are presented to enlighten the evolution of next-generation CDT. Hopefully, this Scientific Perspective can inspire new ideas and advances for CDT and provide a reference for breaking down the interdisciplinary barriers in the field of nanomedicine.
Collapse
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
33
|
Zhao P, Li H, Bu W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202210415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P.R. China
| |
Collapse
|
34
|
Zhang J, Li P, Wang T, Li J, Yun K, Zhang X, Yang X. A copper nanocluster-based multifunctional nanoplatform for augmented chemo/chemodynamic/photodynamic combination therapy of breast cancer. Pharmacol Res 2023; 187:106632. [PMID: 36572134 DOI: 10.1016/j.phrs.2022.106632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
With the development of nano drug delivery system, the treatment mode that can overcome the shortcomings of chemotherapy drugs and integrate combined therapy remains to be explored. Herein, a nano drug system was designed to achieve the combined effect of chemo/chemodynamic/photodynamic therapy on cancer. Specifically, copper clusters (CuNCs) were used as the carrier, hyaluronic acid (HA) and doxorubicin (DOX) were coupled on CuNCs and then and chlorin e6 (Ce6) was introduced to form the self-assembled HA-CuNCs@DC nanoparticles. In this system, the HA-CuNCs@DC was involved in the reaction to the acidic tumor microenvironment (TME)-release of DOX, which could not only inhibit tumor growth through chemotherapy, but enhance the generation of hydrogen peroxide. CuNCs carriers had the properties of Fenton-like activity to realize chemodynamic therapy (CDT) and oxidase-like activity to deplete intracellular glutathione (GSH). Additionally, the chemotherapy drug susceptibility increased owing to the GSH depletion and the outbreak of reactive oxygen species, indicating the enhanced CDT efficacy and amplified chemotherapy efficacy. It was also noteworthy that Ce6 could be activated by 660 nm light to produce abundant singlet oxygen for photodynamic therapy. Overall, our platform demonstrated excellent biosafety and tumor suppression capabilities. This multimodal theranostic strategy provided new insights into cancer therapy.
Collapse
Affiliation(s)
- Jie Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pingfei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Tianyi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jiayang Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Kaiqing Yun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaoyan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
35
|
Nanostructures as Photothermal Agents in Tumor Treatment. Molecules 2022; 28:molecules28010277. [PMID: 36615470 PMCID: PMC9822183 DOI: 10.3390/molecules28010277] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Traditional methods of tumor treatment such as surgical resection, chemotherapy, and radiation therapy have certain limitations, and their treatment effects are not always satisfactory. As a new tumor treatment method, photothermal therapy based on nanostructures has attracted the attention of researchers due to its characteristics of minimally invasive, low side effects, and inhibition of cancer metastasis. In recent years, there has been a variety of inorganic or organic nanostructures used in the field of photothermal tumor treatment, and they have shown great application prospects. In this paper, the advantages and disadvantages of a variety of nanomaterials/nanostructures as photothermal agents (PTAs) for photothermal therapy as well as their research progress are reviewed. For the sake of clarity, the recently reported nanomaterials/nanostructures for photothermal therapy of tumor are classified into five main categories, i.e., carbon nanostructures, noble metal nanostructures, transition metal sulfides, organic polymer, and other nanostructures. In addition, future perspectives or challenges in the related field are discussed.
Collapse
|
36
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
37
|
Lee J, Seo HS, Park W, Park CG, Jeon Y, Park DH. Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7977. [PMID: 36431465 PMCID: PMC9694224 DOI: 10.3390/ma15227977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Layered double hydroxides (LDHs) with two-dimensional nanostructure are inorganic materials that have attractive advantages such as biocompatibility, facile preparation, and high drug loading capacity for therapeutic bioapplications. Since the intercalation chemistry of DNA molecules into the LDH materials were reported, various LDH nanohybrids have been developed for biomedical drug delivery system. For these reasons, LDHs hybridized with numerous therapeutic agents have a significant role in cancer imaging and therapy with targeting functions. In this review, we summarized the recent advances in the preparation of LDH nanohybrids for cancer therapeutic strategies including gene therapy, chemotherapy, immunotherapy, and combination therapy.
Collapse
Affiliation(s)
- Joonghak Lee
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Gyeonggi, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Gyeonggi, Republic of Korea
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Gangwondo, Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
38
|
Methylene Blue-Loaded Mesoporous Silica-Coated Gold Nanorods on Graphene Oxide for Synergistic Photothermal and Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14102242. [PMID: 36297675 PMCID: PMC9612258 DOI: 10.3390/pharmaceutics14102242] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Photo-nanotheranostics integrates near-infrared (NIR) light-triggered diagnostics and therapeutics, which are combined into a novel all-in-one phototheranostic nanomaterial that holds great promise for the early detection and precise treatment of cancer. In this study, we developed methylene blue-loaded mesoporous silica-coated gold nanorods on graphene oxide (MB-GNR@mSiO2-GO) as an all-in-one photo-nanotheranostic agent for intracellular surface-enhanced Raman scattering (SERS) imaging-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for cancer. Amine functionalization of the MB-GNR@mSiO2 surfaces was performed using 3-aminopropyltriethoxysilane (APTES), which was well anchored on the carboxyl groups of graphene oxide (GO) nanosheets uniformly, and showed a remarkably higher photothermal conversion efficiency (48.93%), resulting in outstanding PTT/PDT for cancer. The in vitro photothermal/photodynamic effect of MB-GNR@mSiO2-GO with laser irradiation showed significantly reduced cell viability (6.32%), indicating that MB-GNR@mSiO2-GO with laser irradiation induced significantly more cell deaths. Under laser irradiation, MB-GNR@mSiO2-GO showed a strong SERS effect, which permits accurate cancer cell detection by SERS imaging. Subsequently, the same Raman laser can focus on highly detected MDA-MB-23l cells for a prolonged time to perform PTT/PDT. Therefore, MB-GNR@mSiO2-GO has great potential for precise SERS imaging-guided synergistic PTT/PDT for cancer.
Collapse
|
39
|
Yang W, Yue H, Lu G, Wang W, Deng Y, Ma G, Wei W. Advances in Delivering Oxidative Modulators for Disease Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9897464. [PMID: 39070608 PMCID: PMC11278358 DOI: 10.34133/2022/9897464] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 07/30/2024]
Abstract
Oxidation modulators regarding antioxidants and reactive oxygen species (ROS) inducers have been used for the treatment of many diseases. However, a systematic review that refers to delivery system for divergent modulation of oxidative level within the biomedical scope is lacking. To provide a comprehensive summarization and analysis, we review pilot designs for delivering the oxidative modulators and the main applications for inflammatory treatment and tumor therapy. On the one hand, the antioxidants based delivery system can be employed to downregulate ROS levels at inflammatory sites to treat inflammatory diseases (e.g., skin repair, bone-related diseases, organ dysfunction, and neurodegenerative diseases). On the other hand, the ROS inducers based delivery system can be employed to upregulate ROS levels at the tumor site to kill tumor cells (e.g., disrupt the endogenous oxidative balance and induce lethal levels of ROS). Besides the current designs of delivery systems for oxidative modulators and the main application cases, prospects for future research are also provided to identify intelligent strategies and inspire new concepts for delivering oxidative modulators.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuan Deng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Department of Orthopedics, Fourth Medical Center, General Hospital of Chinese PLA, Beijing, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Gene Regulations upon Hydrogel-Mediated Drug Delivery Systems in Skin Cancers-An Overview. Gels 2022; 8:gels8090560. [PMID: 36135270 PMCID: PMC9498739 DOI: 10.3390/gels8090560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence of skin cancer has increased dramatically in recent years, particularly in Caucasian populations. Specifically, the metastatic melanoma is one of the most aggressive cancers and is responsible for more than 80% of skin cancer deaths around the globe. Though there are many treatment techniques, and drugs have been used to cure this belligerent skin cancer, the side effects and reduced bioavailability of drug in the targeted area makes it difficult to eradicate. In addition, cellular metabolic pathways are controlled by the skin cancer driver genes, and mutations in these genes promote tumor progression. Consequently, the MAPK (RAS-RAF-MEK-ERK pathway), WNT and PI3K signaling pathways are found to be important molecular regulators in melanoma development. Even though hydrogels have turned out to be a promising drug delivery system in skin cancer treatment, the regulations at the molecular level have not been reported. Thus, we aimed to decipher the molecular pathways of hydrogel drug delivery systems for skin cancer in this review. Special attention has been paid to the hydrogel systems that deliver drugs to regulate MAPK, PI3K-AKT-mTOR, JAK-STAT and cGAS-STING pathways. These signaling pathways can be molecular drivers of skin cancers and possible potential targets for the further research on treatment of skin cancers.
Collapse
|
41
|
Manivasagan P, Khan F, Rajan Dhatchayeny D, Park S, Joe A, Han HW, Seo SH, Thambi T, Giang Phan VH, Kim YM, Kim CS, Oh J, Jang ES. Antibody-targeted and streptomycin-chitosan oligosaccharide-modified gold nanoshells for synergistic chemo-photothermal therapy of drug-resistant bacterial infection. J Adv Res 2022:S2090-1232(22)00190-4. [PMID: 36041689 DOI: 10.1016/j.jare.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022] Open
Abstract
Despite the many advanced strategies that are available, rapid gene mutation in multidrug-resistant bacterial infections remains a major challenge. Combining new therapeutic strategies such as chemo-photothermal therapy (PTT) with high antibacterial efficiency against drug-resistant Listeria monocytogenes (LM) is urgently needed. Here, we report synergistic chemo-PTT against drug-resistant LM based on antibody-targeted and streptomycin-chitosan oligosaccharide-modified gold nanoshells (anti-STR-CO-GNSs) as all-in-one nanotheranostic agents for the first time, which was used for accurate antibacterial applications. The anti-STR-CO-GNSs showed excellent photothermal conversion efficiency (31.97%) and were responsive to near-infrared (NIR) and pH dual stimuli-triggered antibiotic release, resulting in outstanding chemo-photothermal effects against LM. In vitro chemo-photothermal effect of anti-STR-CO-GNSs with laser irradiation caused a greater antibacterial effect (1.37%), resulting in more rapid killing of LM and prevention of LM regrowth. Most importantly, the mice receiving the anti-STR-CO-GNSs with laser irradiation specifically at the sites of LM infections healed almost completely, leaving only scars on the surface of the skin and resulting in superior inhibitory effects from combined chemo-PTT. Overall, our findings suggest that chemo-PTT using smart biocompatible anti-STR-CO-GNSs is a favorable potential alternative to combat the increasing threat of drug-resistant LM, which opens a new door for clinical anti-infection therapy in the future.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Fazlurrahman Khan
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Durai Rajan Dhatchayeny
- Department of Information and Communications Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ara Joe
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Hyo-Won Han
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Sun-Hwa Seo
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea; New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea.
| |
Collapse
|
42
|
Sun Y, Xue Z, Huang T, Che X, Wu G. Lipid metabolism in ferroptosis and ferroptosis-based cancer therapy. Front Oncol 2022; 12:941618. [PMID: 35978815 PMCID: PMC9376317 DOI: 10.3389/fonc.2022.941618] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Ferroptosis refers to iron-dependent, specialized, and regulated-necrosis mediated by lipid peroxidation, which is closely related to a variety of diseases, including cancer. Tumor cells undergo extensive changes in lipid metabolism, including lipid peroxidation and ferroptosis. Changes in lipid metabolism are critical for the regulation of ferroptosis and thus have important roles in cancer therapy. In this review, we introduce the characteristics of ferroptosis and briefly analyze the links between several metabolic mechanisms and ferroptosis. The effects of lipid peroxides, several signaling pathways, and the molecules and pathways involved in lipid metabolism on ferroptosis were extensively analyzed. Finally, our review highlights some ferroptosis-based treatments and presents some methods and examples of how these treatments can be combined with other treatments.
Collapse
Affiliation(s)
- Yonghao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zuoxing Xue
- Department of Urology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Tao Huang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Guangzhen Wu, ; Xiangyu Che, ; Tao Huang,
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Guangzhen Wu, ; Xiangyu Che, ; Tao Huang,
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Guangzhen Wu, ; Xiangyu Che, ; Tao Huang,
| |
Collapse
|
43
|
Fang D, Liu Z, Jin H, Huang X, Shi Y, Ben S. Manganese-Based Prussian Blue Nanocatalysts Suppress Non-Small Cell Lung Cancer Growth and Metastasis via Photothermal and Chemodynamic Therapy. Front Bioeng Biotechnol 2022; 10:939158. [PMID: 35814022 PMCID: PMC9257087 DOI: 10.3389/fbioe.2022.939158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022] Open
Abstract
Based on the safety of prussian blue (PB) in biomedical application, we prepared manganese-based prussian blue (MnPB) nanocatalysts to achieve enhanced photothermal therapy and chemodynamic therapy. And we conducted a series of experiments to explore the therapeutic effects of MnPB nanoparticles (NPs) on non-small cell lung cancer (NSCLC) in vivo and in vitro. For in vitro experiments, the MnPB NPs suppressed growth of A549 cells by reactive oxygen species upregulation and near-infrared irradiation. Moreover, the MnPB NPs could inhibit lung cancer metastasis through downregulating the matrix metalloproteinase (MMP)-2 and MMP-9 expression in A549 cells. And for in vivo experiments, the MnPB NPs inhibited the growth of xenografted tumor effectively and were biologically safe. Meanwhile, Mn2+ as a T1-weighted agent could realize magnetic resonance imaging-guided diagnosis and treatment. To sum up, the results in this study clearly demonstrated that the MnPB NPs had remarkable effects for inhibiting the growth and metastasis of NSCLC and might serve as a promising multifunctional nanoplatform for NSCLC treatment.
Collapse
Affiliation(s)
- Danruo Fang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hansong Jin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiulin Huang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxin Shi
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suqin Ben
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Suqin Ben,
| |
Collapse
|
44
|
Chen L, Huang J, Li X, Huang M, Zeng S, Zheng J, Peng S, Li S. Progress of Nanomaterials in Photodynamic Therapy Against Tumor. Front Bioeng Biotechnol 2022; 10:920162. [PMID: 35711646 PMCID: PMC9194820 DOI: 10.3389/fbioe.2022.920162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is an advanced therapeutic strategy with light-triggered, minimally invasive, high spatiotemporal selective and low systemic toxicity properties, which has been widely used in the clinical treatment of many solid tumors in recent years. Any strategies that improve the three elements of PDT (light, oxygen, and photosensitizers) can improve the efficacy of PDT. However, traditional PDT is confronted some challenges of poor solubility of photosensitizers and tumor suppressive microenvironment. To overcome the related obstacles of PDT, various strategies have been investigated in terms of improving photosensitizers (PSs) delivery, penetration of excitation light sources, and hypoxic tumor microenvironment. In addition, compared with a single treatment mode, the synergistic treatment of multiple treatment modalities such as photothermal therapy, chemotherapy, and radiation therapy can improve the efficacy of PDT. This review summarizes recent advances in nanomaterials, including metal nanoparticles, liposomes, hydrogels and polymers, to enhance the efficiency of PDT against malignant tumor.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahui Huang
- Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, China
| | - Xiaotong Li
- Guangzhou Medical University, Guangzhou, China
| | | | | | - Jiayi Zheng
- Guangzhou Medical University, Guangzhou, China
| | - Shuyi Peng
- Guangzhou Medical University, Guangzhou, China
| | - Shiying Li
- Key Laboratory of Molecular Target and Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shiying Li,
| |
Collapse
|
45
|
Dong J, Ma K, Pei Y, Pei Z. Core–shell metal–organic frameworks with pH/GSH dual-responsiveness for combined chemo–chemodynamic therapy. Chem Commun (Camb) 2022; 58:12341-12344. [DOI: 10.1039/d2cc04218e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel core-shell metal-organic framework (MOFs), Cu-MOF@SMON/DOX-HA, was fabricated for chemo-chemodynamic combined therapy to achieve efficient drug targeting delivery and induce cells ferroptosis.
Collapse
Affiliation(s)
- Junliang Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Ke Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|