1
|
Rahaman J, Mukherjee D. Insulin for oral bone tissue engineering: a review on innovations in targeted insulin-loaded nanocarrier scaffold. J Drug Target 2024:1-31. [PMID: 39707830 DOI: 10.1080/1061186x.2024.2445737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The occurrence of oral bone tissue degeneration and bone defects by osteoporosis, tooth extraction, obesity, trauma, periodontitis, and congenital defects are major challenges for clinicians. Traditional bone regeneration methods, although exhibiting efficacy to a certain degree, often come with limitations such as donor site morbidity, limitation of special shape, inflammation, and resorption of the implanted bone. The treatment oriented with biomimetic bone materials has achieved significant attention recently. In the oral bone tissue engineering arena, insulin has gained considerable attention among all the known biomaterials for osteogenesis and angiogenesis. Insulin is a biologically active endocrine peptide hormone primarily known for regulating glucose metabolism. It also exhibits osteogenic and angiogenic properties by interacting with insulin receptors on osteoblasts. Insulin influences bone remodeling both directly and indirectly. It acts directly through the PI3K/Akt and MAPK signaling pathways and indirectly by modulating the RANK/RANKL/OPG pathway, which helps reduce bone resorption. The current review reports the role of insulin in bone remodeling and bone tissue regeneration in the oral cavity in the form of scaffolds and nanomaterials. Different insulin delivery systems, utilizing nanomaterials and scaffolds functionalized with polymeric biomaterials such as chitosan, gelatin, PLGA, and hydroxyapatite have been explored for oral bone tissue regeneration. These systems offer controlled release and enhanced bioavailability, addressing the challenges associated with insulin's short plasma half-life. The current review put forward a theoretical basis for future research in insulin delivery in the form of scaffolds and composite materials for oral bone tissue regeneration.
Collapse
Affiliation(s)
- Jiyaur Rahaman
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur-425405, Maharashtra, India
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta road, Vile Parle (West), Mumbai-400056, Maharashtra, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies, Shirpur-425405, Maharashtra, India
| |
Collapse
|
2
|
Silverberg A, Cardoso LM, de Carvalho ABG, Dos Reis-Prado AH, Fenno JC, Dal-Fabbro R, Bottino MC. Metronidazole-laden silk fibroin methacrylated scaffolds for managing periapical lesions. Odontology 2024:10.1007/s10266-024-01023-y. [PMID: 39523223 DOI: 10.1007/s10266-024-01023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to develop and characterize silk fibroin methacrylated/SilkMA electrospun scaffolds associated with metronidazole/MET to control infection in root-end resected periapical lesions while supporting bone regeneration. SilkMA-based formulations (10% w/v) incorporating MET (0-control; 5, 15, or 30% w/w) were electrospun into fibrous scaffolds and photocrosslinked. Scaffolds' morphology, chemical composition, swelling/degradation profiles, mechanical properties, cytocompatibility with alveolar bone-derived mesenchymal stem cells/aBMSCs and stem cells from apical papilla/SCAPs, anti-inflammatory potential, and antibacterial efficacy (direct contact assay against Aggregatibacter actinomycetemcomitans/Aa and Fusobacterium nucleatum/Fn; Aa biofilm model) were assessed. Statistical analysis was conducted using a significance level of 5%. Morphological analysis revealed that MET content influenced fiber diameters post-crosslinking, while the chemical composition analysis confirmed MET integration within the scaffolds. 30%MET-laden scaffolds demonstrated reduced swelling capacity compared to SilkMA/control scaffolds, while complete degradation was observed after 42 days for the formulated scaffolds. Mechanical testing indicated enhanced stiffness and tensile strength in 30%MET-laden scaffolds compared to SilkMA/control (p < 0.05). Cytocompatibility evaluations showed non-cytotoxic effects across all formulations for aBMSCs and SCAPs. Anti-inflammatory assays demonstrated decreased pro-inflammatory cytokine interleukin-6 synthesis by aBMSCs treated with SilkMA + MET30% and Escherichia coli LPS, comparable to negative control (p > 0.05). Antibacterial efficacy assays revealed significant inhibition of Aa and Fn, with 30%MET-laden scaffolds demonstrating biofilm inhibition against Aa (p < 0.05). These findings underscore the potential of SilkMA scaffolds laden with MET as a promising strategy for managing periapical lesions, offering enhanced structural support, antimicrobial properties, and biocompatibility crucial for effective tissue regeneration and infection control after endodontic surgery.
Collapse
Affiliation(s)
- Ashley Silverberg
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, 1011 N. University Avenue, Room 2303, Ann Arbor, MI, 48109, USA
| | - Lais M Cardoso
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, 1011 N. University Avenue, Room 2303, Ann Arbor, MI, 48109, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), Araraquara School of Dentistry, 1680 Humaita Street, Araraquara, SP, 14801-903, Brazil
| | - Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, 1011 N. University Avenue, Room 2303, Ann Arbor, MI, 48109, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), São Jose Dos Campos School of Dentistry, 777 Eng. Francisco Jose Longo Avenue, São Jose Dos Campos, SP, 12245-000, Brazil
| | - Alexandre H Dos Reis-Prado
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, 1011 N. University Avenue, Room 2303, Ann Arbor, MI, 48109, USA
- Department of Restorative Dentistry, Minas Gerais Federal University (UFMG), School of Dentistry, 688 Prof. Moacir Gomes de Freitas Street, Belo Horizonte, MG, 31270-901, Brazil
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, School of Dentistry, 1011 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, 1011 N. University Avenue, Room 2303, Ann Arbor, MI, 48109, USA
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, School of Dentistry, 1011 N. University Avenue, Room 2303, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Nasra S, Pramanik S, Oza V, Kansara K, Kumar A. Advancements in wound management: integrating nanotechnology and smart materials for enhanced therapeutic interventions. DISCOVER NANO 2024; 19:159. [PMID: 39354172 PMCID: PMC11445205 DOI: 10.1186/s11671-024-04116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Wound management spans various techniques and materials tailored to address acute and chronic non-healing wounds, with the primary objective of achieving successful wound closure. Chronic wounds pose additional challenges, often necessitating dressings to prepare the wound bed for subsequent surgical procedures like skin grafting. Ideal dressing materials should not only expedite wound healing but also mitigate protein, electrolyte, and fluid loss while minimizing pain and infection risk. Nanotechnology has emerged as a transformative tool in wound care, revolutionizing the landscape of biomedical dressings. Its application offers remarkable efficacy in accelerating wound healing and combating bacterial infections, representing a significant advancement in wound care practices. Integration of nanotechnology into dressings has resulted in enhanced properties, including improved mechanical strength and controlled drug release, facilitating tailored therapeutic interventions. This review article comprehensively explores recent breakthroughs in wound healing therapies, with a focus on innovative medical dressings such as nano-enzymes. Additionally, the utilization of smart materials, like hydrogels and electroactive polymers, in wound dressings offers dynamic functionalities to promote tissue regeneration. Emerging concepts such as bio-fabrication, microfluidic systems, bio-responsive scaffolds, and personalized therapeutics show promise in expediting wound healing and minimizing scarring. Through an in-depth exploration of these advancements, this review aims to catalyze a paradigm shift in wound care strategies, promoting a patient-centric approach to therapeutic interventions.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjali Pramanik
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Vidhi Oza
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Krupa Kansara
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts a Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
4
|
Brebu M, Pamfil D, Stoica I, Aflori M, Voicu G, Stoleru E. Photo-crosslinked chitosan-gelatin xerogel-like coating onto "cold" plasma functionalized poly(lactic acid) film as cell culture support. Carbohydr Polym 2024; 339:122288. [PMID: 38823936 DOI: 10.1016/j.carbpol.2024.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
This paper reports on biofunctionalisation of a poly(lactic acid) (PLA) film by surface activation through cold plasma treatment followed by coating with a chitosan-gelatin xerogel. The UV cross-linking of the xerogel precursor was simultaneously performed with the fixation onto the PLA support. This has a strong effect on surface properties, in terms of wettability, surface free energy, morphology and micromechanical features. The hydrophilic - hydrophobic character of the surface, determined by contact angle measurements, was tuned along the process, passing from moderate hydrophobic PLA to enhanced hydrophilic plasma activated surface, which favors coating adhesion, then to moderate hydrophobic chitosan-gelatin coating. The coating has a Lewis amphoteric surface, with a porous xerogel-like morphology, as revealed by scanning electron microscopy images. By riboflavin mediated UV cross-linking the chitosan-gelatin coating becomes high adhesive and with a more pronounced plasticity, as shown by AFM force-distance spectroscopy. Thus prepared surface-coated PLA supports were successfully tested for growth of dermal fibroblasts, which are known for their induction potential of chondrogenic cells, which is very important in cartilage tissue engineering.
Collapse
Affiliation(s)
- Mihai Brebu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Daniela Pamfil
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Iuliana Stoica
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Magdalena Aflori
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical BioNanoTechnologies" Laboratory (BioNanoMed) Institute of Cellular Biology and Pathology, "Nicolae Simionescu" 8, BP Hasdeu Street, 050568 Bucharest, Romania
| | - Elena Stoleru
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania.
| |
Collapse
|
5
|
Hayashi K, Shimabukuro M, Zhang C, Taleb Alashkar AN, Kishida R, Tsuchiya A, Ishikawa K. Silver phosphate-modified carbonate apatite honeycomb scaffolds for anti-infective and pigmentation-free bone tissue engineering. Mater Today Bio 2024; 27:101161. [PMID: 39155941 PMCID: PMC11326936 DOI: 10.1016/j.mtbio.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Bone regeneration using synthetic materials has a high rate of surgical site infection, resulting in severe pain for patients and often requiring revision surgery. We propose Ag3PO4-based surface modification and structural control of scaffolds for preventing infections in bone regeneration. We demonstrated the differences in toxicity and antibacterial activity between in vitro and in vivo studies and determined the optimal silver content in terms of overall anti-infection effects, bone regeneration, toxicity, and pigmentation. A honeycomb structure comprising osteoconductive and resorbable carbonate apatite (CAp) was used as the base scaffold. CAp in the scaffold surface was partially replaced with different concentrations of Ag3PO4 via controlled dissolution-precipitation reactions in an AgNO3 solution. Both bone regeneration and infection prevention were achieved at 860-2300 ppm of silver. Despite the absence of Ag3PO4, honeycomb scaffolds were less susceptible to infection, even under conditions where infection occurs in clinically used three-dimensional porous scaffolds. Regardless of in vitro cytotoxicity at >5200 ppm of silver, increasing the silver content to 21,000 ppm did not adversely affect in vivo bone formation and scaffold resorption or cause acute systemic toxicity. Rather, bone formation was enhanced with 5200 ppm of silver. However, pigmentation was observed at that concentration. Hence, we concluded that the optimal silver concentration range is 860-2300 ppm for anti-infective and pigmentation-free bone regeneration. Bone regeneration was achieved via surface modification, resulting in the rapid release of silver ions immediately after implantation, followed by gradual release over several months. The scaffold structure may also aid in preventing bacterial growth within the scaffolds.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Cheng Zhang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ahmad Nazir Taleb Alashkar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
6
|
Liu Z, Zheng Y, Lin L, Liu X, Qiang N. Fabrication of Magnetic Poly(L-lactide) (PLLA)/Fe 3O 4 Composite Electrospun Fibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3773. [PMID: 39124436 PMCID: PMC11312587 DOI: 10.3390/ma17153773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Electrospinning technology is widely used for preparing biological tissue engineering scaffolds because of its advantages of simple preparation, accurate process parameters, and easy control. Poly(L-lactide) (PLLA) is regarded as a promising biomass-based polymer for use in electrospinning. The incorporation of Fe3O4 nanoparticles (NPs) could improve the osteogenic differentiation and proliferation of cells in the presence or absence of a static magnetic field (SMF). In this work, these two materials were blended together to obtain electrospun samples with better dispersibility and improved magnetic properties. First, composite PLLA and Fe3O4 NP fibers were prepared by means of electrospinning. The influence of electrospinning conditions on the morphology of the composite fibers was then discussed. Changes in magnetic properties and thermal stability resulting from the use of different PLLA/Fe3O4 mass ratios were also considered. Next, the morphology, crystal state, thermodynamic properties, and magnetic properties of the electrospun samples were determined using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and vibration sample magnetization (VSM). The results showed that the fibers prepared using PLLA with Mn = 170,000 exhibited good morphology when electrospun at 12 KV. The magnetic properties of PLLA/Fe3O4 composite electrospun fibers increased with the NP content, with the exception of thermal stability. The results of the present study may help to promote the further development of PLLA/Fe3O4 composite materials in the biomedical field.
Collapse
Affiliation(s)
- Zhu Liu
- School of Materals Science and Engineering, Tianjing University, Tianjin 300350, China; (Z.L.); (Y.Z.); (L.L.)
- Ningbo Sidson Vibration Reduction System Co., Ltd., Ningbo 315700, China
- Guangdong Provincial Education Department Development Team of Advanced Material Coating and Surface Interface Technology, Huizhou Engineering Technology Research Center of Advanced Coating Materials, Dayawan Chemical Engineering Research Institute, Huizhou University, Huizhou 516007, China
- School of Dayawan Chemical and New Materials, Huizhou University, Huizhou 516007, China
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Yufu Zheng
- School of Materals Science and Engineering, Tianjing University, Tianjin 300350, China; (Z.L.); (Y.Z.); (L.L.)
- Ningbo Sidson Vibration Reduction System Co., Ltd., Ningbo 315700, China
| | - Lizhong Lin
- School of Materals Science and Engineering, Tianjing University, Tianjin 300350, China; (Z.L.); (Y.Z.); (L.L.)
- Ningbo Sidson Vibration Reduction System Co., Ltd., Ningbo 315700, China
| | - Xiaofei Liu
- School of Materals Science and Engineering, Tianjing University, Tianjin 300350, China; (Z.L.); (Y.Z.); (L.L.)
- Ningbo Sidson Vibration Reduction System Co., Ltd., Ningbo 315700, China
| | - Na Qiang
- School of Materals Science and Engineering, Tianjing University, Tianjin 300350, China; (Z.L.); (Y.Z.); (L.L.)
- Guangdong Provincial Education Department Development Team of Advanced Material Coating and Surface Interface Technology, Huizhou Engineering Technology Research Center of Advanced Coating Materials, Dayawan Chemical Engineering Research Institute, Huizhou University, Huizhou 516007, China
- School of Dayawan Chemical and New Materials, Huizhou University, Huizhou 516007, China
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| |
Collapse
|
7
|
Li Y, Chen Z, Xia T, Wan H, Lu Y, Ding C, Zhang F, Shen Z, Pan S. The effect of bioactivity of airway epithelial cells using methacrylated gelatin scaffold loaded with exosomes derived from bone marrow mesenchymal stem cells. J Biomed Mater Res A 2024; 112:1025-1040. [PMID: 38363033 DOI: 10.1002/jbm.a.37687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The current evidence provides support for the involvement of bone marrow mesenchymal stem cells (BMSCs) in the regulation of airway epithelial cells. However, a comprehensive understanding of the underlying biological mechanisms remains elusive. This study aimed to isolate and characterize BMSC-derived exosomes (BMSC-Exos) and epithelial cells (ECs) through primary culture. Subsequently, the impact of BMSC-Exos on ECs was assessed in vitro, and sequencing analysis was conducted to identify potential molecular mechanisms involved in these interactions. Finally, the efficacy of BMSC-Exos was evaluated in animal models in vivo. In this study, primary BMSCs and ECs were efficiently isolated and cultured, and high-purity Exos were obtained. Upon uptake of BMSC-Exos, ECs exhibited enhanced proliferation (p < .05), while migration showed no difference (p > .05). Notably, invasion demonstrated significant difference (p < .05). Sequencing analysis suggested that miR-21-5p may be the key molecule responsible for the effects of BMSC-Exos, potentially mediated through the MAPK or PI3k-Akt signaling pathway. The in vivo experiments showed that the presence of methacrylated gelatin (GelMA) loaded with BMSC-Exos in composite scaffold significantly enhanced epithelial crawling in the patches in comparison to the pure decellularized group. In conclusion, this scheme provides a solid theoretical foundation and novel insights for the research and clinical application of tracheal replacement in the field of tissue engineering.
Collapse
Affiliation(s)
- Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhike Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Lu
- Department of Cardiothoracic Surgery, Clinical College of Yangzhou University, Yangzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, China
| | - Ziqing Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Gene Pharma Co., Ltd, Suzhou, China
| |
Collapse
|
8
|
Tu AB, Krishna G, Smith KR, Lewis JS. Harnessing Immunomodulatory Polymers for Treatment of Autoimmunity, Allergy, and Transplant Rejection. Annu Rev Biomed Eng 2024; 26:415-440. [PMID: 38959388 DOI: 10.1146/annurev-bioeng-110122-014306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Autoimmunity, allergy, and transplant rejection are a collection of chronic diseases that are currently incurable, drastically decrease patient quality of life, and consume considerable health care resources. Underlying each of these diseases is a dysregulated immune system that results in the mounting of an inflammatory response against self or an innocuous antigen. As a consequence, afflicted patients are required to adhere to lifelong regimens of multiple immunomodulatory drugs to control disease and reclaim agency. Unfortunately, current immunomodulatory drugs are associated with a myriad of side effects and adverse events, such as increased risk of cancer and increased risk of serious infection, which negatively impacts patient adherence rates and quality of life. The field of immunoengineering is a new discipline that aims to harness endogenous biological pathways to thwart disease and minimize side effects using novel biomaterial-based strategies. We highlight and discuss polymeric micro/nanoparticles with inherent immunomodulatory properties that are currently under investigation in biomaterial-based therapies for treatment of autoimmunity, allergy, and transplant rejection.
Collapse
Affiliation(s)
- Allen B Tu
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Gaddam Krishna
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Kevin R Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, California, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
9
|
Feng M, Ahmed KH, Punjabi N, Inman JC. A Contemporary Review of Trachea, Nose, and Ear Cartilage Bioengineering and Additive Manufacturing. Biomimetics (Basel) 2024; 9:327. [PMID: 38921207 PMCID: PMC11202182 DOI: 10.3390/biomimetics9060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
The complex structure, chemical composition, and biomechanical properties of craniofacial cartilaginous structures make them challenging to reconstruct. Autologous grafts have limited tissue availability and can cause significant donor-site morbidity, homologous grafts often require immunosuppression, and alloplastic grafts may have high rates of infection or displacement. Furthermore, all these grafting techniques require a high level of surgical skill to ensure that the reconstruction matches the original structure. Current research indicates that additive manufacturing shows promise in overcoming these limitations. Autologous stem cells have been developed into cartilage when exposed to the appropriate growth factors and culture conditions, such as mechanical stress and oxygen deprivation. Additive manufacturing allows for increased precision when engineering scaffolds for stem cell cultures. Fine control over the porosity and structure of a material ensures adequate cell adhesion and fit between the graft and the defect. Several recent tissue engineering studies have focused on the trachea, nose, and ear, as these structures are often damaged by congenital conditions, trauma, and malignancy. This article reviews the limitations of current reconstructive techniques and the new developments in additive manufacturing for tracheal, nasal, and auricular cartilages.
Collapse
Affiliation(s)
- Max Feng
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Khwaja Hamzah Ahmed
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Nihal Punjabi
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Jared C. Inman
- Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
10
|
Reda AT, Park JY, Park YT. Zinc Oxide-Based Nanomaterials for Microbiostatic Activities: A Review. J Funct Biomater 2024; 15:103. [PMID: 38667560 PMCID: PMC11050959 DOI: 10.3390/jfb15040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The world is fighting infectious diseases. Therefore, effective antimicrobials are required to prevent the spread of microbes and protect human health. Zinc oxide (ZnO) nano-materials are known for their antimicrobial activities. Because of their distinctive physical and chemical characteristics, they can be used in medical and environmental applications. ZnO-based composites are among the leading sources of antimicrobial research. They are effective at killing (microbicidal) and inhibiting the growth (microbiostatic) of numerous microorganisms, such as bacteria, viruses, and fungi. Although most studies have focused on the microbicidal features, there is a lack of reviews on their microbiostatic effects. This review provides a detailed overview of available reports on the microbiostatic activities of ZnO-based nano-materials against different microorganisms. Additionally, the factors that affect the efficacy of these materials, their time course, and a comparison of the available antimicrobials are highlighted in this review. The basic properties of ZnO, challenges of working with microorganisms, and working mechanisms of microbiostatic activities are also examined. This review underscores the importance of further research to better understand ZnO-based nano-materials for controlling microbial growth.
Collapse
Affiliation(s)
| | | | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea; (A.T.R.)
| |
Collapse
|
11
|
Kwiatos N, Atila D, Puchalski M, Kumaravel V, Steinbüchel A. Cyanophycin modifications for applications in tissue scaffolding. Appl Microbiol Biotechnol 2024; 108:264. [PMID: 38489042 PMCID: PMC10943155 DOI: 10.1007/s00253-024-13088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Cyanophycin (CGP) is a polypeptide consisting of amino acids-aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations. KEY POINTS: • Cyanophycin was crosslinked by 5 different methods • Crosslinked cyanophycin is non-cytotoxic to L929 cells • Crosslinked cyanophycin is a promising new material for scaffolding purposes.
Collapse
Affiliation(s)
- Natalia Kwiatos
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland.
| | - Deniz Atila
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland
| | - Michał Puchalski
- Institute of Material Science of Textile and Polymer Composites, Lodz University of Technology, Żeromskiego 116, Łódź, Poland
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland.
| | - Alexander Steinbüchel
- International Centre for Research on Innovative Biobased Materials-International Research Agenda (ICRI-BioM), Lodz University of Technology, Stefanowskiego 2/22, Łódź, Poland
| |
Collapse
|
12
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
13
|
Zheng YY, Hu ZN, Zhou GH. A review: analysis of technical challenges in cultured meat production and its commercialization. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38384235 DOI: 10.1080/10408398.2024.2315447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The cultured meat technology has developed rapidly in recent years, but there are still many technical challenges that hinder the large-scale production and commercialization of cultured meat. Firstly, it is necessary to lay the foundation for cultured meat production by obtaining seed cells and maintaining stable cell functions. Next, technologies such as bioreactors are used to expand the scale of cell culture, and three-dimensional culture technologies such as scaffold culture or 3D printing are used to construct the three-dimensional structure of cultured meat. At the same time, it can reduce production costs by developing serum-free medium suitable for cultured meat. Finally, the edible quality of cultured meat is improved by evaluating food safety and sensory flavor, and combining ethical and consumer acceptability issues. Therefore, this review fully demonstrates the current development status and existing technical challenges of the cultured meat production technology with regard to the key points described above, in order to provide research ideas for the industrial production of cultured meat.
Collapse
Affiliation(s)
- Yan-Yan Zheng
- College of Food Science and Technology, Nanjing Agricultural University, National Center of Meat Quality and Safety Nanjing, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Nanjing, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ze-Nan Hu
- College of Food Science and Technology, Nanjing Agricultural University, National Center of Meat Quality and Safety Nanjing, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Nanjing, P.R. China
| | - Guang-Hong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, National Center of Meat Quality and Safety Nanjing, MOST, Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Nanjing, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Mammana M, Bonis A, Verzeletti V, Dell'Amore A, Rea F. Tracheal Tissue Engineering: Principles and State of the Art. Bioengineering (Basel) 2024; 11:198. [PMID: 38391684 PMCID: PMC10886658 DOI: 10.3390/bioengineering11020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Patients affected by long-segment tracheal defects or stenoses represent an unsolved surgical issue, since they cannot be treated with the conventional surgery of tracheal resection and consequent anastomosis. Hence, different strategies for tracheal replacement have been proposed (synthetic materials, aortic allografts, transplantation, autologous tissue composites, and tissue engineering), each with advantages and drawbacks. Tracheal tissue engineering, on the other hand, aims at recreating a fully functional tracheal substitute, without the need for the patient to receive lifelong immunosuppression or endotracheal stents. Tissue engineering approaches involve the use of a scaffold, stem cells, and humoral signals. This paper reviews the main aspects of tracheal TE, starting from the choice of the scaffold to the type of stem cells that can be used to seed the scaffold, the methods for their culture and expansion, the issue of graft revascularization at the moment of in vivo implantation, and experimental models of tracheal research. Moreover, a critical insight on the state of the art of tracheal tissue engineering is also presented.
Collapse
Affiliation(s)
- Marco Mammana
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| | - Alessandro Bonis
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| | - Vincenzo Verzeletti
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| | - Andrea Dell'Amore
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| |
Collapse
|
15
|
Kurian AG, Singh RK, Sagar V, Lee JH, Kim HW. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. NANO-MICRO LETTERS 2024; 16:110. [PMID: 38321242 PMCID: PMC10847086 DOI: 10.1007/s40820-024-01323-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
Inflammatory skin disorders can cause chronic scarring and functional impairments, posing a significant burden on patients and the healthcare system. Conventional therapies, such as corticosteroids and nonsteroidal anti-inflammatory drugs, are limited in efficacy and associated with adverse effects. Recently, nanozyme (NZ)-based hydrogels have shown great promise in addressing these challenges. NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels. The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation. This review highlights the current state of the art in NZ-engineered hydrogels (NZ@hydrogels) for anti-inflammatory and skin regeneration applications. It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness. Additionally, the challenges and future directions in this ground, particularly their clinical translation, are addressed. The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels, offering new possibilities for targeted and personalized skin-care therapies.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Varsha Sagar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
16
|
Gholipour Choubar E, Nasirtabrizi MH, Salimi F, Sadeghianmaryan A. Improving bone regeneration with electrospun antibacterial polycaprolactone/collagen/polyvinyl pyrrolidone scaffolds coated with hydroxyapatite and cephalexin delivery capability. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:127-145. [PMID: 37837633 DOI: 10.1080/09205063.2023.2270216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Electrospinning is a facile popular method for the creation of nano-micro fibers tissue engineering scaffolds. Here, polycaprolactone (PCL)/collagen (COL): polyvinyl pyrrolidone (PVP) scaffolds (PCL/COL: PVP) were fabricated for bone regeneration. Various concentrations of Cephalexin (CEF) (0.5, 1, 1.5 wt. %) were added to PCL/COL: PVP scaffold to provide an antibacterial scaffold, and different concentrations of hydroxyapatite (HA) (1, 2, 5 wt. %) was electrospray on the surface of the scaffolds. The PCL/COL: PVP scaffold contained 1.5% CEF and coated with 2% HA was introduced as the best sample and in-vitro tests were performed on this scaffold based on the antibacterial and MTT test results. Morphology observations demonstrated a bead-free uniform combined nano-micro fibrous structure. Fourier transform infrared spectroscopy and X-ray diffraction tests confirmed the successful formation of the scaffolds and the wettability, swelling, and biodegradability evaluations of the scaffolds confirmed the hydrophilicity nature of the scaffold with high swelling properties and suitable biodegradation ratio. The scaffolds supported cell adhesion and represented high alkaline phosphatase activity. CEF loading led to antibacterial properties of the designed scaffolds and showed a suitable sustained release rate within 48 h. It seems that the electrospun PCL/COL: PVP scaffold loaded with 1.5% CEF and coated with 2% HA can be useful for bone regeneration applications that need further evaluation in the near future.
Collapse
Affiliation(s)
| | | | - Farshid Salimi
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Ali Sadeghianmaryan
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
17
|
Pescosolido F, Vesco S, Trovalusci F, Carotenuto F, Di Nardo P. Antimicrobial Surface for Devices Used in Stem Culture Manipulation and In Vitro Biofabrication of Tissues. Methods Mol Biol 2024; 2835:307-315. [PMID: 39105926 DOI: 10.1007/978-1-0716-3995-5_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Cell therapy and engineered tissue creation based on the use of human stem cells involves cell isolation, expansion, and cell growth and differentiation on the scaffolds. Microbial infections dramatically can affect stem cell survival and increase the risk of implant failure. To prevent these events, it is necessary to develop new materials with antibacterial properties for coating scaffold surfaces as well as medical devices, and all other surfaces at high risk of contamination. This chapter describes strategies for obtaining antibacterial blends for coating inert surfaces (polymethylmethacrylate, polycarbonate, Carbon Fiber Reinforced Polymer (CFRP)). In particular, the procedures for preparing antibacterial blends by mixing polymer resins with two types of antibacterial additives and depositing these blends on inert surfaces are described.
Collapse
Affiliation(s)
- Francesca Pescosolido
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Vesco
- Department of Enterprise Engineering "Mario Lucertini", University of Rome "Tor Vergata", Rome, Italy
| | - Federica Trovalusci
- Department of Enterprise Engineering "Mario Lucertini", University of Rome "Tor Vergata", Rome, Italy.
| | - Felicia Carotenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
- Interdepartmental Research Centre for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Di Nardo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
18
|
Chen X, Yang L, Wu Y, Wang L, Li H. Advances in the Application of Photothermal Composite Scaffolds for Osteosarcoma Ablation and Bone Regeneration. ACS OMEGA 2023; 8:46362-46375. [PMID: 38107965 PMCID: PMC10720008 DOI: 10.1021/acsomega.3c06944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Photothermal therapy is a promising approach to cancer treatment. The energy generated by the photothermal effect can effectively inhibit the growth of cancer cells without harming normal tissues, while the right amount of heat can also promote cell proliferation and accelerate tissue regeneration. Various nanomaterials have recently been used as photothermal agents (PTAs). The photothermal composite scaffolds can be obtained by introducing PTAs into bone tissue engineering (BTE) scaffolds, which produces a photothermal effect that can be used to ablate bone cancer with subsequent further use of the scaffold as a support to repair the bone defects created by ablation of osteosarcoma. Osteosarcoma is the most common among primary bone malignancies. However, a review of the efficacy of different types of photothermal composite scaffolds in osteosarcoma is lacking. This article first introduces the common PTAs, BTE materials, and preparation methods and then systematically summarizes the development of photothermal composite scaffolds. It would provide a useful reference for the combination of tumor therapy and tissue engineering in bone tumor-related diseases and complex diseases. It will also be valuable for advancing the clinical applications of photothermal composite scaffolds.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department
of Pediatric Internal Medicine, Haining
Central Hospital, Jiaxing 314400, China
| | - Liqun Yang
- Department
of Nursing, Tongxiang Traditional Chinese
Medicine Hospital, Jiaxing 314500, China
| | - Yanfang Wu
- Department
of Hematology, The First People’s
Hospital of Fuyang Hangzhou, Hangzhou 311400, China
| | - Lina Wang
- Department
of Internal Medicine, The Second People’s
Hospital of Luqiao Taizhou, Taizhou 318058, China
| | - Huafeng Li
- Department
of General Surgery, Haining Central Hospital, Jiaxing 314400, China
| |
Collapse
|
19
|
Baghersad S, Madruga LYC, Martins AF, Popat KC, Kipper MJ. Expanding the Scope of an Amphoteric Condensed Tannin, Tanfloc, for Antibacterial Coatings. J Funct Biomater 2023; 14:554. [PMID: 37998123 PMCID: PMC10672460 DOI: 10.3390/jfb14110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Bacterial infections are a common mode of failure for medical implants. This study aims to develop antibacterial polyelectrolyte multilayer (PEM) coatings that contain a plant-derived condensed tannin polymer (Tanfloc, TAN) with inherent antimicrobial activity. Tanfloc is amphoteric, and herein we show that it can be used as either a polyanion or a polycation in PEMs, thereby expanding the possibility of its use in PEM coatings. PEMs are ordinarily formed using a polycation and a polyanion, in which the functional (ionic) groups of the two polymers are complexed to each other. However, using the amphoteric polymer Tanfloc with weakly basic amine and weakly acidic catechol and pyrogallol groups enables PEM formation using only one or the other of its functional groups, leaving the other functional group available to impart antibacterial activity. This work demonstrates Tanfloc-containing PEMs using multiple counter-polyelectrolytes including three polyanionic glycosaminoglycans of varying charge density, and the polycations N,N,N-trimethyl chitosan and polyethyleneimine. The layer-by-layer (LbL) assembly of PEMs was monitored using in situ Fourier-transform surface plasmon resonance (FT-SPR), confirming a stable LbL assembly. X-ray photoelectron spectroscopy (XPS) was used to evaluate surface chemistry, and atomic force microscopy (AFM) was used to determine the surface roughness. The LDH release levels from cells cultured on the Tanfloc-containing PEMs were not statistically different from those on the negative control (p > 0.05), confirming their non-cytotoxicity, while exhibiting remarkable antiadhesive and bactericidal properties against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), respectively. The antibacterial effects were attributed to electrostatic interactions and Tanfloc's polyphenolic nature. This work underscores the potential of Tanfloc as a versatile biomaterial for combating infections on surfaces.
Collapse
Affiliation(s)
- Somayeh Baghersad
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA;
| | - Liszt Y. C. Madruga
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80526, USA; (L.Y.C.M.); (A.F.M.)
| | - Alessandro F. Martins
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80526, USA; (L.Y.C.M.); (A.F.M.)
- Department of Chemistry & Biotechnology, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Ketul C. Popat
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA;
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80526, USA
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80526, USA
| | - Matt J. Kipper
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA;
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80526, USA; (L.Y.C.M.); (A.F.M.)
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80526, USA
| |
Collapse
|
20
|
Sessa L, Diana R, Gentile FS, Mazzaglia F, Panunzi B. AIEgen orthopalladated hybrid polymers for efficient inactivation of the total coliforms in urban wastewater. Sci Rep 2023; 13:15790. [PMID: 37737240 PMCID: PMC10516893 DOI: 10.1038/s41598-023-41315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Monitorable AIE polymers with a bioactive pattern are employed in advanced biomedical applications such as functional coatings, theranostic probes, and implants. After the global COVID-19 pandemic, interest in developing surfaces with superior antimicrobial, antiproliferative, and antiviral activities dramatically increased. Many formulations for biocide surfaces are based on hybrid organic/inorganic materials. Palladium (II) complexes display relevant activity against common bacteria, even higher when compared to their uncoordinated ligands. This article reports the design and synthesis of two series of orthopalladated polymers obtained by grafting a cyclopalladated fragment on two different O, N chelating Schiff base polymers. Different grafting percentages were examined and compared for each organic polymer. The fluorescence emission in the solid state was explored on organic matrixes and grafted polymers. DFT analysis provided a rationale for the role of the coordination core. The antibacterial response of the two series of hybrid polymers was tested against the total coliform group of untreated urban wastewater, revealing excellent inactivation ability.
Collapse
Affiliation(s)
- Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy.
| | - Francesco Silvio Gentile
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126, Napoli, Italy
| | - Fabio Mazzaglia
- C.R.A. S.R.L., Calle Giovanni Legrenzi, 2, 30171, Venice, VE, Italy
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy
| |
Collapse
|
21
|
Wu H, Chen J, Zhao P, Liu M, Xie F, Ma X. Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration. MEMBRANES 2023; 13:802. [PMID: 37755224 PMCID: PMC10535523 DOI: 10.3390/membranes13090802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing and real-time monitoring technologies have enabled the creation of tissue-like membranes and the provision of an appropriate microenvironment. Using tissue engineering methods incorporating 3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor the recovery of the wound process in different aspects, and some may spontaneously give feedback to the wound sites by releasing biological factors. The combination of the detection of smart sensors and individualized membrane design in the healing process shows enormous potential for wound dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials, and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in various fields, including the modeling of disease, organ-on-a-chip, and drug development.
Collapse
Affiliation(s)
| | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (F.X.); (X.M.)
| | | | | | | |
Collapse
|
22
|
Nagendla NK, Muralidharan K, Raju M, Mohan H, Selvakumar P, Bhandi MM, Mudiam MKR, Ramalingam V. Comprehensive metabolomic analysis of Mangifera indica leaves using UPLC-ESI-Q-TOF-MS E for cell differentiation: An in vitro and in vivo study. Food Res Int 2023; 171:112993. [PMID: 37330843 DOI: 10.1016/j.foodres.2023.112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/19/2023]
Abstract
The comprehensive metabolic profiling was performed in the leaf extracts of Mangifera indica and assessed for their significant therapeutic application in tissue engineering and regenerative medicine in both in vitro and in vivo studies. About 147 compounds were identified in the ethyl acetate and methanol extracts of M. indica using MS/MS fragmentation analysis and the selected compounds were quantified using LC-QqQ-MS analysis. The in vitro cytotoxic activity showed that the M. indica extracts enhance the proliferation of mouse myoblast cells in concentration-dependent manner. As well, the extracts of M. indica induce the myotube formation by generating oxidative stress in the C2C12 cells was confirmed. The western blot analysis clearly showed that the M. indica induce myogenic differentiation by upregulating the myogenic marker proteins such as PI3K, Akt, mTOR, MyoG, and MyoD. The in vivo studies showed that the extracts expedites the acute wound repair by formation of crust, wound closure and improves the blood perfusion towards the wound area. Together, the leaves of M. indica can be used as excellent therapeutic agent for tissue repair and wound healing applications.
Collapse
Affiliation(s)
- Narendra Kumar Nagendla
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Kathirvel Muralidharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Malothu Raju
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Piramanayagam Selvakumar
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Murali Mohan Bhandi
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohana Krishna Reddy Mudiam
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Vaikundamoorthy Ramalingam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| |
Collapse
|
23
|
Yang S, Jiang W, Ma X, Wang Z, Sah RL, Wang J, Sun Y. Nanoscale Morphologies on the Surface of 3D-Printed Titanium Implants for Improved Osseointegration: A Systematic Review of the Literature. Int J Nanomedicine 2023; 18:4171-4191. [PMID: 37525692 PMCID: PMC10387278 DOI: 10.2147/ijn.s409033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Three-dimensional (3D) printing is serving as the most promising approach to fabricate personalized titanium (Ti) implants for the precise treatment of complex bone defects. However, the bio-inert nature of Ti material limits its capability for rapid osseointegration and thus influences the implant lifetime in vivo. Despite the macroscale porosity for promoting osseointegration, 3D-printed Ti implant surface morphologies at the nanoscale have gained considerable attention for their potential to improve specific outcomes. To evaluate the influence of nanoscale surface morphologies on osseointegration outcomes of 3D-printed Ti implants and discuss the available strategies, we systematically searched evidence according to the PRISMA on PubMed, Embase, Web of Science, and Cochrane (until June 2022). The inclusion criteria were in vivo (animal) studies reporting the osseointegration outcomes of nanoscale morphologies on the surface of 3D-printed Ti implants. The risk of bias (RoB) was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE's) tool. The quality of the studies was evaluated using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. (PROSPERO: CRD42022334222). Out of 119 retrieved articles, 9 studies met the inclusion criteria. The evidence suggests that irregular nano-texture, nanodots and nanotubes with a diameter of 40-105nm on the surface of porous/solid 3D-printed Ti implants result in better osseointegration and vertical bone ingrowth compared to the untreated/polished ones by significantly promoting cell adhesion, matrix mineralization, and osteogenic differentiation through increasing integrin expression. The RoB was low in 41.1% of items, unclear in 53.3%, and high in 5.6%. The quality of the studies achieved a mean score of 17.67. Our study demonstrates that nanostructures with specific controlled properties on the surface of 3D-printed Ti implants improve their osseointegration. However, given the small number of studies, the variability in experimental designs, and lack of reporting across studies, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Shiyan Yang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Weibo Jiang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Xiao Ma
- Department of Orthopedics, the China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, Jilin, 130000, People's Republic of China
| | - Robert L Sah
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, 92037, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California-San Diego, La Jolla, CA, 92037, USA
| | - Jincheng Wang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Yang Sun
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| |
Collapse
|
24
|
Caracciolo PC, Abraham GA, Battaglia ES, Bongiovanni Abel S. Recent Progress and Trends in the Development of Electrospun and 3D Printed Polymeric-Based Materials to Overcome Antimicrobial Resistance (AMR). Pharmaceutics 2023; 15:1964. [PMID: 37514150 PMCID: PMC10385409 DOI: 10.3390/pharmaceutics15071964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) developed by microorganisms is considered one of the most critical public health issues worldwide. This problem is affecting the lives of millions of people and needs to be addressed promptly. Mainly, antibiotics are the substances that contribute to AMR in various strains of bacteria and other microorganisms, leading to infectious diseases that cannot be effectively treated. To avoid the use of antibiotics and similar drugs, several approaches have gained attention in the fields of materials science and engineering as well as pharmaceutics over the past five years. Our focus lies on the design and manufacture of polymeric-based materials capable of incorporating antimicrobial agents excluding the aforementioned substances. In this sense, two of the emerging techniques for materials fabrication, namely, electrospinning and 3D printing, have gained significant attraction. In this article, we provide a summary of the most important findings that contribute to the development of antimicrobial systems using these technologies to incorporate various types of nanomaterials, organic molecules, or natural compounds with the required property. Furthermore, we discuss and consider the challenges that lie ahead in this research field for the coming years.
Collapse
Affiliation(s)
- Pablo C Caracciolo
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Gustavo A Abraham
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Ernesto S Battaglia
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Silvestre Bongiovanni Abel
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| |
Collapse
|
25
|
Jiang Z, Zheng Z, Yu S, Gao Y, Ma J, Huang L, Yang L. Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing. Pharmaceutics 2023; 15:1829. [PMID: 37514015 PMCID: PMC10384736 DOI: 10.3390/pharmaceutics15071829] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofiber scaffolds have emerged as a revolutionary drug delivery platform for promoting wound healing, due to their unique properties, including high surface area, interconnected porosity, excellent breathability, and moisture absorption, as well as their spatial structure which mimics the extracellular matrix. However, the use of nanofibers to achieve controlled drug loading and release still presents many challenges, with ongoing research still exploring how to load drugs onto nanofiber scaffolds without loss of activity and how to control their release in a specific spatiotemporal manner. This comprehensive study systematically reviews the applications and recent advances related to drug-laden nanofiber scaffolds for skin-wound management. First, we introduce commonly used methods for nanofiber preparation, including electrostatic spinning, sol-gel, molecular self-assembly, thermally induced phase separation, and 3D-printing techniques. Next, we summarize the polymers used in the preparation of nanofibers and drug delivery methods utilizing nanofiber scaffolds. We then review the application of drug-loaded nanofiber scaffolds for wound healing, considering the different stages of wound healing in which the drug acts. Finally, we briefly describe stimulus-responsive drug delivery schemes for nanofiber scaffolds, as well as other exciting drug delivery systems.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
26
|
Demir D, Goksen G, Ceylan S, Trif M, Rusu AV. Optimized Peppermint Essential Oil Microcapsules Loaded into Gelatin-Based Cryogels with Enhanced Antimicrobial Activity. Polymers (Basel) 2023; 15:2782. [PMID: 37447427 DOI: 10.3390/polym15132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, chitosan (Chi) was used to microencapsulate peppermint essential oil (PEO). A novel gelatin-based cryogel loaded with PEO microcapsules was further developed and characterized for potential applications. Four different cryogel systems were designed, and the morphological, molecular, physical and antibacterial properties were investigated. Additionally, the antimicrobial properties of PEO, alone and microcapsulated, incorporated into the cryogel network were evaluated. The observed gel structure of cryogels exhibited a highly porous morphology in the microcapsules. The highest values of the equilibrium swelling ratio were acquired for the GelCryo-ChiCap and GelCryo-PEO@ChiCap samples. The contact angle GelCryo-PEO@ChiCap sample was lower than the control (GelCryo) due to the water repelling of the essential oil. It has been found that the incorporation of encapsulated PEO into the cryogels would be more advantageous compared to its direct addition. Moreover, GelCryo-PEO@ChiCap cryogels showed the strongest antibacterial activities, especially against Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria). The system that was developed showed promising results, indicating an improved antibacterial efficacy and enhanced structural properties due to the presence of microcapsules. These findings suggest that the system may be an appropriate candidate for various applications, including, but not limited to, drug release, tissue engineering, and food packaging. Finally, this system demonstrates a strategy to stabilize the releasing of the volatile compounds for creating successful results.
Collapse
Affiliation(s)
- Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Türkiye
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany
| | - Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania
| |
Collapse
|
27
|
Sui X, Zhang H, Yao J, Yang L, Zhang X, Li L, Wang J, Li M, Liu Z. 3D printing of 'green' thermo-sensitive chitosan-hydroxyapatite bone scaffold based on lyophilized platelet-rich fibrin. Biomed Mater 2023; 18. [PMID: 36758238 DOI: 10.1088/1748-605x/acbad5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
The critical bone defect is still an urgent problem in the field of bone repair. Here, we reported a new type of chitosan (CS)-hydroxyapatite (HAP) scaffolds based on lyophilized platelet-rich fibrin (L-PRF) for releasing abundant growth factors to realize their respective functions. It also has strong mechanical properties to maintain the stability of the bone repair environment. However, acid-soluble CS hydrogels often contain toxic and organic solvents. Moreover, chemical agents may be used for cross-linking for better mechanical properties, further increasing cytotoxicity. In this study, we used an alkali/urea dissolution system to dissolve CS, which improved its mechanical properties and made it thermo-sensitive. Finally, the L-PRF-CS-HAP (P-C-H) composite scaffold was constructed by extrusion-based printing. The results showed that the printing ink had desirable printability and temperature sensitivity. The compressive properties of the scaffolds exhibited a trend of decline with L-PRF content increasing, but all of them could meet the strength of cancellous bone. Meanwhile, the scaffolds had high hydrophilicity, porosity, and could be degraded stablyin vitro. The antibacterial properties of the scaffolds were also verified, greatly reducing the risk of infection during bone repair. It was also demonstrated that the release time of growth factor from L-PRF was significantly prolonged, and growth factor could still be detected after 35 d of sustained release. The capacity of cells to proliferate increased as the number of L-PRF components increased, indicating that L-PRF still exhibited biological activity after 3D printing.
Collapse
Affiliation(s)
- Xin Sui
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Huili Zhang
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Jingjing Yao
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Liuqing Yang
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Xiao Zhang
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Lingfeng Li
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Jue Wang
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Meihui Li
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, 130021, People's Republic of China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, People's Republic of China
| |
Collapse
|
28
|
Agrawal M, Yadav A, Takkar S, Kulshreshtha R, Nandan B, Srivastava RK. Dual-functionalized Pickering HIPE templated poly(ɛ-caprolactone) scaffold for maxillofacial implants. Int J Pharm 2023; 633:122611. [PMID: 36646256 DOI: 10.1016/j.ijpharm.2023.122611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
High internal phase emulsion (HIPE) templated poly (ɛ-caprolactone) (PCL) scaffolds have gained widespread attention for large-sized bone defects due to its tuneable 3D architecture and ease of fabricating crosslinked PCL (cPCL) scaffolds. However, extremely high stabilizer (surfactant or nanoparticle) concentration and negligence of microenvironment for regeneration sites like alveolar bones have restrained industrial acceptance of these scaffolds. Herein, we demonstrated the fabrication of nanocomposite cPCL scaffolds within Pickering HIPE templates stabilized using modified silica nanoparticles (mSiNP) concentrations as low as 0.1 to 1.0 wt%. Using an unconventional approach, the mSiNP Pickering stabilizer was added in dispersed phase, contradicting Bancroft's rule. The colloidal stability was attained due to faster drifting of mSiNP towards the interface when it was dispersed in silicone oil. Scaffolds with tuneable properties were fabricated by controlling the mSiNP concentration and ϕd. Further, cPCL scaffolds were functionalized using clove oil (CO) to improve their efficiency in eradicating S. aureus and E. coli by disrupting their cellular integrity. Additionally, formation of biofilm on the surface of the scaffolds was successfully inhibited by the incorporation of CO. CO-functionalized scaffolds demonstrated excellent cytocompatibility towards MG-63 cells allowing their successful adhesion and proliferation on the surface of the scaffolds.
Collapse
Affiliation(s)
- Meenal Agrawal
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Anilkumar Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Sonam Takkar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India.
| |
Collapse
|
29
|
Lungoci C, Rîmbu CM, Motrescu I, Serbezeanu D, Horhogea CE, Vlad-Bubulac T, Ghițău CS, Puiu I, Neculai-Văleanu AS, Robu T. Evaluation of the Antibacterial Properties of Polyvinyl Alcohol-Pullulan Scaffolds Loaded with Nepeta racemosa Lam. Essential Oil and Perspectives for Possible Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:898. [PMID: 36840247 PMCID: PMC9963579 DOI: 10.3390/plants12040898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Essential oil of Nepeta racemosa Lam. was extracted and characterized to determine its antimicrobial activity and potential use in applications. The essential oil was loaded on polyvinyl alcohol-pullulan films and gels and characterized by optical microscopy, scanning electron microscopy, and UV-Vis spectroscopy before having its antimicrobial capacities assessed. The essential oil extracted from Nepeta racemosa Lam. was characterized using gas chromatography coupled with mass spectroscopy, which indicated that the most abundant component was nepetalic acid (55.5%), followed by eucalyptol (10.7%) and other compounds with concentrations of about 5% or less. The essential oil, as well as the loaded films and gels, exhibited good antibacterial activity on both gram-positive and gram-negative strains, with growth inhibition zones larger in some cases than for gentamicin, indicating excellent premises for using these essential-oil-loaded materials for applications in the food industry or biomedicine.
Collapse
Affiliation(s)
- Constantin Lungoci
- Department of Plant Science, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania
| | - Iuliana Motrescu
- Department of Exact Sciences, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
- Research Institute for Agriculture and Environment, Iasi University of Life Sciences, 9 Sadoveanu Alley, 700490 Iasi, Romania
| | - Diana Serbezeanu
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Cristina Elena Horhogea
- Department of Public Health, Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania
| | - Tăchiță Vlad-Bubulac
- Department of Polycondensation and Thermally Stable Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Carmen Simona Ghițău
- Department of Plant Science, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | - Ioan Puiu
- Department of Plant Science, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| | | | - Teodor Robu
- Department of Plant Science, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania
| |
Collapse
|
30
|
Wei Y, Yun X, Guan Y, Cao S, Li X, Wang Y, Meng H, Liu Y, Quan Q, Wei M. Wnt3a-Modified Nanofiber Scaffolds Facilitate Tendon Healing by Driving Macrophage Polarization during Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9010-9023. [PMID: 36758166 DOI: 10.1021/acsami.2c20386] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inflammation is part of the natural healing response, but persistent inflammatory events tend to contribute to pathology changes of tendon or ligament. Phenotypic switching of macrophages within the inflammatory niche is crucial for tendon healing. One viable strategy to improve the functional and biomechanical properties of ruptured tendons is to modulate the transition from inflammatory to regenerative signals during tendon regeneration at the site of injury. Here, we developed a tendon repair scaffold made of biodegradable polycaprolactone by electrospinning, which was modified to deliver Wnt3a protein and served as an implant to improve tendon healing in a rat model of Achilles tendon defect. During the in vitro study, Wnt3a protein promoted the polarization of M2 macrophages. In the in vivo experiment, Wnt3a scaffold promoted the early recruitment and counting curve of macrophages and increased the proportion of M2 macrophages. Achilles function index and mechanical properties showed that the implantation effect of the Wnt3a group was better than that of the control group. We believe that this type of scaffold can be used to repair tendon defects. This work highlights the beneficial role of local delivery of biological factors in directing inflammatory responses toward regenerative strategies in tendon healing.
Collapse
Affiliation(s)
- Yu Wei
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| | - Xing Yun
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| | - Yanjun Guan
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Shunze Cao
- Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, China
| | - Xiangling Li
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Wang
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Haoye Meng
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yujie Liu
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| | - Qi Quan
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Wei
- Department of Orthopedic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100142, China
| |
Collapse
|
31
|
Wu Z, Jin K, Wang L, Fan Y. Effect of curing time on the mechanical properties of poly(glycerol sebacate). J Appl Polym Sci 2023. [DOI: 10.1002/app.53700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Kaixiang Jin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering Beihang University Beijing China
- School of Engineering Medicine Beihang University Beijing China
| |
Collapse
|
32
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
33
|
Romero HAM, Piñon TP, Sagarnaga D, Rico RD, Rascón AN, Pérez CAM, Piñon DP, Flores de los Ríos JP, Carrillo MS, Chacón-Nava JG. Aligned TiO 2 Scaffolds in the Presence of a Galactopyranose Matrix by Sol-Gel Process. Polymers (Basel) 2023; 15:polym15030478. [PMID: 36771782 PMCID: PMC9921417 DOI: 10.3390/polym15030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
In this work, titanium dioxide scaffolds were synthesized. Titanium isopropoxide (IV) was used as a precursor in its formation, using a polymeric network of galactopyranose as a template. The powder sample obtained was evaluated by scanning tunneling microscopy (STM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, and thermal gravimetric analysis (TGA-DTA). According to the results, it was found that these scaffolds can be successfully synthesized in solution using the sol-gel method. The synthesized scaffolds have diameters from 50 nm with porosity of approximately 0.3-10 nm. Important parameters, such as pH and the concentration of the metallic precursors, were optimized in this solution. The values of maximum average roughness R(max) and roughness value (Ra) were 0.50 and 1.45, respectively. XRD diffraction analysis shows the formation of crystalline phases in the TiO2 scaffold at 700 °C. The use of biological polymers represents an alternative for the synthesis of new materials at low cost, manipulating the conditions in the production processes and making the proposed system more efficient.
Collapse
Affiliation(s)
- Humberto Alejandro Monreal Romero
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
- Correspondence:
| | - Teresa Pérez Piñon
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | - Diana Sagarnaga
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | - Raquel Duarte Rico
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | - Alfredo Nevárez Rascón
- Department of Biomaterials Science and Nanotechnology, University of Chihuahua (UACH), Avenue University, Chihuahua 31000, Mexico
| | | | - Dagoberto Pérez Piñon
- Department of Polymers and Biomaterials, University of Chihuahua (UACH), University Circuit Campus II, Chihuahua 31110, Mexico
| | - Juan Pablo Flores de los Ríos
- Department Metal-Mechanical, National Technological of Mexico-Technological Institute of Chihuahua, Technological Avenue 2909, Chihuahua 31130, Mexico
| | - Mario Sánchez Carrillo
- Department Metal-Mechanical, National Technological of Mexico-Technological Institute of Chihuahua, Technological Avenue 2909, Chihuahua 31130, Mexico
| | - José Guadalupe Chacón-Nava
- Advanced Materials Research Center, S.C. (CIMAV) and National Nanotechnology Laboratory, Avenue M. Cervantes 120, Industrial Complex Chihuahua, Chihuahua 31136, Mexico
| |
Collapse
|
34
|
Serra-Aguado CI, Llorens-Gámez M, Vercet-Llopis P, Martínez-Chicote V, Deb S, Serrano-Aroca Á. Engineering Three-Dimensional-Printed Bioactive Polylactic Acid Alginate Composite Scaffolds with Antibacterial and In Vivo Osteoinductive Capacity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53593-53602. [PMID: 36413629 DOI: 10.1021/acsami.2c19300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although fused deposition modeling (FDM) has made it possible to create reproducible three-dimensional poly(lactic acid) (PLA) scaffolds, their efficacy for tissue engineering applications is limited by their lack of osteoinductive properties and antibacterial functions. Building on the success of the FDM constructs capable of supporting bone regeneration, we report here on the development of PLA scaffolds infused with sodium alginate cross-linked with both calcium and zinc divalent cations. Zn2+ cations were used to confer antibacterial and osteoinductive properties to enhance the performance of nontoxic PLA-alginate. Both the PLA and alginate polymers have been approved by the US Food and Drug Administration. In vivo bone regeneration capacity was demonstrated on a rabbit model by tomography and histological analysis. The scaffolds exhibited antibacterial activity against Gram-positive methicillin-resistant Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa, while the control scaffolds could not resist the two microbial species tested. The scaffolds' physical properties were evaluated by field emission scanning electron microscopy with energy-disperse X-ray spectroscopy, Fourier transform infrared spectroscopy, water absorption, porosity measurements, and compression tests in dry and swollen states at body temperature. Their superior compressive properties, water uptake, and osteoinductive and antibacterial activities thus make them promising candidates for bone tissue regeneration.
Collapse
Affiliation(s)
- Claudio Iván Serra-Aguado
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001Valencia, Spain
- Hospital Veterinario UCV, Departamento Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, 46018Valencia, Spain
| | - Mar Llorens-Gámez
- Escuela Técnica Superior de Arquitectura, Universitat Politècnica de València, Camí de Vera s/n, 46022Valencia, Spain
| | - Pablo Vercet-Llopis
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001Valencia, Spain
- Centre for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Floor 17, Tower Wing, Guy's Hospital, LondonSE1 9RT, U.K
| | - Virginia Martínez-Chicote
- Hospital Veterinario UCV, Departamento Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, 46018Valencia, Spain
| | - Sanjukta Deb
- Centre for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Floor 17, Tower Wing, Guy's Hospital, LondonSE1 9RT, U.K
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001Valencia, Spain
| |
Collapse
|
35
|
Liu Y, Du T, Qiao A, Mu Y, Yang H. Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. J Funct Biomater 2022; 13:jfb13040164. [PMID: 36278633 PMCID: PMC9589944 DOI: 10.3390/jfb13040164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Aike Qiao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: ; Tel.: +86-(010)-6739-6657
| |
Collapse
|