1
|
Patra S, Kar S, Gopal Bag B. First Vesicular Self-Assembly of an Apocarotenoid Bixin in Aqueous Liquids and Its Antibacterial Activity. Chem Asian J 2024; 19:e202400361. [PMID: 39331573 DOI: 10.1002/asia.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Bixin 1 is the major constituent of the reddish carotenoids present in the seed-coat of Bixa orellana. The use of the extract of the seed-coat of Bixa orellana in food, cosmetics and garments is well known. The nano-sized long 24 C chain molecule has nine conjugated double bonds having extended conjugation with the '-COOH' and '-COOMe' groups present at the two ends of the molecule. Herein, we report the first self-assembly of bixin in several aqueous liquids. The molecule undergoes spontaneous self-assembly in several liquids yielding vesicular self-assembly. Characterizations of the self-assemblies of bixin were carried out by various microscopic techniques, X-ray diffraction and FTIR studies. The critical vesicular concentrations (CVCs) of the compound carried out in DMSO-water in three different solvent ratios as 2: 1 (v/v), 1: 1 (v/v) and 1: 4 (v/v) were determined to be 100 μM, 90 μM and 60 μM respectively indicating lower CVC values at higher proportion of water. Utilization of the vesicular self-assemblies of bixin have been demonstrated in the entrapment and release of fluorophores including the anticancer drugs doxorubicin and curcumin. Self-assembled bixin and curcumin loaded self-assembled bixin showed significant antibacterial activity with both Gram positive as well as Gram negative bacteria.
Collapse
Affiliation(s)
- Soumen Patra
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sukhendu Kar
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Braja Gopal Bag
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
2
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
3
|
Zhong J, He G, Ma X, Ye J, Tao ZY, Li Z, Zhang F, Feng P, Wang Y, Lan X, Su YX. Triterpene-Based Prodrug for Self-Boosted Drug Release and Targeted Oral Squamous Cell Carcinoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41960-41972. [PMID: 39082953 DOI: 10.1021/acsami.4c10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Chemotherapy is one of the main treatments for oral squamous cell carcinoma (OSCC), especially as a combined modality approach with and after surgery or radiotherapy. Limited therapeutic efficiency and serious side effects greatly restrict the clinical performance of chemotherapeutic drugs. The development of smart nanomedicines has provided new research directions, to some extent. However, the involvement of complex carrier compositions inevitably brings biosafety concerns and greatly limits the "bench-to-bed" translation of most nanomedicines reported. In this study, a carrier-free self-assembled prodrug was fabricated by two triterpenes (glycyrrhetinic acid, GA and ginsenoside Rh2, Rh2) isolated from medicinal plants, licorice, and ginseng, for the targeted and highly effective treatment of OSCC. Reactive oxygen species (ROS) self-supplied molecule TK-GA2 was synthesized with ROS-responsive thioketal linker and prodrug was prepared by a rapid-solvent-exchange method with TK-GA2 and Rh2. After administration, oral tumor cells transported large amounts of prodrugs with glucose ligands competitively. Endogenous ROS in oral tumor cells then promoted the release of GA and Rh2. GA further evoked the generation of a large number of ROS to help self-boosted drug release and increase oxidative stress, synergistically causing tumor cell apoptosis with Rh2. Overall, this carrier-free triterpene-based prodrug might provide a preeminent opinion on the design of effective chemotherapeutics with low systemic toxicity against OSCC.
Collapse
Affiliation(s)
- Jie Zhong
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Guantong He
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xu Ma
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhuo-Ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongxian Li
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuxue Zhang
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Peijian Feng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinmiao Lan
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Baek S, Heo JM, Bae K, Khazi MI, Lee S, Kim K, Kim JM. Co-assembly-Directed Enhancement of the Thermochromic Reversibility and Solvatochromic Selectivity of Supramolecular Polydiacetylene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39133524 DOI: 10.1021/acs.langmuir.4c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The construction of functional materials via the co-assembly of multimolecular systems has recently emerged as a fascinating topic. The co-assembled multicomponent could promote the evolution of supramolecular assemblies into a high-order nanoarchitecture with improved functional properties. We report the successful preparation of a dual-functional polydiacetylene (MCPDA-Tz-CA) having thermochromic and solvatochromic properties via facile co-assembly of MCDA-Tz and cyanuric acid (MCDA-Tz-CA) followed by ultraviolet-induced polymerization. Molecular packing patterns from powder X-ray diffraction and density functional theory calculations of molecular self-assembly processes confirm highly ordered co-assembled lamellar structures. MCPDA-Tz-CA showed excellent reversible thermochromism properties when the temperature was increased from 30 to 150 °C with a reversible blue-to-red color transition that could be detected by the naked eye. Also, MCPDA-Tz-CA displayed selective blue-to-red solvatochromism against dimethylformamide and dimethyl sulfoxide. Detailed investigations revealed that the enhanced thermochromic reversibility and solvatochromic selectivity could be attributed to the hydrogen-bonding interactions and the formation of a network structure in the MCDA-Tz/cyanuric acid co-assembly. Our research opens a promising route for improving the performance of functional materials via noncovalent multicomponent arrangements at the molecular level.
Collapse
Affiliation(s)
- Seungjoo Baek
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jung-Moo Heo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Kwangmin Bae
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Mohammed Iqbal Khazi
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Seongjae Lee
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Kyeounghak Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
5
|
Bas TG. Bioactivity and Bioavailability of Carotenoids Applied in Human Health: Technological Advances and Innovation. Int J Mol Sci 2024; 25:7603. [PMID: 39062844 PMCID: PMC11277215 DOI: 10.3390/ijms25147603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This article presents a groundbreaking perspective on carotenoids, focusing on their innovative applications and transformative potential in human health and medicine. Research jointly delves deeper into the bioactivity and bioavailability of carotenoids, revealing therapeutic uses and technological advances that have the potential to revolutionize medical treatments. We explore pioneering therapeutic applications in which carotenoids are used to treat chronic diseases such as cancer, cardiovascular disease, and age-related macular degeneration, offering novel protective mechanisms and innovative therapeutic benefits. Our study also shows cutting-edge technological innovations in carotenoid extraction and bioavailability, including the development of supramolecular carriers and advanced nanotechnology, which dramatically improve the absorption and efficacy of these compounds. These technological advances not only ensure consistent quality but also tailor carotenoid therapies to each patient's health needs, paving the way for personalized medicine. By integrating the latest scientific discoveries and innovative techniques, this research provides a prospective perspective on the clinical applications of carotenoids, establishing a new benchmark for future studies in this field. Our findings underscore the importance of optimizing carotenoid extraction, administration, bioactivity, and bioavailability methods to develop more effective, targeted, and personalized treatments, thus offering visionary insight into their potential in modern medical practices.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Catolica del Norte, Coquimbo 1780000, Chile
| |
Collapse
|
6
|
Zhong Q, Zeng J, Jia X. Self-Assembled Aggregated Structures of Natural Products for Oral Drug Delivery. Int J Nanomedicine 2024; 19:5931-5949. [PMID: 38887690 PMCID: PMC11182358 DOI: 10.2147/ijn.s467354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
The self-assembling aggregated structures of natural products have gained significant interest due to their simple synthesis, lack of carrier-related toxicity, and excellent biological efficacy. However, the mechanisms of their assembly and their ability to traverse the gastrointestinal (GI) barrier remain unclear. This review summarizes various intermolecular non-covalent interactions and aggregated structures, drawing on research indexed in Web of Science from 2010 to 2024. Cheminformatics analysis of the self-assembly behaviors of natural small molecules and their supramolecular aggregates reveals assembly-favorable conditions, aiding drug formulation. Additionally, the review explores the self-assembly properties of macromolecules like polysaccharides, proteins, and exosomes, highlighting their role in drug delivery. Strategies to overcome gastrointestinal barriers and enhance drug bioavailability are also discussed. This work underscores the potential of natural products in oral drug delivery and offers insights for designing more effective drug delivery systems.
Collapse
Affiliation(s)
- Qiyuan Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
7
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
8
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
9
|
Zhao B, Zhang Y, Fan Z, Lin Z, Wang L, Li H, Zhen H, Wu C. Study on the Nanoaggregate Formation Mechanism and Antipyretic Effect of Maxing Shigan Decoction. ACS OMEGA 2024; 9:19311-19319. [PMID: 38708238 PMCID: PMC11064183 DOI: 10.1021/acsomega.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
Traditional Chinese medicine (TCM) formula decoctions easily form nanoaggregates due to self-assembly during the decoction process. However, research on nanoaggregates in TCM is still in its infancy with limited systematic studies. Maxing Shigan Decoction (MXSGT), a TCM formula, has been commonly used for the treatment of fever for thousands of years in China. This study used MXSGT as an example to investigate the antipyretic effects of MXSGT nanoaggregates (MXSGT-NAs) in its decoction, shedding light on the compatibility mechanisms of Chinese medicine. MXSGT-NAs were isolated by using high-speed centrifugation and dialysis techniques. The morphology, particle size distribution, and electrical potential of MXSGT-NAs were characterized. High-performance liquid chromatography (HPLC) was used to detect ephedrine and pseudoephedrine in MXSGT-NAs. The self-assembly mechanism of MXSGT-NAs was investigated by deconstructing the prescription. In pharmacodynamic experiments, a rat fever model was established through the subcutaneous injection of dry yeast to investigate the antipyretic effects of MXSGT-NAs. The results showed the presence of regularly shaped spherical nanoaggregates in MXSGT. It contains carbon, oxygen (O), sulfur (S), sodium, aluminum (Al), calcium (Ca), iron, magnesium, bismuth (Bi), etc. MXSGT-NAs exerted substantial antipyretic effects on febrile rats. Furthermore, we found micrometer-sized particles composed of Ca, O, S, potassium, and Bi in Shi gao decoctions. This study is the first to provide evidence for the self-assembling property of Shi gao, elucidate the scientific connotation of dispensing Shi gao in MXSGT, and provide a novel perspective for the study of TCM decoctions.
Collapse
Affiliation(s)
- Bingbing Zhao
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yanxu Zhang
- Henan-Macquarie
University Joint Centre for Biomedical Innovation, School of Life
Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Zhengmin Fan
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ziwei Lin
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lihong Wang
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongteng Li
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haojie Zhen
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chunli Wu
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- School
of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
10
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
11
|
Dong Z, Ma F, Wei X, Zhang L, Ding Y, Shi L, Chen C, Ma Y, Ma Y. Injectable, thermo-sensitive and self-adhesive supramolecular hydrogels built from binary herbal small molecules towards reusable antibacterial coatings. RSC Adv 2024; 14:2027-2035. [PMID: 38196913 PMCID: PMC10774861 DOI: 10.1039/d3ra07882e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Herbal hydrogels as a new class of sustainable functional materials have attracted extensive attention. However, the development of herbal hydrogels is significantly hindered due to their poor hydrogel performances and the lack of universal preparation methods. In this study, four herbal hydrogels composed of phytochemical polyphenols and stevioside compounds are prepared through a facile heating-cooling process, where multiple hydrogen bonding interactions between two monomers provide the main driving force for gelation. These herbal hydrogels exhibit thermo-sensitivity and good reversibility (25-90 °C), robust adhesion behaviours on hydrophilic and hydrophobic surfaces (maximum adhesion strength of 591.7 kPa), and outstanding antibacterial properties (100% bacteriostatic ratio). Profiting from these intriguing characteristics, they are demonstrated to show great potential as natural antibacterial coatings by depositing thin hydrogel layers onto diverse substrates. More importantly, the hydrogel coatings could be easily recycled by thermal regelation and reused at least 5 times. This work proposes a simple and universal strategy for preparing functional hydrogels based on binary herbal small molecules, which also sheds light on the development of reusable hydrogel coatings.
Collapse
Affiliation(s)
- Zhibin Dong
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Fengjun Ma
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Xiaocen Wei
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Linlin Zhang
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Yongling Ding
- School of Transportation Civil Engineering, Shandong Jiaotong University Jinan 250357 P.R. China
| | - Lei Shi
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Chen Chen
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Yuxia Ma
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Yuning Ma
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| |
Collapse
|
12
|
Das P, N M, Singh N, Datta P. Supramolecular Nanostructures for the Delivery of Peptides in Cancer Therapy. J Pharmacol Exp Ther 2024; 388:67-80. [PMID: 37827700 DOI: 10.1124/jpet.123.001698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Supramolecular nanostructured based delivery systems are emerging as a meaningful approach in the treatment of cancer, offering controlled drug release and improved therapeutic efficacy. The self-assembled structures can be small molecules, polymers, peptides, or proteins, which can be used and functionalized to achieve tailored release and target specific cells, tissues, or organs. These structures can improve the solubility and stability of drugs having low aqueous solubility by encapsulating and protecting them from degradation. Alongside, peptides as natural biomolecules have gained increasing attention as potential candidates in cancer treatment because of their biocompatibility, low cytotoxicity, and high specificity toward tumor cells. The amino acid sequences in peptide molecules are tunable, efficiently controlling the morphology of peptide-based self-assembled nanosystems and offering flexibility to form supramolecular nanostructures (SNs). It is evident from the current literature that the supramolecular nanostructures based delivery of peptide for cancer treatment hold great promise for future cancer therapy, offering potential strategies for personalized medicine with improved patient outcomes. SIGNIFICANCE STATEMENT: This review focuses on fundamentals and various drug delivery mechanisms based on SNs. Different SN approaches and recent literature reviews on peptide delivery are also presented to the readers.
Collapse
Affiliation(s)
- Priyanka Das
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Manasa N
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Nidhi Singh
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Pallab Datta
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
13
|
Zhang J, Zou L, Li Q, Wu H, Sun Z, Xu X, Shi L, Sun Z, Ma G. Carbon Dots Derived from Traditional Chinese Medicines with Bioactivities: A Rising Star in Clinical Treatment. ACS APPLIED BIO MATERIALS 2023; 6:3984-4001. [PMID: 37707491 DOI: 10.1021/acsabm.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In the field of carbon nanomaterials, carbon dots (CDs) have become a preferable choice in biomedical applications. Based on the concept of green chemistry, CDs derived from traditional Chinese medicines (TCMs) have attracted extensive attention, including TCM charcoal drugs, TCM extracts, and TCM small molecules. The design and preparation of CDs from TCMs (TCMs-CDs) can improve the inherent characteristics of TCMs, such as solubility, particle size distribution, and so on. Compared with other precursor materials, TCMs-CDs have outstanding intrinsic bioactivities and potential pharmacological effects. However, the research of TCMs-CDs in biomedicine is not comprehensive, and their mechanisms have not been understood deeply either. In this review, we will provide concise insights into the recent development of TCMs-CDs, with a major focus on their preparation, formation, precursors, and bioactivities. Then we will discuss the perfect transformation from TCMs to TCMs-CDs. Finally, we discuss the opportunities and challenges for the application of TCMs-CDs in clinical treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhonghao Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Leiling Shi
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Aloisio L, Moschetta M, Boschi A, Fleitas AG, Zangoli M, Venturino I, Vurro V, Magni A, Mazzaro R, Morandi V, Candini A, D'Andrea C, Paternò GM, Gazzano M, Lanzani G, Di Maria F. Insight on the Intracellular Supramolecular Assembly of DTTO: A Peculiar Example of Cell-Driven Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302756. [PMID: 37364565 DOI: 10.1002/adma.202302756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Indexed: 06/28/2023]
Abstract
The assembly of supramolecular structures within living systems is an innovative approach for introducing artificial constructs and developing biomaterials capable of influencing and/or regulating the biological responses of living organisms. By integrating chemical, photophysical, morphological, and structural characterizations, it is shown that the cell-driven assembly of 2,6-diphenyl-3,5-dimethyl-dithieno[3,2-b:2',3'-d]thiophene-4,4-dioxide (DTTO) molecules into fibers results in the formation of a "biologically assisted" polymorphic form, hence the term bio-polymorph. Indeed, X-ray diffraction reveals that cell-grown DTTO fibers present a unique molecular packing leading to specific morphological, optical, and electrical properties. Monitoring the process of fiber formation in cells with time-resolved photoluminescence, it is established that cellular machinery is necessary for fiber production and a non-classical nucleation mechanism for their growth is postulated. These biomaterials may have disruptive applications in the stimulation and sense of living cells, but more crucially, the study of their genesis and properties broadens the understanding of life beyond the native components of cells.
Collapse
Affiliation(s)
- Ludovico Aloisio
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Matteo Moschetta
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Alex Boschi
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, Pisa, 56127, Italy
| | - Ariel García Fleitas
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Mattia Zangoli
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Ilaria Venturino
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Vito Vurro
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Arianna Magni
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Raffaello Mazzaro
- Dipartimento di Fisica e Astronomia "Augusto Righi", Università di Bologna, Via C. Berti Pichat 6/2, Bologna, 40127, Italy
| | - Vittorio Morandi
- Institute for Microelectronics and Microsystems (IMM), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, 40129, Italy
| | - Andrea Candini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Cosimo D'Andrea
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Giuseppe Maria Paternò
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| | - Guglielmo Lanzani
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Francesca Di Maria
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, Bologna, I-40129, Italy
| |
Collapse
|
15
|
Mei Y, Yang Y, Gao R, Xu M, Li Q, Wan Z, Yang X. Development of antibacterial nanocomposites by combination of bacterial cellulose/chitin nanofibrils and all-natural bioactive nanoparticles. Curr Res Food Sci 2023; 7:100584. [PMID: 37711906 PMCID: PMC10497795 DOI: 10.1016/j.crfs.2023.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
In this study, a functional composite membrane was facilely fabricated by using a dual nanofibril system of bacterial cellulose (BC) and chitin (CH) nanofibrils as bio-based building blocks. The BC-CH membranes with enhanced antibacterial activity were constructed by incorporation of all-natural bioactive nanoparticles (GBTPs), which were formed by spontaneous molecular interactions of three naturally occurring active small molecules, i.e., glycyrrhizic acid (GA), berberine (BR), and tannic acid (TA). The microstructure, physicochemical properties, and antibacterial behaviors of the resulting BC-CH-GBTPs nanocomposites were then characterized. The obtained results showed that the GBTPs with a diameter of around 50-100 nm and membrane matrix were bound by non-covalent interactions, and the addition of GBTPs did not compromise the structural integrity and thermal stability of the composites, which retained good mechanical properties. Furthermore, the addition of GBTPs led to a rougher surface structure and increased the water contact angle of the membrane surfaces from 48.13° to 59.80°. The antimicrobial tests indicate that the BC-CH-GBTPs nanocomposites exhibited significant inhibitory effects against Escherichia coli and Staphylococcus aureus, showing a satisfactory antibacterial ability. These results suggest that the BC-CH-GBTPs nanocomposites based on all-natural, plant-based building blocks, hold promising potentials as active packaging materials for sustainable applications.
Collapse
Affiliation(s)
- Yuqi Mei
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Ruohang Gao
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, the Netherlands
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
16
|
Demicheli C, Vallejos VMR, Lanza JS, Ramos GS, Do Prado BR, Pomel S, Loiseau PM, Frézard F. Supramolecular assemblies from antimony(V) complexes for the treatment of leishmaniasis. Biophys Rev 2023; 15:751-765. [PMID: 37681109 PMCID: PMC10480371 DOI: 10.1007/s12551-023-01073-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 09/09/2023] Open
Abstract
The pentavalent meglumine antimoniate (MA) is still a first-line drug in the treatment of leishmaniasis in several countries. As an attempt to elucidate its mechanism of action and develop new antimonial drugs with improved therapeutic profile, Sb(V) complexes with different ligands, including β-cyclodextrin (β-CD), nucleosides and non-ionic surfactants, have been studied. Interestingly, Sb(V) oxide, MA, its complex with β-CD, Sb(V)-guanosine complex and amphiphilic Sb(V) complexes with N-alkyl-N-methylglucamide, have shown marked tendency to self-assemble in aqueous solutions, forming nanoaggregates, hydrogel or micelle-like nanoparticles. Surprisingly, the resulting assemblies presented in most cases slow dissociation kinetics upon dilution and a strong influence of pH, which impacted on their pharmacokinetic and therapeutic properties against leishmaniasis. To explain this unique property, we raised the hypothesis that multiple pnictogen bonds could contribute to the formation of these assemblies and their kinetic of dissociation. The present article reviews our current knowledge on the structural organization and physicochemical characteristics of Sb-based supramolecular assemblies, as well as their pharmacological properties and potential for treatment of leishmaniasis. This review supports the feasibility of the rational design of new Sb(V) complexes with supramolecular assemblies for the safe and effective treatment of leishmaniasis.
Collapse
Affiliation(s)
- Cynthia Demicheli
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | | | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | - Bruno R. Do Prado
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | - Sébastien Pomel
- Faculty of Pharmacy, Antiparasite Chemotherapy (PARACHEM), UMR 8076 CNRS BioCIS, University Paris-Saclay, 91400 Orsay, France
| | - Philippe M. Loiseau
- Faculty of Pharmacy, Antiparasite Chemotherapy (PARACHEM), UMR 8076 CNRS BioCIS, University Paris-Saclay, 91400 Orsay, France
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| |
Collapse
|
17
|
Fu S, Yang X. Recent advances in natural small molecules as drug delivery systems. J Mater Chem B 2023; 11:4584-4599. [PMID: 37084077 DOI: 10.1039/d3tb00070b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Drug delivery systems (DDSs) are a multidisciplinary approach toward the effective delivery of drugs to their target sites. Natural small molecule (NSM) compounds with anticancer activity, self-assembly and co-assembly functions show great potential for application as novel DDSs in the biomedical field. NSMs are widely sourced, have many modification sites, and readily form hydrogen bonds, π-π interactions, van der Waals interactions, and other non-covalent bonds in solvents, resulting in ordered structures. Moreover, their good biocompatibility and bioactivity allow compositions based on these compounds to be used in life science applications such as tissue engineering, drug delivery and cell imaging, showing the potential medical value of NSMs as DDSs. In this review, we summarise the role, assembly principles and applications of natural products such as triterpenoids, diterpenoids, sterols, alkaloids and polysaccharides in the construction of small molecule systems, which are expected to provide an important reference for the development of more active natural nanomaterials and the study of single or multi-component interactions.
Collapse
Affiliation(s)
- Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, No. 188 Jihuayuan South Road, Yubei District, Chongqing, 401135, China
| |
Collapse
|
18
|
Liu S, Liu H, Zhang L, Ma C, Abd El-Aty AM. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:5203-5219. [PMID: 36476115 DOI: 10.1080/10408398.2022.2153238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Edible pentacyclic triterpenes (PTs) are a group of nutraceutical ingredients commonly distributed in human diets. Existing evidence has proven that they have various biological functions, including anticancer, antioxidant, anti-inflammatory and hypoglycemic activities, making them as "functional factor" for a long time. However, their properties of strong hydrophobicity, poor permeability, poor absorption, and rapid metabolism result in low oral bioavailability, which dramatically hinders their efficacy for use. Recently, free PTs have successively been found to self-assemble or co-assemble into self-contained nanostructures with enhanced water dispersibility and oral bioavailability, which seems to be an efficient processing method for increased oral efficacy. Of particular interest, formulating them into nanostructures can also be introduced as functional delivery carriers for bioactive compounds or drugs with various advantages, such as improved stability, controlled release, enhanced oral bioavailability, synergistic bioactivity, and targeted delivery. This review systematically summarized the chemical structures, plant sources, bioactivities, absorption, metabolism, and oral bioavailability of PTs. Notably, we emphasized their self-assembly properties and emerging role as functional delivery carriers for nutrients, suggesting that PT nanostructures are not only efficient oral forms when introduced into foods but also functional delivery materials for nutrients to expand their commercial food applications.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Han Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lulu Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|