1
|
Osterloh J, Heltmann-Meyer S, Trossmann VT, Cai A, Kulicke Y, Terörde K, Sörgel CA, Lang I, Wajant H, Scheibel T, Fey T, Steiner D, Arkudas A, Horch RE. In Vivo Vascularization of Cell-Supplemented Spider Silk-Based Hydrogels in the Arteriovenous Loop Model. Biomimetics (Basel) 2025; 10:117. [PMID: 39997140 PMCID: PMC11853081 DOI: 10.3390/biomimetics10020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
The goal of reconstructive surgery in treating tissue defects is to achieve a stable reconstructive outcome while minimizing donor site morbidity. As a result, tissue engineering has emerged as a key focus in the pursuit of this goal. One approach is to create a tissue container that can be preconditioned and later transplanted into the defect area. The characteristics of the matrices used in the tissue container are critical to this approach's success. Matrices generated with recombinant, functionalized spider silk (eADF4(C16)-RGD) have been reported to be biocompatible and easy to vascularize. However, the effect of exogenously added proangiogenic cells, such as endothelial cells (T17b), on the vascularization process of matrices generated with this hydrogel in vivo has not been described yet. In this study, we implanted arteriovenous (AV) loop containers filled with a spider silk hydrogel consisting of an eADF4(C16)-RGD matrix and encapsulated, differentiated endothelial T17b cells producing the reporter protein TNFR2-Fc-Flag-GpL. The histological and µCT analyses revealed spontaneous angiogenesis and fibrovascular tissue formation in the container at 2 and 4 weeks post-implantation. The reporter protein was detected after 4 weeks. No severe immune response was observed. Altogether, this study demonstrates that cell-supplemented recombinant spider silk is a highly promising hydrogel to produce matrices for tissue engineering applications.
Collapse
Affiliation(s)
- Justus Osterloh
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Plastic and Hand Surgery, Medical Faculty of the University of Freiburg, University of Freiburg Medical Centre Freiburg, 79106 Freiburg, Germany
| | - Stefanie Heltmann-Meyer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Vanessa T. Trossmann
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
| | - Aijia Cai
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Yvonne Kulicke
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Klara Terörde
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Celena A. Sörgel
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, 97070 Würzburg, Germany
| | - Thomas Scheibel
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center of Material Science and Engineering (BayMat), Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bayreuth Center of Colloids and Interfaces (BZKG), Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bayreuth Center of Molecular Bioscience (BZMB), Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Faculty of Medicine, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen, Germany
| | - Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Hand, Plastic, Reconstructive, and Burn Surgery, BG Trauma Clinic, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
2
|
Koepple C, Pollmann L, Pollmann NS, Schulte M, Kneser U, Gretz N, Schmidt VJ. Microporous Polylactic Acid Scaffolds Enable Fluorescence-Based Perfusion Imaging of Intrinsic In Vivo Vascularization. Int J Mol Sci 2023; 24:14813. [PMID: 37834261 PMCID: PMC10573679 DOI: 10.3390/ijms241914813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
In vivo tissue engineering (TE) techniques like the AV loop model provide an isolated and well-defined microenvironment to study angiogenesis-related cell interactions. Functional visualization of the microvascular network within these artificial tissue constructs is crucial for the fundamental understanding of vessel network formation and to identify the underlying key regulatory mechanisms. To facilitate microvascular tracking advanced fluorescence imaging techniques are required. We studied the suitability of microporous polylactic acid (PLA) scaffolds with known low autofluorescence to form axial vascularized tissue constructs in the AV loop model and to validate these scaffolds for fluorescence-based perfusion imaging. Compared to commonly used collagen elastin (CE) scaffolds, the total number of vessels and cells in PLA scaffolds was lower. In detail, CE-based constructs exhibited significantly higher vessel numbers on day 14 and 28 (d14: 316 ± 53; d28: 610 ± 74) compared to the respective time points in PLA-based constructs (d14: 144 ± 18; d28: 327 ± 34; each p < 0.05). Analogously, cell counts in CE scaffolds were higher compared to corresponding PLA constructs (d14: 7661.25 ± 505.93 and 5804.04 ± 716.59; d28: 11211.75 + 1278.97 and 6045.71 ± 572.72, p < 0.05). CE scaffolds showed significantly higher vessel densities in proximity to the main vessel axis compared to PLA scaffolds (200-400 µm and 600-800 µm on day 14; 400-1000 µm and 1400-1600 µm on day 28). CE scaffolds had significantly higher cell counts on day 14 at distances from 800 to 2000 µm and at distances from 400 to 1600 µm on day 28. While the total number of vessels and cells in PLA scaffolds were lower, both scaffold types were ideally suited for axial vascularization techniques. The intravascular perfusion of PLA-based constructs with fluorescence dye MHI148-PEI demonstrated dye specificity against vascular walls of low- and high-order branches as well as capillaries and facilitated the fluorescence-based visualization of microcirculatory networks. Fluorophore tracking may contribute to the development of automated quantification methods after 3D reconstruction and image segmentation. These technologies may facilitate the characterization of key regulators within specific subdomains and add to the current understanding of vessel formation in axially vascularized tissue constructs.
Collapse
Affiliation(s)
- Christoph Koepple
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (L.P.); (N.S.P.); (M.S.); (U.K.)
| | - Lukas Pollmann
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (L.P.); (N.S.P.); (M.S.); (U.K.)
| | - Nicola Sariye Pollmann
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (L.P.); (N.S.P.); (M.S.); (U.K.)
| | - Matthias Schulte
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (L.P.); (N.S.P.); (M.S.); (U.K.)
| | - Ulrich Kneser
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (L.P.); (N.S.P.); (M.S.); (U.K.)
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany;
| | - Volker J. Schmidt
- Department of Plastic Surgery and Hand Surgery, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland;
| |
Collapse
|
3
|
Liu P, Wang W, Ma N, Li Y, Yang Z, Tang Y. Prefabrication-a Vascularized Skin Flap Using an Arteriovenous LoopPrefabricated Flap With Arteriovenous Loop: An Experimental Study in Minipigs. J Craniofac Surg 2023; 34:e255-e259. [PMID: 36727988 DOI: 10.1097/scs.0000000000009172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Arteriovenous loops have a high potency to induce angiogenesis and are promising to solve the problem of scarce implanted pedicle sources and insufficient neovascularization in flap prefabrication. But there is a lack of large animal experiments to support their clinical application. Therefore, we aimed to explore the feasibility of prefabricating large flaps based on arteriovenous loops in pigs. METHODS Five minipigs were used. In the experimental group, a 10-cm-long ear vein graft was microanastomosed with the saphenous artery and vein to form an arteriovenous loop and implanted under the medial thigh flap. A month later, a 10×10 cm prefabricated flap pedicled with the arteriovenous loop was elevated and sutured in situ. In the control group, a 10×10 cm flap with no vascular pedicle was elevated completely and sutured in situ in the same position. The patency of the arteriovenous loop was evaluated by angiography 30 days after implantation, and the viability of flaps was assessed by macroscopic analysis 10 days after elevation. Three animals received arteriovenous loop flaps unilaterally and no-pedicle flaps unilaterally. Two animals received arteriovenous loop flaps bilaterally. RESULTS In the experimental group, no thrombi were exhibited in any arteriovenous loop. All 7 prefabricated flaps survived uneventfully. In the control group, 3 flaps were completely necrotic. CONCLUSION The arteriovenous loops with long interpositional venous grafts can be used as vascular pedicles to prefabricated large area and well-vascularized flaps. This approach can greatly expand the application of flap prefabrication.
Collapse
Affiliation(s)
- Pingping Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing City, China
| | - Weixin Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing City, China
| | - Ning Ma
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing City, China
| | - Yangqun Li
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing City, China
| | - Zhe Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing City, China
| | - Yong Tang
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing City, China
- Chengdu Badachu Medical Aesthetics Hospital, Chengdu City, Sichuan Province,China
| |
Collapse
|
4
|
Falkner F, Mayer SA, Thomas B, Zimmermann SO, Walter S, Heimel P, Thiele W, Sleeman JP, Bigdeli AK, Kiss H, Podesser BK, Kneser U, Bergmeister H, Schneider KH. Acellular Human Placenta Small-Diameter Vessels as a Favorable Source of Super-Microsurgical Vascular Replacements: A Proof of Concept. Bioengineering (Basel) 2023; 10:337. [PMID: 36978728 PMCID: PMC10045636 DOI: 10.3390/bioengineering10030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, we aimed to evaluate the human placenta as a source of blood vessels that can be harvested for vascular graft fabrication in the submillimeter range. Our approach included graft modification to prevent thrombotic events. Submillimeter arterial grafts harvested from the human placenta were decellularized and chemically crosslinked to heparin. Graft performance was evaluated using a microsurgical arteriovenous loop (AVL) model in Lewis rats. Specimens were evaluated through hematoxylin-eosin and CD31 staining of histological sections to analyze host cell immigration and vascular remodeling. Graft patency was determined 3 weeks after implantation using a vascular patency test, histology, and micro-computed tomography. A total of 14 human placenta submillimeter vessel grafts were successfully decellularized and implanted into AVLs in rats. An appropriate inner diameter to graft length ratio of 0.81 ± 0.16 mm to 7.72 ± 3.20 mm was achieved in all animals. Grafts were left in situ for a mean of 24 ± 4 days. Decellularized human placental grafts had an overall patency rate of 71% and elicited no apparent immunological responses. Histological staining revealed host cell immigration into the graft and re-endothelialization of the vessel luminal surface. This study demonstrates that decellularized vascular grafts from the human placenta have the potential to serve as super-microsurgical vascular replacements.
Collapse
Affiliation(s)
- Florian Falkner
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Simon Andreas Mayer
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Benjamin Thomas
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Sarah Onon Zimmermann
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonja Walter
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Wilko Thiele
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jonathan Paul Sleeman
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute for Biological and Chemical Systems, Karlsruhe Institute of Technology, Campus North, 76131 Karlsruhe, Germany
| | - Amir Khosrow Bigdeli
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Bruno Karl Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, BG Trauma Center Ludwigshafen, University of Heidelberg, 69117 Heidelberg, Germany
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Karl Heinrich Schneider
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
5
|
Vascularization of Poly-ε-Caprolactone-Collagen I-Nanofibers with or without Sacrificial Fibers in the Neurotized Arteriovenous Loop Model. Cells 2022; 11:cells11233774. [PMID: 36497034 PMCID: PMC9736129 DOI: 10.3390/cells11233774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Electrospun nanofibers represent an ideal matrix for the purpose of skeletal muscle tissue engineering due to their highly aligned structure in the nanoscale, mimicking the extracellular matrix of skeletal muscle. However, they often consist of high-density packed fibers, which might impair vascularization. The integration of polyethylene oxide (PEO) sacrificial fibers, which dissolve in water, enables the creation of less dense structures. This study examines potential benefits of poly-ε-caprolactone-collagen I-PEO-nanoscaffolds (PCP) in terms of neovascularization and distribution of newly formed vessels compared to poly-ε-caprolactone -collagen I-nanoscaffolds (PC) in a modified arteriovenous loop model in the rat. For this purpose, the superficial inferior epigastric artery and vein as well as a motor nerve branch were integrated into a multilayer three-dimensional nanofiber scaffold construct, which was enclosed by an isolation chamber. Numbers and spatial distribution of sprouting vessels as well as macrophages were analyzed via immunohistochemistry after two and four weeks of implantation. After four weeks, aligned PC showed a higher number of newly formed vessels, regardless of the compartments formed in PCP by the removal of sacrificial fibers. Both groups showed cell influx and no difference in macrophage invasion. In this study, a model of combined axial vascularization and neurotization of a PCL-collagen I-nanofiber construct could be established for the first time. These results provide a foundation for the in vivo implantation of cells, taking a major step towards the generation of functional skeletal muscle tissue.
Collapse
|
6
|
Eweida A, Flechtenmacher S, Sandberg E, Schulte M, Schmidt VJ, Kneser U, Harhaus L. Systemically injected bone marrow mononuclear cells specifically home to axially vascularized tissue engineering constructs. PLoS One 2022; 17:e0272697. [PMID: 35951604 PMCID: PMC9371259 DOI: 10.1371/journal.pone.0272697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Inducing axial vascularisation of tissue engineering constructs is a well-established method to support tissue growth in large 3-dimensional tissues. Progenitor cell chemotaxis towards axially vascularized tissues has not been well characterized. In a prospective randomized controlled study including 32 male syngeneic Lewis rats we investigated the capability of the axially vascularized constructs to attract systemically injected bone marrow mononuclear cells (BMMNCs). The underlying mechanism for cell homing was investigated focusing on the role of hypoxia and the SDF1-CXCR4-7 axis. Sixteen animals were used as donors for BMMNCs. The other animals were subjected to implantation of a tissue engineering construct in the subcutaneous groin region. These constructs were axially vascularized either via an arteriovenous loop (AVL, n = 6) or via uninterrupted flow-through vessels (non-AVL, n = 10). BMMNCs were labelled with quantum dots (Qdot® 655) and injected 12 days after surgery either via intra-arterial or intravenous routes. 2 days after cell injection, the animals were sacrificed and examined using fluorescence microscopy. The Qdot® 655 signals were detected exclusively in the liver, spleen, AVL constructs and to a minimal extent in the non-AVL constructs. A significant difference could be detected between the number of labelled cells in the AVL and non-AVL constructs with more cells detected in the AVL constructs specially in central zones (p <0.0001). The immunohistological analysis showed a significant increase in the absolute expression of HIF-1 in the AVL group in comparison to the non-AVL group. The PCR analysis confirmed a 1.4-fold increase in HIF-1 expression in AVL constructs. Although PCR analysis showed an enhanced expression of CXCR4 and CXCR7 in AVL constructs, no significant differences in SDF1 expression were detected via immunohistological or PCR analysis. At the examined time point, the AVL constructs can attract BMMNCs in a mechanism probably related to the hypoxia associated with a robust tissue formation.
Collapse
Affiliation(s)
- Ahmad Eweida
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
- Department of Head, Neck and Endocrine Surgery, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Sophia Flechtenmacher
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Elli Sandberg
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Matthias Schulte
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Volker J. Schmidt
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
- Department for Plastic and Breast Surgery, Zealand University Hospital, Roskilde, Copenhagen University, Copenhagen, Denmark
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| |
Collapse
|
7
|
An R, Strissel PL, Al-Abboodi M, Robering JW, Supachai R, Eckstein M, Peddi A, Hauck T, Bäuerle T, Boccaccini AR, Youssef A, Sun J, Strick R, Horch RE, Boos AM, Kengelbach-Weigand A. An Innovative Arteriovenous (AV) Loop Breast Cancer Model Tailored for Cancer Research. Bioengineering (Basel) 2022; 9:bioengineering9070280. [PMID: 35877331 PMCID: PMC9311974 DOI: 10.3390/bioengineering9070280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Animal models are important tools to investigate the pathogenesis and develop treatment strategies for breast cancer in humans. In this study, we developed a new three-dimensional in vivo arteriovenous loop model of human breast cancer with the aid of biodegradable materials, including fibrin, alginate, and polycaprolactone. We examined the in vivo effects of various matrices on the growth of breast cancer cells by imaging and immunohistochemistry evaluation. Our findings clearly demonstrate that vascularized breast cancer microtissues could be engineered and recapitulate the in vivo situation and tumor-stromal interaction within an isolated environment in an in vivo organism. Alginate–fibrin hybrid matrices were considered as a highly powerful material for breast tumor engineering based on its stability and biocompatibility. We propose that the novel tumor model may not only serve as an invaluable platform for analyzing and understanding the molecular mechanisms and pattern of oncologic diseases, but also be tailored for individual therapy via transplantation of breast cancer patient-derived tumors.
Collapse
Affiliation(s)
- Ran An
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (R.A.); (M.A.-A.); (J.W.R.); (A.P.); (T.H.); (R.E.H.); (A.M.B.)
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Pamela L. Strissel
- Department of Obstetrics and Gynecology, University Hospital Erlangen, 91054 Erlangen, Germany; (P.L.S.); (R.S.)
| | - Majida Al-Abboodi
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (R.A.); (M.A.-A.); (J.W.R.); (A.P.); (T.H.); (R.E.H.); (A.M.B.)
- Institute of Genetic Engineering and Biotechnology, University of Baghdad, Baghdad 10081, Iraq
| | - Jan W. Robering
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (R.A.); (M.A.-A.); (J.W.R.); (A.P.); (T.H.); (R.E.H.); (A.M.B.)
- Department of Plastic- and Hand Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Reakasame Supachai
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, 91056 Erlangen, Germany; (R.S.); (A.R.B.)
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Ajay Peddi
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (R.A.); (M.A.-A.); (J.W.R.); (A.P.); (T.H.); (R.E.H.); (A.M.B.)
- Institute of Clinical Radiology, University Hospital Münster, 48149 Münster, Germany
| | - Theresa Hauck
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (R.A.); (M.A.-A.); (J.W.R.); (A.P.); (T.H.); (R.E.H.); (A.M.B.)
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen (PIPE), Department of Radiology, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, 91056 Erlangen, Germany; (R.S.); (A.R.B.)
| | - Almoatazbellah Youssef
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, 97080 Würzburg, Germany;
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Reiner Strick
- Department of Obstetrics and Gynecology, University Hospital Erlangen, 91054 Erlangen, Germany; (P.L.S.); (R.S.)
| | - Raymund E. Horch
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (R.A.); (M.A.-A.); (J.W.R.); (A.P.); (T.H.); (R.E.H.); (A.M.B.)
| | - Anja M. Boos
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (R.A.); (M.A.-A.); (J.W.R.); (A.P.); (T.H.); (R.E.H.); (A.M.B.)
- Department of Plastic- and Hand Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (R.A.); (M.A.-A.); (J.W.R.); (A.P.); (T.H.); (R.E.H.); (A.M.B.)
- Correspondence:
| |
Collapse
|
8
|
Vaghela R, Arkudas A, Gage D, Körner C, von Hörsten S, Salehi S, Horch RE, Hessenauer M. Microvascular development in the rat arteriovenous loop model in vivo-A step by step intravital microscopy analysis. J Biomed Mater Res A 2022; 110:1551-1563. [PMID: 35484827 DOI: 10.1002/jbm.a.37395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022]
Abstract
The arteriovenous (AV) loop model is a key technique to solve one of the major problems of tissue engineering-providing adequate vascular support for a tissue construct of significant size. However, the molecular and cellular mechanisms of vascularization and factors influencing the generation of new tissue in the AV loop are still poorly understood. We previously established a novel intravital microscopy approach to study these events. In this study, we implanted our observation chamber filled with two types of hydrogels such as fibrin and methacrylate gelatin (GelMA) and performed intravital microscopy (IVM) on days 7, 14, and 21. Initial microvessel formation was observed in GelMA on day 14, while the vessel network showed clear indicators of network rearrangement and maturation on day 21. No visible microvessels were observed in fibrin. The chambers were explanted on day 21. Histological examination revealed higher numbers of microvessels in GelMA compared to fibrin, while the AV loop was thrombosed in all fibrin constructs, possibly due to matrix degradation. GelMA proved to be an ideal matrix for IVM studies in the AV loop model due to its slow degradation and transparency. This IVM model can be employed as a novel tool for live and thus faster comprehension of crucial events in the tissue regeneration process, which can improve tissue engineering application.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Daniel Gage
- Department of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carolin Körner
- Department of Materials Science and Engineering for Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen and Preclinical Experimental Animal Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Steiner D, Reinhardt L, Fischer L, Popp V, Körner C, Geppert CI, Bäuerle T, Horch RE, Arkudas A. Impact of Endothelial Progenitor Cells in the Vascularization of Osteogenic Scaffolds. Cells 2022; 11:cells11060926. [PMID: 35326377 PMCID: PMC8946714 DOI: 10.3390/cells11060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The microvascular endothelial network plays an important role in osteogenesis, bone regeneration and bone tissue engineering. Endothelial progenitor cells (EPCs) display a high angiogenic and vasculogenic potential. The endothelialization of scaffolds with endothelial progenitor cells supports vascularization and tissue formation. In addition, EPCs enhance the osteogenic differentiation and bone formation of mesenchymal stem cells (MSCs). This study aimed to investigate the impact of EPCs on vascularization and bone formation of a hydroxyapatite (HA) and beta-tricalcium phosphate (ß-TCP)–fibrin scaffold. Three groups were designed: a scaffold-only group (A), a scaffold and EPC group (B), and a scaffold and EPC/MSC group (C). The HA/ß–TCP–fibrin scaffolds were placed in a porous titanium chamber permitting extrinsic vascularization from the surrounding tissue. Additionally, intrinsic vascularization was achieved by means of an arteriovenous loop (AV loop). After 12 weeks, the specimens were explanted and investigated by histology and CT. We were able to prove a strong scaffold vascularization in all groups. No differences regarding the vessel number and density were detected between the groups. Moreover, we were able to prove bone formation in the coimplantation group. Taken together, the AV loop is a powerful tool for vascularization which is independent from scaffold cellularization with endothelial progenitor cells’ prior implantation.
Collapse
Affiliation(s)
- Dominik Steiner
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
- Correspondence:
| | - Lea Reinhardt
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
| | - Laura Fischer
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
| | - Vanessa Popp
- Preclinical Imaging Platform Erlangen (PIPE), Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (V.P.); (T.B.)
| | - Carolin Körner
- Department of Materials Science and Engineering, Institute of Science and Technology of Metals, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany;
| | - Carol I. Geppert
- Institute of Pathology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen (PIPE), Institute of Radiology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (V.P.); (T.B.)
| | - Raymund E. Horch
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
| | - Andreas Arkudas
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.R.); (L.F.); (R.E.H.); (A.A.)
| |
Collapse
|
10
|
Enrichment of Nanofiber Hydrogel Composite with Fractionated Fat Promotes Regenerative Macrophage Polarization and Vascularization for Soft-Tissue Engineering. Plast Reconstr Surg 2022; 149:433e-444e. [PMID: 35196680 DOI: 10.1097/prs.0000000000008872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fractionated fat has been shown to promote dermal regeneration; however, the use of fat grafting for reconstruction of soft-tissue defects is limited because of volume loss over time. The authors have developed a novel approach for engineering of vascularized soft tissue using an injectable nanofiber hydrogel composite enriched with fractionated fat. METHODS Fractionated fat was generated by emulsification of groin fat pads from rats and mixed in a 3:1 ratio with nanofiber hydrogel composite (nanofiber hydrogel composite with fractionated fat). Nanofiber hydrogel composite with fractionated fat or nanofiber hydrogel composite alone was placed into isolation chambers together with arteriovenous loops, which were subcutaneously implanted into the groin of rats (n = 8 per group). After 21 days, animals were euthanized and systemically perfused with ink, and tissue was explanted for histologic analysis. Immunofluorescent staining and confocal laser scanning microscopy were used to quantify CD34+ progenitor cell and macrophage subpopulations. RESULTS Nanofiber hydrogel composite with fractionated fat tissue maintained its shape without shrinking and showed a significantly stronger functional vascularization compared to composite alone after 21 days of implantation (mean vessel count, 833.5 ± 206.1 versus 296.5 ± 114.1; p = 0.04). Tissue heterogeneity and cell count were greater in composite with fractionated fat (mean cell count, 49,707 ± 18,491 versus 9263 ± 3790; p = 0.005), with a significantly higher number of progenitor cells and regenerative CD163+ macrophages compared to composite alone. CONCLUSIONS Fractionated fat-enriched nanofiber hydrogel composite transforms into highly vascularized soft tissue over 21 days without signs of shrinking and promotes macrophage polarization toward regenerative phenotypes. Enrichment of injectable nanofiber hydrogel composite with fractionated fat represents a promising approach for durable reconstruction of soft-tissue defects. CLINICAL RELEVANCE STATEMENT The authors' approach for tissue engineering may ultimately lay the groundwork for clinically relevant applications with the goal of generating large volumes of vascularized soft tissue for defect reconstruction without donor site morbidity.
Collapse
|
11
|
Vaghela R, Arkudas A, Steiner D, Heltmann-Meyer S, Horch RE, Hessenauer M. Vessel grafts for tissue engineering revisited-Vessel segments show location-specific vascularization patterns in ex vivo ring assay. Microcirculation 2021; 29:e12742. [PMID: 34863000 DOI: 10.1111/micc.12742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Transplantation of prefabricated tissue-engineered flaps can be a potential alternative for healing large tissue defects. Providing adequate vascular supply for an engineered tissue construct is one of the key points in establishing successful tissue engineering-based treatment approaches. In tissue engineering-based vascularization techniques like the arteriovenous loop, vascular grafts with high angiogenic potential can help to enhance neovascularization and tissue formation. Therefore, our study aimed to compare the angiogenic potential of vascular grafts from different locations in the rat. METHODS The angiogenic activity was investigated by an ex vivo vessel outgrowth ring assay using 1-mm height vascular segments embedded in fibrin for 2 weeks. RESULTS Maximum vessel outgrowth was observed on Days 10-12. Upper extremity vessels exhibited stronger outgrowth than lower extremity vessels. Moreover, arterial vessels demonstrated higher angiogenic potential compared with venous vessels. CONCLUSION Collectively, our ex vivo findings suggest that upper extremity arterial vessels have a higher angiogenic capacity, which could be used to improve neovascularization and tissue formation in tissue engineering.
Collapse
Affiliation(s)
- Ravikumar Vaghela
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Heltmann-Meyer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Hessenauer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
12
|
Heltmann-Meyer S, Steiner D, Müller C, Schneidereit D, Friedrich O, Salehi S, Engel FB, Arkudas A, Horch RE. Gelatin methacryloyl is a slow degrading material allowing vascularization and long-term use in vivo. Biomed Mater 2021; 16. [PMID: 34406979 DOI: 10.1088/1748-605x/ac1e9d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022]
Abstract
In situtissue engineering is an emerging field aiming at the generation of ready-to-use three-dimensional tissues. One solution to supply a proper vascularization of larger tissues to provide oxygen and nutrients is the arteriovenous loop (AVL) model. However, for this model, suitable scaffold materials are needed that are biocompatible/non-immunogenic, slowly degradable, and allow vascularization. Here, we investigate the suitability of the known gelatin methacryloyl (GelMA)-based hydrogel forin-situtissue engineering utilizing the AVL model. Rat AVLs are embedded by two layers of GelMA hydrogel in an inert PTFE chamber and implanted in the groin. Constructs were explanted after 2 or 4 weeks and analyzed. For this purpose, gross morphological, histological, and multiphoton microscopic analysis were performed. Immune response was analyzed based on anti-CD68 and anti-CD163 staining of immune cells. The occurrence of matrix degradation was assayed by anti-MMP3 staining. Vascularization was analyzed by anti-α-smooth muscle actin staining, multiphoton microscopy, as well as expression analysis of 53 angiogenesis-related proteins utilizing a proteome profiler angiogenesis array kit. Here we show that GelMA hydrogels are stable for at least 4 weeks in the rat AVL model. Furthermore, our data indicate that GelMA hydrogels are biocompatible. Finally, we provide evidence that GelMA hydrogels in the AVL model allow connective tissue formation, as well as vascularization, introducing multiphoton microscopy as a new methodology to visualize neovessel formation originating from the AVL. GelMA is a suitable material forin situandin vivoTE in the AVL model.
Collapse
Affiliation(s)
- Stefanie Heltmann-Meyer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Claudia Müller
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth 95447, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91052, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91052, Germany
| | - Sahar Salehi
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth 95447, Germany
| | - Felix B Engel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany.,Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| |
Collapse
|
13
|
Steiner D, Winkler S, Heltmann-Meyer S, Trossmann VT, Fey T, Scheibel T, Horch RE, Arkudas A. Enhanced vascularization and de novotissue formation in hydrogels made of engineered RGD-tagged spider silk proteins in the arteriovenous loop model. Biofabrication 2021; 13. [PMID: 34157687 DOI: 10.1088/1758-5090/ac0d9b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Due to its low immunogenic potential and the possibility to fine-tune their properties, materials made of recombinant engineered spider silks are promising candidates for tissue engineering applications. However, vascularization of silk-based scaffolds is one critical step for the generation of bioartificial tissues and consequently for clinical application. To circumvent insufficient vascularization, the surgically induced angiogenesis by means of arteriovenous loops (AVL) represents a highly effective methodology. Here, previously established hydrogels consisting of nano-fibrillary recombinant eADF4(C16) were transferred into Teflon isolation chambers and vascularized in the rat AVL model over 4 weeks. To improve vascularization, also RGD-tagged eADF4(C16) hydrogels were implanted in the AVL model over 2 and 4 weeks. Thereafter, the specimen were explanted and analyzed using histology and microcomputed tomography. We were able to confirm biocompatibility and tissue formation over time. Functionalizing eADF4(C16) with RGD-motifs improved hydrogel stability and enhanced vascularization even outperforming other hydrogels, such as fibrin. This study demonstrates that the scaffold ultrastructure as well as biofunctionalization with RGD-motifs are powerful tools to optimize silk-based biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
- Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophie Winkler
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Heltmann-Meyer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vanessa T Trossmann
- Faculty of Engineering, Department for Biomaterials, University of Bayreuth, 95447 Bayreuth, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Thomas Scheibel
- Faculty of Engineering, Department for Biomaterials, University of Bayreuth, 95447 Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, 95447 Bayreuth, Germany.,Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, 95447 Bayreuth, Germany.,Center for Material Science and Engineering (BayMAT), University of Bayreuth, 95447 Bayreuth, Germany.,Bavarian Polymer Institute (BPI), University of Bayreuth, 95447 Bayreuth, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
14
|
Koepple C, Zhou Z, Huber L, Schulte M, Schmidt K, Gloe T, Kneser U, Schmidt VJ, de Wit C. Expression of Connexin43 Stimulates Endothelial Angiogenesis Independently of Gap Junctional Communication In Vitro. Int J Mol Sci 2021; 22:ijms22147400. [PMID: 34299018 PMCID: PMC8306600 DOI: 10.3390/ijms22147400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Connexins (Cx) form gap junctions (GJ) and allow for intercellular communication. However, these proteins also modulate gene expression, growth, and cell migration. The downregulation of Cx43 impairs endothelial cell migration and angiogenetic potential. Conversely, endothelial Cx43 expression is upregulated in an in vivo angiogenesis model relying on hemodynamic forces. We studied the effects of Cx43 expression on tube formation and proliferation in HUVECs and examined its dependency on GJ communication. Expectedly, intercellular communication assessed by dye transfer was linked to Cx43 expression levels in HUVECs and was sensitive to a GJ blockade by the Cx43 mimetic peptide Gap27. The proliferation of HUVECs was not affected by Cx43 overexpression using Cx43 cDNA transfection, siRNA-mediated knockdown of Cx43, or the inhibition of GJ compared to the controls (transfection of an empty vector, scrambled siRNA, and the solvent). In contrast, endothelial tube and sprout formation in HUVECs was minimized after Cx43 knockdown and significantly enhanced after Cx43 overexpression. This was not affected by a GJ blockade (Gap27). We conclude that Cx43 expression positively modulates the angiogenic potential of endothelial cells independent of GJ communication. Since proliferation remained unaffected, we suggest that Cx43 protein may modulate endothelial cell migration, thereby supporting angiogenesis. The modulation of Cx43 expression may represent an exploitable principle for angiogenesis induction in clinical therapy.
Collapse
Affiliation(s)
- Christoph Koepple
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| | - Zizi Zhou
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Lena Huber
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Matthias Schulte
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Kjestine Schmidt
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), 23562 Lübeck, Germany
| | - Torsten Gloe
- Physiology, Institute of Theoretical Medicine, Universität Augsburg, 86159 Augsburg, Germany;
| | - Ulrich Kneser
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Volker Jürgen Schmidt
- Department for Plastic Surgery and Breast Surgery, Zealand University Hospital (SUH) Roskilde, Copenhagen University, 4000 Roskilde, Denmark
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), 23562 Lübeck, Germany
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| |
Collapse
|
15
|
Henn D, Chen K, Fischer K, Rauh A, Barrera JA, Kim YJ, Martin RA, Hannig M, Niedoba P, Reddy SK, Mao HQ, Kneser U, Gurtner GC, Sacks JM, Schmidt VJ. Tissue Engineering of Axially Vascularized Soft-Tissue Flaps with a Poly-(ɛ-Caprolactone) Nanofiber-Hydrogel Composite. Adv Wound Care (New Rochelle) 2020; 9:365-377. [PMID: 32587789 DOI: 10.1089/wound.2019.0975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 12/18/2019] [Indexed: 11/12/2022] Open
Abstract
Objective: To develop a novel approach for tissue engineering of soft-tissue flaps suitable for free microsurgical transfer, using an injectable nanofiber hydrogel composite (NHC) vascularized by an arteriovenous (AV) loop. Approach: A rat AV loop model was used for tissue engineering of vascularized soft-tissue flaps. NHC or collagen-elastin (CE) scaffolds were implanted into isolation chambers together with an AV loop and explanted after 15 days. Saphenous veins were implanted into the scaffolds as controls. Neoangiogenesis, ultrastructure, and protein expression of SYNJ2BP, EPHA2, and FOXC1 were analyzed by immunohistochemistry and compared between the groups. Rheological properties were compared between the two scaffolds and native human adipose tissue. Results: A functional neovascularization was evident in NHC flaps with its amount being comparable with CE flaps. Scanning electron microscopy revealed a strong mononuclear cell infiltration along the nanofibers in NHC flaps and a trend toward higher fiber alignment compared with CE flaps. SYNJ2BP and EPHA2 expression in endothelial cells (ECs) was lower in NHC flaps compared with CE flaps, whereas FOXC1 expression was increased in NHC flaps. Compared with the stiffer CE flaps, the NHC flaps showed similar rheological properties to native human adipose tissue. Innovation: This is the first study to demonstrate the feasibility of tissue engineering of soft-tissue flaps with similar rheological properties as human fat, suitable for microsurgical transfer using an injectable nanofiber hydrogel composite. Conclusions: The injectable NHC scaffold is suitable for tissue engineering of axially vascularized soft-tissue flaps with a solid neovascularization, strong cellular infiltration, and biomechanical properties similar to human fat. Our data indicate that SYNJ2BP, EPHA2, and FOXC1 are involved in AV loop-associated angiogenesis and that the scaffold material has an impact on protein expression in ECs.
Collapse
Affiliation(s)
- Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Katharina Fischer
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Annika Rauh
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Janos A. Barrera
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Yoo-Jin Kim
- Institute of Pathology, Kaiserslautern, Germany
| | - Russell A. Martin
- Department of Materials Science and Engineering, Whiting School of Engineering, and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Patricia Niedoba
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Sashank K. Reddy
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Whiting School of Engineering, and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Justin M. Sacks
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Volker J. Schmidt
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
- Department for Plastic and Breast Surgery, Zealand University Hospital Roskilde, Roskilde, Denmark
| |
Collapse
|
16
|
Steiner D, Lang G, Fischer L, Winkler S, Fey T, Greil P, Scheibel T, Horch RE, Arkudas A. Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model. Tissue Eng Part A 2019; 25:1504-1513. [DOI: 10.1089/ten.tea.2018.0360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gregor Lang
- Biopolymer Processing, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Laura Fischer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophie Winkler
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Peter Greil
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Scheibel
- Department for Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces, University of Bayreuth, Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), University of Bayreuth, Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), University of Bayreuth, Bayreuth, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
17
|
Charbonnier B, Baradaran A, Sato D, Alghamdi O, Zhang Z, Zhang Y, Gbureck U, Gilardino M, Harvey E, Makhoul N, Barralet J. Material-Induced Venosome-Supported Bone Tubes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900844. [PMID: 31508287 PMCID: PMC6724474 DOI: 10.1002/advs.201900844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/06/2019] [Indexed: 05/03/2023]
Abstract
The development of alternatives to vascular bone grafts, the current clinical standard for the surgical repair of large segmental bone defects still today represents an unmet medical need. The subcutaneous formation of transplantable bone has been successfully achieved in scaffolds axially perfused by an arteriovenous loop (AVL) and seeded with bone marrow stromal cells or loaded with inductive proteins. Although demonstrating clinical potential, AVL-based approaches involve complex microsurgical techniques and thus are not in widespread use. In this study, 3D-printed microporous bioceramics, loaded with autologous total bone marrow obtained by needle aspiration, are placed around and next to an unoperated femoral vein for 8 weeks to assess the effect of a central flow-through vein on bone formation from marrow in a subcutaneous site. A greater volume of new bone tissue is observed in scaffolds perfused by a central vein compared with the nonperfused negative control. These analyses are confirmed and supplemented by calcified and decalcified histology. This is highly significant as it indicates that transplantable vascularized bone can be grown using dispensable vein and marrow tissue only. This is the first report illustrating the capacity of an intrinsic vascularization by a single vein to support ectopic bone formation from untreated marrow.
Collapse
Affiliation(s)
- Baptiste Charbonnier
- Department of Mechanical EngineeringMcGill University817 Sherbrooke Street WestMontrealH3A 0C3QuebecCanada
| | - Aslan Baradaran
- Experimental Surgery DivisionDepartment of SurgeryFaculty of MedicineMontreal General Hospital1650 Cedar AvenueMontrealH3G 1A4QuebecCanada
| | - Daisuke Sato
- Department of Implant DentistryShowa University Dental Hospital2 Chome‐1‐1 KitasenzokuOta CityTokyo145‐8515Japan
| | - Osama Alghamdi
- Division of Oral & Maxillofacial SurgeryMcGill UniversityMontreal General Hospital1650 Cedar AvenueMontrealH3G 1A4QuebecCanada
| | - Zishuai Zhang
- Faculty of DentistryMcGill University3640, Strathcona Anatomy and Dentistry Building, University StreetMontrealH3A 0C7QuebecCanada
| | - Yu‐Ling Zhang
- Faculty of DentistryMcGill University3640, Strathcona Anatomy and Dentistry Building, University StreetMontrealH3A 0C7QuebecCanada
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and DentistryUniversity of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Mirko Gilardino
- Experimental Surgery DivisionDepartment of SurgeryFaculty of MedicineMontreal General Hospital1650 Cedar AvenueMontrealH3G 1A4QuebecCanada
| | - Edward Harvey
- Experimental Surgery DivisionDepartment of SurgeryFaculty of MedicineMontreal General Hospital1650 Cedar AvenueMontrealH3G 1A4QuebecCanada
| | - Nicholas Makhoul
- Division of Oral & Maxillofacial SurgeryMcGill UniversityMontreal General Hospital1650 Cedar AvenueMontrealH3G 1A4QuebecCanada
| | - Jake Barralet
- Experimental Surgery DivisionDepartment of SurgeryFaculty of MedicineMontreal General Hospital1650 Cedar AvenueMontrealH3G 1A4QuebecCanada
| |
Collapse
|
18
|
Micro-RNA-Regulated Proangiogenic Signaling in Arteriovenous Loops in Patients with Combined Vascular and Soft-Tissue Reconstructions: Revisiting the Nutrient Flap Concept. Plast Reconstr Surg 2019; 142:489e-502e. [PMID: 29979372 DOI: 10.1097/prs.0000000000004750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The placement of arteriovenous loops can enable microvascular anastomoses of free flaps when recipient vessels are scarce. In animal models, elevated fluid shear stress in arteriovenous loops promotes neoangiogenesis. Anecdotal reports in patients indicate that vein grafts used in free flap reconstructions of ischemic lower extremities are able to induce capillary formation. However, flow-stimulated angiogenesis has never been systematically investigated in humans, and it is unclear whether shear stress alters proangiogenic signaling pathways within the vascular wall of human arteriovenous loops. METHODS Eight patients with lower extremity soft-tissue defects underwent two-stage reconstruction with arteriovenous loop placement, and free flap anastomoses to the loops 10 to 14 days later. Micro-RNA (miRNA) and gene expression profiles were determined in tissue samples harvested from vein grafts of arteriovenous loops by microarray analysis and quantitative real-time polymerase chain reaction. Samples from untreated veins served as controls. RESULTS A strong deregulation of miRNA and gene expression was detected in arteriovenous loops, showing an overexpression of angiopoietic cytokines, oxygenation-associated genes, vascular growth factors, and connexin-43. The authors discovered inverse correlations along with validated and bioinformatically predicted interactions between angiogenesis-regulating genes and miRNAs in arteriovenous loops. CONCLUSIONS The authors' findings demonstrate that elevated shear stress triggers proangiogenic signaling pathways in human venous tissue, indicating that arteriovenous loops may have the ability to induce neoangiogenesis in humans. The authors' data corroborate the nutrient flap hypothesis and provide a molecular background for arteriovenous loop-based tissue engineering with potential clinical applications for soft-tissue defect reconstruction.
Collapse
|
19
|
Steiner D, Lingens L, Fischer L, Köhn K, Detsch R, Boccaccini AR, Fey T, Greil P, Weis C, Beier JP, Horch RE, Arkudas A. Encapsulation of Mesenchymal Stem Cells Improves Vascularization of Alginate-Based Scaffolds. Tissue Eng Part A 2018; 24:1320-1331. [DOI: 10.1089/ten.tea.2017.0496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Dominik Steiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lara Lingens
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Plastic Surgery, Hand and Burn Surgery, University Hospital of Aachen, RWTH University of Aachen, Aachen, Germany
| | - Laura Fischer
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katrin Köhn
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute for Biomaterials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute for Biomaterials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Greil
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Weis
- Center for Medical Physics and Technology. Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Siemens Healthcare GmbH, Sales In Vivo, Stuttgart, Germany
| | - Justus P. Beier
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Plastic Surgery, Hand and Burn Surgery, University Hospital of Aachen, RWTH University of Aachen, Aachen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
20
|
Yuan Q, Arkudas A, Horch RE, Hammon M, Bleiziffer O, Uder M, Seuss H. Vascularization of the Arteriovenous Loop in a Rat Isolation Chamber Model—Quantification of Hypoxia and Evaluation of Its Effects. Tissue Eng Part A 2018; 24:719-728. [DOI: 10.1089/ten.tea.2017.0262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Quan Yuan
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Matthias Hammon
- Department of Radiology, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Oliver Bleiziffer
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
- Department of Plastic and Hand Surgery, Inselspital Bern, Universität Bern, Bern, Switzerland
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Hannes Seuss
- Department of Radiology, University Hospital Erlangen, Friedrich Alexander University, Erlangen-Nuernberg (FAU), Erlangen, Germany
| |
Collapse
|
21
|
Collagen-Elastin and Collagen-Glycosaminoglycan Scaffolds Promote Distinct Patterns of Matrix Maturation and Axial Vascularization in Arteriovenous Loop-Based Soft Tissue Flaps. Ann Plast Surg 2018; 79:92-100. [PMID: 28542070 DOI: 10.1097/sap.0000000000001096] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Autologous free flaps are the criterion standard for reconstructions of complex soft tissue defects; however, they are limited by donor-site morbidities. The arteriovenous (AV) loop model enables the generation of soft tissue constructs based on acellular dermal matrices with a functional microvasculature and minimal donor site morbidity. The ideal scaffold for AV loop-based tissue engineering has not been determined. METHODS AV loops were placed into subcutaneous isolation chambers filled with either a collagen-elastin scaffold or a collagen-glycosaminoglycan scaffold in the thighs of rats. Matrix elasticity, neoangiogenesis, cell migration, and proliferation were compared after 14 and 28 days. RESULTS Mean vessel count and area had increased in both matrices at 28 compared with 14 days. Collagen-elastin matrices showed a higher mean vessel count and area compared with collagen-glycosaminoglycan matrices at 14 days. At 28 days, a more homogeneous vascular network and higher cell counts were observed in collagen-elastin matrices. Collagen-glycosaminoglycan matrices, however, exhibited less volume loss at day 28. CONCLUSIONS Collagen-based scaffolds are suitable for soft tissue engineering in conjunction with the AV loop technique. These scaffolds exhibit distinct patterns of angiogenesis, cell migration, and proliferation and may in the future serve as the basis of tissue-engineered free flaps as an individualized treatment concept for critical wounds.
Collapse
|
22
|
Slezak P, Slezak C, Hartinger J, Teuschl AH, Nürnberger S, Redl H, Mittermayr R. A Low Cost Implantation Model in the Rat That Allows a Spatial Assessment of Angiogenesis. Front Bioeng Biotechnol 2018; 6:3. [PMID: 29468155 PMCID: PMC5807912 DOI: 10.3389/fbioe.2018.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
There is continual demand for animal models that allow a quantitative assessment of angiogenic properties of biomaterials, therapies, and pharmaceuticals. In its simplest form, this is done by subcutaneous material implantation and subsequent vessel counting which usually omits spatial data. We have refined an implantation model and paired it with a computational analytic routine which outputs not only vessel count but also vessel density, distribution, and vessel penetration depth, that relies on a centric vessel as a reference point. We have successfully validated our model by characterizing the angiogenic potential of a fibrin matrix in conjunction with recombinant human vascular endothelial growth factor (rhVEGF165). The inferior epigastric vascular pedicles of rats were sheathed with silicone tubes, which were subsequently filled with 0.2 ml of fibrin and different doses of rhVEGF165, centrically embedding the vessels. Over 4 weeks, tissue samples were harvested and subsequently immunohistologically stained and computationally analyzed. The model was able to detect variations over the angiogenic potentials of growth factor spiked fibrin matrices. Adding 20 ng of rhVEGF165 resulted in a significant increase in vasculature while 200 ng of rhVEGF165 did not improve vascular growth. Vascularized tissue volume increased during the first week and vascular density increased during the second week. Total vessel count increased significantly and exhibited a peak after 2 weeks which was followed by a resorption of vasculature by week 4. In summary, a simple implantation model to study in vivo vascularization with only a minimal workload attached was enhanced to include morphologic data of the emerging vascular tree.
Collapse
Affiliation(s)
- Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | | | - Joachim Hartinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Andreas Herbert Teuschl
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Sylvia Nürnberger
- Department of Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Rainer Mittermayr
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
23
|
Schmidt VJ, Wietbrock JO, Leibig N, Hernekamp JF, Henn D, Radu CA, Kneser U. Haemodynamically stimulated and in vivo generated axially vascularized soft-tissue free flaps for closure of complex defects: Evaluation in a small animal model. J Tissue Eng Regen Med 2017; 12:622-632. [PMID: 28509443 DOI: 10.1002/term.2477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022]
Abstract
The arteriovenous (AV) loop model permits the creation of significant volumes of axially vascularized tissue that represents an alternative to conventional free flaps, circumventing their common limitations. However, such AV loop-based flaps have never before been examined in standardized animal models with respect to their suitability for reconstruction of critical bone-exposing defects. In the course of our preliminary studies, we implemented a novel defect model in rats that provides standardized and critical wound conditions and evaluated whether AV loop-generated flaps are suitable for free microsurgical transfer and closure of composite defects. We compared three groups of rodents with similar scapular defects: one received the AV flap, whereas controls were left to heal by secondary intention or with supplementary acellular matrix alone. To create the flaps, AV loops were placed into subcutaneous Teflon chambers filled with acellular matrix and transferred to the thigh region. Flap maturation was evaluated by histological analysis of angiogenesis and cell migration at days 14 and 28 after loop creation. Flap transfer to the scapular region and microsurgical anastomoses were performed after 14 days. Postoperative defect closure and perfusion were continually compared between groups. Within the AV flap chamber, the mean vessel number, cell count and the proportion of proliferating cells increased significantly over time. The novel defect model revealed that stable wound coverage with homogeneous vascular integration was achieved by AV loop-vascularized soft-tissue free flaps compared with controls. In summary, our study indicates for the first time that complex composite defects in rats can successfully be treated with AV loop-based free flaps.
Collapse
Affiliation(s)
- Volker J Schmidt
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Johanna O Wietbrock
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Nico Leibig
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Jochen F Hernekamp
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Dominic Henn
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Christian A Radu
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, Trauma Center Ludwigshafen, Ludwigshafen, Germany
| |
Collapse
|
24
|
The impact of various scaffold components on vascularized bone constructs. J Craniomaxillofac Surg 2017; 45:881-890. [DOI: 10.1016/j.jcms.2017.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 01/01/2023] Open
|
25
|
Flow-Induced Axial Vascularization: The Arteriovenous Loop in Angiogenesis and Tissue Engineering. Plast Reconstr Surg 2017; 138:825-835. [PMID: 27673517 DOI: 10.1097/prs.0000000000002554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fabrication of a viable vascular network providing oxygen supply is identified as one crucial limiting factor to generate more complex three-dimensional constructs. The arteriovenous loop model provides initial blood supply and has a high angioinductive potency, making it suitable for vascularization of larger, tissue-engineered constructs. Also because of its angiogenic capabilities the arteriovenous loop is recently also used as a model to evaluate angiogenesis in vivo. This review summarizes the history of the arteriovenous loop model in research and its technical and surgical aspects. Through modifications of the isolation chamber and its containing matrices, tissue generation can be enhanced. In addition, matrices can be used as release systems for local application of growth factors, such as vascular endothelial growth factor and basic fibroblast growth factor, to affect vascular network formation. A special focus in this review is set on the assessment of angiogenesis in the arteriovenous loop model. This model provides good conditions for assessment of angiogenesis with the initial cell-free environment of the isolation chamber, which is vascularized by the arteriovenous loop. Because of the angiogenic capabilities of the arteriovenous loop model, different attempts were performed to create functional tissue in the isolation chamber for potential clinical application. Arteriovenous loops in combination with autologous bone marrow aspirate were already used to reconstruct large bone defects in humans.
Collapse
|
26
|
Eweida A, Frisch O, Giordano FA, Fleckenstein J, Wenz F, Brockmann MA, Schulte M, Schmidt VJ, Kneser U, Harhaus L. Axially vascularized tissue-engineered bone constructs retain their in vivo angiogenic and osteogenic capacity after high-dose irradiation. J Tissue Eng Regen Med 2017; 12:e657-e668. [PMID: 27696709 DOI: 10.1002/term.2336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/28/2016] [Accepted: 09/26/2016] [Indexed: 11/07/2022]
Abstract
In order to introduce bone tissue engineering to the field of oncological reconstruction, we are investigating for the first time the effect of various doses of ionizing irradiation on axially vascularized bone constructs. Synthetic bone constructs were created and implanted in 32 Lewis rats. Each construct was axially vascularized through an arteriovenous loop made by direct anastomosis of the saphenous vessels. After 2 weeks, the animals received ionizing irradiation of 9 Gy, 12 Gy and 15 Gy, and were accordingly classified to groups I, II and III, respectively. Group IV was not irradiated and acted as a control. Tissue generation, vascularity, cellular proliferation and apoptosis were investigated either 2 or 5 weeks after irradiation through micro-computed tomography, histomorphometry and real-time polymerase chain reaction (PCR). At 2 weeks after irradiation, tissue generation and central vascularity were significantly lower and apoptosis was significantly higher in groups II and III than group IV, but without signs of necrosis. Cellular proliferation was significantly lower in groups I and II. After 5 weeks, the irradiated groups showed improvement in all parameters in relation to the control group, indicating a retained capacity for angiogenesis after irradiation. PCR results confirmed the expression of osteogenesis-related genes in all irradiated groups. Dense collagen was detected 5 weeks after irradiation, and one construct showed discrete islands of bone indicating a retained osteogenic capacity after irradiation. This demonstrates for the first time that axial vascularization was capable of supporting a synthetic bone construct after a high dose of irradiation that is comparable to adjuvant radiotherapy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ahmad Eweida
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany.,Department of Head, Neck and Endocrine Surgery, Faculty of Medicine, University of Alexandria, Egypt
| | - Oliver Frisch
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Schulte
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Volker J Schmidt
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| |
Collapse
|
27
|
Schmidt VJ, Covi JM, Koepple C, Hilgert JG, Polykandriotis E, Bigdeli AK, Distel LV, Horch RE, Kneser U. Flow Induced Microvascular Network Formation of Therapeutic Relevant Arteriovenous (AV) Loop-Based Constructs in Response to Ionizing Radiation. Med Sci Monit 2017; 23:834-842. [PMID: 28199294 PMCID: PMC5322868 DOI: 10.12659/msm.899107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The arteriovenous (AV) loop model enables axial vascularization to gain a functional microcirculatory system in tissue engineering constructs in vivo. These constructs might replace surgical flaps for the treatment of complex wounds in the future. Today, free flaps are often exposed to high-dose radiation after defect coverage, according to guideline-oriented treatment plans. Vascular response of AV loop-based constructs has not been evaluated after radiation, although it is of particular importance. It is further unclear whether the interposed venous AV loop graft is crucial for the induction of angiogenesis. MATERIAL AND METHODS We exposed the grafted vein to a single radiation dose of 2 Gy prior to loop construction to alter intrinsic and angio-inductive properties specifically within the graft. Vessel loops were embedded in a fibrin-filled chamber for 15 days and radiation-induced effects on flow-mediated vascularization were assessed by micro-CT and two-dimensional histological analysis. RESULTS Vessel amount was significantly impaired when an irradiated vein graft was used for AV loop construction. However, vessel growth and differentiation were still present. In contrast to vessel density, which was homogeneously diminished in constructs containing irradiated veins, vessel diameter was primarily decreased in the more peripheral regions. CONCLUSIONS Vascular luminal sprouts were significantly diminished in irradiated venous grafts, suggesting that the interposing vein constitutes a vital part of the AV loop model and is essential to initiate flow-mediate angiogenesis. These results add to the current understanding of AV loop-based neovascularization and suggest clinical implications for patients requiring combined AV loop-based tissue transfer and adjuvant radiotherapy.
Collapse
Affiliation(s)
- Volker J Schmidt
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Jennifer M Covi
- Department of Plastic and Hand Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Koepple
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Johannes G Hilgert
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elias Polykandriotis
- Department of Plastic and Hand Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Amir K Bigdeli
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kneser
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Weigand A, Beier JP, Arkudas A, Al-Abboodi M, Polykandriotis E, Horch RE, Boos AM. The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering. J Vis Exp 2016. [PMID: 27842348 DOI: 10.3791/54676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A functional blood vessel network is a prerequisite for the survival and growth of almost all tissues and organs in the human body. Moreover, in pathological situations such as cancer, vascularization plays a leading role in disease progression. Consequently, there is a strong need for a standardized and well-characterized in vivo model in order to elucidate the mechanisms of neovascularization and develop different vascularization approaches for tissue engineering and regenerative medicine. We describe a microsurgical approach for a small animal model for induction of a vascular axis consisting of a vein and artery that are anastomosed to an arteriovenous (AV) loop. The AV loop is transferred to an enclosed implantation chamber to create an isolated microenvironment in vivo, which is connected to the living organism only by means of the vascular axis. Using 3D imaging (MRI, micro-CT) and immunohistology, the growing vasculature can be visualized over time. By implanting different cells, growth factors and matrices, their function in blood vessel network formation can be analyzed without any disturbing influences from the surroundings in a well controllable environment. In addition to angiogenesis and antiangiogenesis studies, the AV loop model is also perfectly suited for engineering vascularized tissues. After a certain prevascularization time, the generated tissues can be transplanted into the defect site and microsurgically connected to the local vessels, thereby ensuring immediate blood supply and integration of the engineered tissue. By varying the matrices, cells, growth factors and chamber architecture, it is possible to generate various tissues, which can then be tailored to the individual patient's needs.
Collapse
Affiliation(s)
- Annika Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU);
| | - Justus P Beier
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| | - Majida Al-Abboodi
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU); Genetic Engineering and Biotechnology Institute for Postgraduate Studies, Baghdad University
| | | | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| | - Anja M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| |
Collapse
|
29
|
Weis C, Covi JM, Hilgert JG, Leibig N, Arkudas A, Horch RE, Kneser U, Schmidt VJ. Automatic quantification of angiogenesis in 2D sections: a precise and timesaving approach. J Microsc 2015; 259:185-96. [PMID: 25882279 DOI: 10.1111/jmi.12252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/01/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The standardized characterization of angiogenesis is crucial in the field of tissue engineering as sufficient blood supply is the limiting factor of mass transfer. However, reliable algorithms that provide a straight forward and observer-independent assessment of new vessel formation are still lacking. We propose an automatic observer-independent quantitative method (including downloadable source code) to analyze vascularization using two-dimensional microscopic images of histological cross-sections and advanced postprocessing, based on a 'positive- and negative-experts' model and a (corrected) nearest neighbour classification, in a vascularized tissue engineering model. MATERIALS AND METHODS An established angioinductive rat arteriovenous loop model was used to compare the new automatic analysis with a common 2D method and a μCT algorithm. Angiogenesis was observed at three different time points (5, 10 and 15 days). RESULTS In line with previous results, formation of functional new vessels that arose from the venous graft was evident within the three-dimensional construct and a significant (p < 0.05) increase in vessel count and area was observed over time. The proposed automatic analysis obtained precise values for vessel count and vessel area that were similar to the manually gained data. The algorithm further provided vectorized parameterization of the newly formed vessels for advanced statistical analysis. Compared to the μCT-based three-dimensional analyses, the presented two-dimensional algorithm was superior in terms of small vessel detection as well as cost and time efficiency. CONCLUSIONS The quantitative evaluation method, using microscopic images of stained histological sections, 'positive- and negative-experts'-based vessel segmentation, and nearest neighbour classification, provides a user-independent and precise but also time- and cost-effective tool for the analysis of vascularized constructs. Our algorithm, which is freely available to the public, outperforms previous approaches especially in terms of unambiguous vessel classification and statistical analyses.
Collapse
Affiliation(s)
- C Weis
- Department of Physics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - J M Covi
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - J G Hilgert
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - N Leibig
- Department of Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - A Arkudas
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - R E Horch
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - U Kneser
- Department of Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - V J Schmidt
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.,Department of Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Schmidt VJ, Hilgert JG, Covi JM, Leibig N, Wietbrock JO, Arkudas A, Polykandriotis E, de Wit C, Horch RE, Kneser U. Flow increase is decisive to initiate angiogenesis in veins exposed to altered hemodynamics. PLoS One 2015; 10:e0117407. [PMID: 25635764 PMCID: PMC4312013 DOI: 10.1371/journal.pone.0117407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/21/2014] [Indexed: 02/04/2023] Open
Abstract
Exposing a vein to altered hemodynamics by creating an arteriovenous (AV) shunt evokes considerable vessel formation that may be of therapeutic potential. However, it is unclear whether the introduction of oscillatory flow and/or flow increase is decisive. To distinguish between these mechanical stimuli we grafted a femoral vein into the arterial flow pathway of the contralateral limb in rats creating an arterioarterial (AA) loop (n = 7). Alternatively, we connected the femoral artery and vein using the vein graft, whereby we created an AV-loop (n = 27). Vessel loops were embedded in a fibrin filled chamber and blood flow was measured by means of flow probes immediately after surgery (day 0) and 15 days after loop creation. On day 15, animals were sacrificed and angiogenesis was evaluated using μCT and histological analysis. Mean flow increased from 0.5 to 2.4 mL/min and was elevated throughout the cardiac cycle at day 0 in AV-loops whereas, as expected, it remained unchanged in AA-loops. Flow in AV-loops decreased with time, and was at day 15 not different from untreated femoral vessels or AA-loop grafts. Pulsatile flow oscillations were similar in AV-and AA-loops at day 0. The flow amplitude amounted to ~1.3 mL/min which was comparable to values in untreated arteries. Flow amplitude remained constant in AA-loops, whereas it decreased in AV-loops (day 15: 0.4 mL/min). A large number of newly formed vessels were present in AV-loops at day 15 arising from the grafted vein. In marked contrast, angiogenesis originating from the grafted vein was absent in AA-loops. We conclude that exposure to substantially increased flow is required to initiate angiogenesis in grafted veins, whereas selective enhancement of pulsatile flow is unable to do so. This suggests that indeed flow and most likely wall shear stress is decisive to initiate formation of vessels in this hemodynamically driven angiogenesis model.
Collapse
Affiliation(s)
- Volker J. Schmidt
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Johannes G. Hilgert
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer M. Covi
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nico Leibig
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Johanna O. Wietbrock
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elias Polykandriotis
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cor de Wit
- Department for Physiology, Universität zu Lübeck, Lübeck, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department for Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
31
|
Horch RE, Beier JP, Kneser U, Arkudas A. Successful human long-term application of in situ bone tissue engineering. J Cell Mol Med 2014; 18:1478-85. [PMID: 24801710 PMCID: PMC4124030 DOI: 10.1111/jcmm.12296] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022] Open
Abstract
Tissue Engineering (TE) and Regenerative Medicine (RM) have gained much popularity because of the tremendous prospects for the care of patients with tissue and organ defects. To overcome the common problem of donor-site morbidity of standard autologous bone grafts, we successfully combined tissue engineering techniques for the first time with the arteriovenous loop model to generate vascularized large bone grafts. We present two cases of large bone defects after debridement of an osteomyelitis. One of the defects was localized in the radius and one in the tibia. For osseus reconstruction, arteriovenous loops were created as vascular axis, which were placed in the bony defects. In case 1, the bone generation was achieved using cancellous bone from the iliac crest and fibrin glue and in case 2 using a clinically approved β-tricalciumphosphate/hydroxyapatite (HA), fibrin glue and directly auto-transplanted bone marrow aspirate from the iliac crest. The following post-operative courses were uneventful. The final examinations took place after 36 and 72 months after the initial operations. Computer tomogrphy (CT), membrane resonance imaging (MRI) and doppler ultrasound revealed patent arterio-venous (AV) loops in the bone grafts as well as completely healed bone defects. The patients were pain-free with normal ranges of motion. This is the first study demonstrating successfully axially vascularized in situ tissue engineered bone generation in large bone defects in a clinical scenario using the arteriovenous loop model without creation of a significant donor-site defect utilizing TE and RM techniques in human patients with long-term stability.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | | | | | | |
Collapse
|
32
|
Brandl A, Yuan Q, Boos AM, Beier JP, Arkudas A, Kneser U, Horch RE, Bleiziffer O. A novel early precursor cell population from rat bone marrow promotes angiogenesis in vitro. BMC Cell Biol 2014; 15:12. [PMID: 24666638 PMCID: PMC3987126 DOI: 10.1186/1471-2121-15-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 03/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background Some studies demonstrated therapeutic angiogenesis attributable to the effects of endothelial progenitor cells (EPC), others have reported disappointing results. This may be due to the fact that EPC populations used in these contradictory studies were selected and defined by highly variable and differing experimental protocols. Indeed, the isolation and reliable characterization of ex vivo differentiated EPC raises considerable problems due to the fact there is no biomarker currently available to specifically identify EPC exclusively. On the other hand traditional differentiation of primary immature bone marrow cells towards the endothelial lineage is a time-consuming process of up to 5 weeks. To circumvent these shortcomings, we herein describe a facile method to isolate and enrich a primary cell population from rat bone marrow, combining differential attachment methodology with cell sorting technology. Results The combination of these techniques enabled us to obtain a pure population of early endothelial precursor cells that show homogenous upregulation of CD31 and VEGF-R2 and that are positive for CD146. These cells exhibited typical sprouting on Matrigel™. Additionally, this population displayed endothelial tube formation when resuspended in Matrigel™ as well as in fibrin glue, demonstrating its functional angiogenic capacity. Moreover, these cells stained positive for DiI-ac-LDL and FITC-UEA, two markers that are commonly considered to stain differentiating EPCs. Based upon these observations in this study we describe a novel and time-saving method for obtaining a pure endothelial precursor cell population as early as 2–3 weeks post isolation that exhibits endothelial abilities in vitro and which still might have retained its early endothelial lineage properties. Conclusion The rapid isolation and the high angiogenic potential of these syngeneic cells might facilitate and accelerate the pre-vascularization of transplanted tissues and organs also in a human setting in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Oliver Bleiziffer
- Department of Plastic and Hand Surgery, Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nuremberg, Krankenhausstrasse 12, Erlangen 91054, Germany.
| |
Collapse
|
33
|
Schmidt VJ, Hilgert JG, Covi JM, Weis C, Wietbrock JO, de Wit C, Horch RE, Kneser U. High flow conditions increase connexin43 expression in a rat arteriovenous and angioinductive loop model. PLoS One 2013; 8:e78782. [PMID: 24236049 PMCID: PMC3827249 DOI: 10.1371/journal.pone.0078782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/23/2013] [Indexed: 11/25/2022] Open
Abstract
Gap junctions are involved in vascular growth and their expression pattern is modulated in response to hemodynamic conditions. They are clusters of intercellular channels formed by connexins (Cx) of which four subtypes are expressed in the cardiovascular system, namely Cx37, Cx40, Cx43 and Cx45. We hypothesize that high flow conditions affect vascular expression of Cx in vivo. To test this hypothesis, flow hemodynamics and subsequent changes in vascular expression of Cx were studied in an angioinductive rat arteriovenous (AV) loop model. Fifteen days after interposition of a femoral vein graft between femoral artery and vein encased in a fibrin-filled chamber strong neovascularization was evident that emerged predominantly from the graft. Blood flow through the grafted vessel was enhanced ∼4.5-fold accompanied by increased pulsatility exceeding arterial levels. Whereas Cx43 protein expression in the femoral vein is negligible at physiologic flow conditions as judged by immunostaining its expression was enhanced in the endothelium of the venous graft exposed to these hemodynamic changes for 5 days. This was most likely due to enhanced transcription since Cx43 mRNA increased likewise, whereas Cx37 mRNA expression remained unaffected and Cx40 mRNA was reduced. Although enhanced Cx43 expression in regions of high flow in vivo has already been demonstrated, the arteriovenous graft used in the present study provides a reliable model to verify an association between Cx43 expression and high flow conditions in vivo that was selective for this Cx. We conclude that enhancement of blood flow and its oscillation possibly associated with the transition from laminar to more turbulent flow induces Cx43 expression in a vein serving as an AV loop. It is tempting to speculate that this upregulation is involved in the vessel formation occuring in this model as Cx43 was suggested to be involved in angiogenesis.
Collapse
Affiliation(s)
- Volker J. Schmidt
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Johannes G. Hilgert
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jennifer M. Covi
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Weis
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna O. Wietbrock
- Department of Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| | - Cor de Wit
- Department of Physiology, Universität zu Lübeck, Lübeck, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Hand-, Plastic- and Reconstructive Surgery, BG Unfallklinik Ludwigshafen, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Myogenic differentiation of mesenchymal stem cells in a newly developed neurotised AV-loop model. BIOMED RESEARCH INTERNATIONAL 2013; 2013:935046. [PMID: 24106724 PMCID: PMC3782807 DOI: 10.1155/2013/935046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/07/2013] [Indexed: 12/20/2022]
Abstract
Generation of axially vascularized muscle tissue constitutes a promising new approach to restoration of damaged muscle tissue. Mesenchymal stemcells (MSC), with their ability to be expanded to large cell numbers without losing their differentiation capacity into the myogenic lineage, could offer a promising cell source to generate neomuscle tissue. In vitro experiments showed that cocultures of primary myoblasts and MSC undergo myogenic differentiation by stimulation with bFGF and dexamethasone. A newly developed AV-Loop model with neurotization was established in this study. It encompasses axial vascularization and the additional implantation of a motor nerve serving as myogenic stimulator. Myoblasts and MSCs were coimplantated in a prevascularized isolation chamber. Cells were differentiated by addition of bFGF and dexamethasone plus implantation of a motor nerve. After 8 weeks, we could observe areas of myogenic differentiation with α-sarcomeric actin and MHC expression in the constructs. Quantitative PCR analysis showed an expression of myogenic markers in all specimens. Thus, neurotization and addition of bFGF and dexamethasone allow myogenic differentiation of MSC in an axially vascularized in vivo model for the first time. These findings are a new step towards clinical applicability of skeletal muscle tissue engineering and display its potential for regenerative medicine.
Collapse
|
35
|
Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model. Blood Coagul Fibrinolysis 2013; 23:419-27. [PMID: 22576289 DOI: 10.1097/mbc.0b013e3283540c0f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, different fibrin sealants with varying concentrations of the fibrin components were evaluated in terms of matrix degradation and vascularization in the arteriovenous loop (AVL) model of the rat. An AVL was placed in a Teflon isolation chamber filled with 500 μl fibrin gel. The matrix was composed of commercially available fibrin gels, namely Beriplast (Behring GmbH, Marburg, Germany) (group A), Evicel (Omrix Biopharmaceuticals S.A., Somerville, New Jersey, USA) (group B), Tisseel VH S/D (Baxter, Vienna, Austria) with a thrombin concentration of 4 IU/ml and a fibrinogen concentration of 80 mg/ml [Tisseel S F80 (Baxter), group C] and with an fibrinogen concentration of 20 mg/ml [Tisseel S F20 (Baxter), group D]. After 2 and 4 weeks, five constructs per group and time point were investigated using micro-computed tomography, and histological and morphometrical analysis techniques. The aprotinin, factor XIII and thrombin concentration did not affect the degree of clot degradation. An inverse relationship was found between fibrin matrix degradation and sprouting of blood vessels. By reducing the fibrinogen concentration in group D, a significantly decreased construct weight and an increased generation of vascularized connective tissue were detected. There was an inverse relationship between matrix degradation and vascularization detectable. Fibrinogen as the major matrix component showed a significant impact on the matrix properties. Alteration of fibrin gel properties might optimize formation of blood vessels.
Collapse
|
36
|
Arkudas A, Balzer A, Buehrer G, Arnold I, Hoppe A, Detsch R, Newby P, Fey T, Greil P, Horch RE, Boccaccini AR, Kneser U. Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng Part C Methods 2013. [PMID: 23189952 DOI: 10.1089/ten.tec.2012.0572] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, the angiogenetic effect of sintered 45S5 Bioglass® was quantitatively assessed for the first time in the arteriovenous loop (AVL) model. An AVL was created by interposition of a venous graft from the contralateral side between the femoral artery and vein in the medial thigh of eight rats. The loop was placed in a Teflon isolation chamber and was embedded in a sintered 45S5 Bioglass® granula matrix filled with fibrin gel. Specimens were investigated 3 weeks postoperatively by means of microcomputed tomography, histological, and morphometrical techniques. All animals tolerated the operations well. At 3 weeks, both microcomputed tomography and histology demonstrated a dense network of newly formed vessels originating from the AVL. All constructs were filled with cell-rich, highly vascularized connective tissue around the vascular axis. Analysis of vessel diameter revealed constant small vessel diameters, indicating immature new vessel sprouts. This study shows for the first time axial vascularization of a sintered 45S5 Bioglass® granula matrix. After 3 weeks, the newly generated vascular network already interfused most parts of the scaffolds and showed signs of immaturity. The intrinsic type of vascularization allows transplantation of the entire construct using the AVL pedicle.
Collapse
Affiliation(s)
- Andreas Arkudas
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Horch RE, Popescu LM, Polykandriotis E. History of Regenerative Medicine. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Bleiziffer O, Hammon M, Arkudas A, Taeger CD, Beier JP, Amann K, Naschberger E, Stürzl M, Horch RE, Kneser U. Guanylate-binding protein 1 expression from embryonal endothelial progenitor cells reduces blood vessel density and cellular apoptosis in an axially vascularised tissue-engineered construct. BMC Biotechnol 2012; 12:94. [PMID: 23217187 PMCID: PMC3610105 DOI: 10.1186/1472-6750-12-94] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 11/07/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Guanylate binding protein-1 (GBP-1) is a large GTPase which is actively secreted by endothelial cells. It is a marker and intracellular inhibitor of endothelial cell proliferation, migration, and invasion. We previously demonstrated that stable expression of GBP-1 in murine endothelial progenitor cells (EPC) induces their premature differentiation and decreases their migration capacity in vitro and in vivo. The goal of the present study was to assess the antiangiogenic capacity of EPC expressing GBP-1 (GBP-1-EPC) and their impact on blood vessel formation in an axially vascularized 3-D bioartificial construct in vivo. RESULTS Functional in vitro testing demonstrated a significant increase in VEGF secretion by GBP-1-EPC after induction of cell differentiation. Undifferentiated GBP-1-EPC, however, did not secrete increased levels of VEGF compared to undifferentiated control EPC expressing an empty vector (EV-EPC). In our In vivo experiments, we generated axially vascularized tissue-engineered 3-D constructs. The new vascular network arises from an arterio-venous loop (AVL) embedded in a fibrin matrix inside a separation chamber. Total surface area of the construct as calculated from cross sections was larger after transplantation of GBP-1-EPC compared to control EV-EPC. This indicated reduced formation of fibrovascular tissue and less resorption of fibrin matrix compared to constructs containing EV-EPC. Most notably, the ratio of blood vessel surface area over total construct surface area in construct cross sections was significantly reduced in the presence of GBP-1-EPC. This indicates a significant reduction of blood vessel density and thereby inhibition of blood vessel formation from the AVL constructs caused by GBP-1. In addition, GBP-1 expressed from EPC significantly reduced cell apoptosis compared to GBP-1-negative controls. CONCLUSION Transgenic EPC expressing the proinflammatory antiangiogenic GTPase GBP-1 can reduce blood vessel density and inhibit apoptosis in a developing bioartificial vascular network and may become a new powerful tool to manipulate angiogenetic processes in tissue engineering and other pathological conditions such as tumour angiogenesis.
Collapse
Affiliation(s)
- Oliver Bleiziffer
- Department of Plastic and Hand Surgery, University of Erlangen-Nuremberg, Krankenhausstr 12 91054, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Horch RE, Kneser U, Polykandriotis E, Schmidt VJ, Sun J, Arkudas A. Tissue engineering and regenerative medicine -where do we stand? J Cell Mol Med 2012; 16:1157-65. [PMID: 22436120 PMCID: PMC3823070 DOI: 10.1111/j.1582-4934.2012.01564.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tissue Engineering (TE) in the context of Regenerative Medicine (RM) has been hailed for many years as one of the most important topics in medicine in the twenty-first century. While the first clinically relevant TE efforts were mainly concerned with the generation of bioengineered skin substitutes, subsequently TE applications have been continuously extended to a wide variety of tissues and organs. The advent of either embryonic or mesenchymal adult stem-cell technology has fostered many of the efforts to combine this promising tool with TE approaches and has merged the field into the term Regenerative Medicine. As a typical example in translational medicine, the discovery of a new type of cells called Telocytes that have been described in many organs and have been detected by electron microscopy opens another gate to RM. Besides cell-therapy strategies, the application of gene therapy combined with TE has been investigated to generate tissues and organs. The vascularization of constructs plays a crucial role besides the matrix and cell substitutes. Therefore, novel in vivo models of vascularization have evolved allowing axial vascularization with subsequent transplantation of constructs. This article is intended to give an overview over some of the most recent developments and possible applications in RM through the perspective of TE achievements and cellular research. The synthesis of TE with innovative methods of molecular biology and stem-cell technology appears to be very promising.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery And Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Eweida AM, Nabawi AS, Elhammady HA, Marei MK, Khalil MR, Shawky MS, Arkudas A, Beier JP, Unglaub F, Kneser U, Horch RE. Axially vascularized bone substitutes: a systematic review of literature and presentation of a novel model. Arch Orthop Trauma Surg 2012; 132:1353-62. [PMID: 22643804 DOI: 10.1007/s00402-012-1550-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Indexed: 01/14/2023]
Abstract
INTRODUCTION The creation of axially vascularized bone substitutes (AVBS) has been successfully demonstrated in several animal models. One prototypical indication is bone replacement in patients with previously irradiated defect sites, such as in the mandibular region. The downside of current clinical practice, when free fibular or scapular grafts are used, is the creation of significant donor site morbidity. METHODS Based on our previous experiments, we extended the creation of an arterio-venous loop to generate vascularized bone substitutes to a new defect model in the goat mandibula. In this report, we review the literature regarding different models for axially vascularized bone substitutes and present a novel model demonstrating the feasibility of combining this model with synthetic porous scaffold materials and biological tissue adhesives to grow cells and tissue. RESULTS We were able to show the principal possibility to generate axially vascularized bony substitutes in vivo in goat mandibular defects harnessing the regenerative capacity of the living organism and completely avoiding donor site morbidity. CONCLUSION From our findings, we conclude that this novel model may well offer new perspectives for orthopedic and traumatic bone defects that might benefit from the reduction of donor site morbidity.
Collapse
Affiliation(s)
- A M Eweida
- Faculty of Medicine, Department of Head and Neck and Endocrine Surgery, University of Alexandria, ElKhartoom square, Elazarita, Alexandria, Egypt.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Polykandriotis E, Arkudas A, Beier JP, Dragu A, Rath S, Pryymachuk G, Schmidt VJ, Lametschwandtner A, Horch RE, Kneser U. The impact of VEGF and bFGF on vascular stereomorphology in the context of angiogenic neo-arborisation after vascular induction. JOURNAL OF ELECTRON MICROSCOPY 2011; 60:267-274. [PMID: 21622976 DOI: 10.1093/jmicro/dfr025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The aim of this in vivo study was to gather quantitative information on the three-dimensional morphology of a new vascular network under the influence of angioactive growth factors. For this purpose, the arteriovenous loop model was used in 10 Lewis rats to generate a bioartificial vascular assembly by means of vascular induction. In this model, an isolated organoid is created in the medial thigh of the animal by methods of tissue engineering. A fibrin gel containing vascular endothelial growth factor (VEGF(165)) and basic fibroblastic growth factor (bFGF) was used as a matrix in the effect group (GF+). Fibrin matrices devoid of growth factors were used as controls (GF-). A microvascular replica of the organoid was created by means of corrosion casting and the network was investigated on stereo-paired images obtained by scanning electron microscopy. Vectors of intercapillary and interbranching distances as well as the diameter of the pores in the intussusceptive events diameter and the ratio of sprouting versus intussusceptive angiogenic events were compared in the two groups. The results were highly significant. In the GF+ group there were more profound three-dimensional morphological traits of angiogenesis, whereas advanced neovascularisation in the phase of remodelling was demonstrated by a higher incidence of intussusception, compared to control. These results illustrate the importance of morphological studies with focus on the generation of three-dimensional vascular networks.
Collapse
Affiliation(s)
- E Polykandriotis
- Department of Plastic and Hand Surgery, University of Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Eweida AM, Nabawi AS, Marei MK, Khalil MR, Elhammady HA. Mandibular reconstruction using an axially vascularized tissue-engineered construct. ANNALS OF SURGICAL INNOVATION AND RESEARCH 2011; 5:2. [PMID: 21418603 PMCID: PMC3069948 DOI: 10.1186/1750-1164-5-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/20/2011] [Indexed: 01/15/2023]
Abstract
Background Current reconstructive techniques for continuity defects of the mandible include the use of free flaps, bone grafts, and alloplastic materials. New methods of regenerative medicine designed to restore tissues depend mainly on the so-called extrinsic neovascularization, where the neovascular bed originates from the periphery of the construct. This method is not applicable for large defects in irradiated fields. Methods We are introducing a new animal model for mandibular reconstruction using intrinsic axial vascularization by the Arterio-Venous (AV) loop. In order to test this model, we made cadaveric, mechanical loading, and surgical pilot studies on adult male goats. The cadaveric study aimed at defining the best vascular axis to be used in creating the AV loop in the mandibular region. Mechanical loading studies (3 points bending test) were done to ensure that the mechanical properties of the mandible were significantly affected by the designed defect, and to put a base line for further mechanical testing after bone regeneration. A pilot surgical study was done to ensure smooth operative and post operative procedures. Results The best vascular axis to reconstruct defects in the posterior half of the mandible is the facial artery (average length 32.5 ± 1.9 mm, caliber 2.5 mm), and facial vein (average length 33.3 ± 1.8 mm, caliber 2.6 mm). Defects in the anterior half require an additional venous graft. The defect was shown to be significantly affecting the mechanical properties of the mandible (P value 0.0204). The animal was able to feed on soft diet from the 3rd postoperative day and returned to normal diet within a week. The mandible did not break during the period of follow up (2 months). Conclusions Our model introduces the concept of axial vascularization of mandibular constructs. This model can be used to assess bone regeneration for large bony defects in irradiated fields. This is the first study to introduce the concept of axial vascularization using the AV loop for angiogenesis in the mandibular region. Moreover, this is the first study aiming at axial vascularization of synthetic tissue engineering constructs at the site of the defect without any need for tissue transfer (in contrast to what was done previously in prefabricated flaps).
Collapse
Affiliation(s)
- Ahmad M Eweida
- Department of Head and Neck and Endocrine Surgery, Faculty of Medicine, University of Alexandria, Egypt.
| | | | | | | | | |
Collapse
|
43
|
Polykandriotis E, Popescu LM, Horch RE. Regenerative medicine: then and now--an update of recent history into future possibilities. J Cell Mol Med 2011; 14:2350-8. [PMID: 20825521 PMCID: PMC3823153 DOI: 10.1111/j.1582-4934.2010.01169.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The fields of tissue engineering (TE) and regenerative medicine (RegMed) are yet to bring about the anticipated therapeutic revolution. After two decades of extremely high expectations and often disappointing returns both in the medical as well as in the financial arena, this scientific field reflects the sense of a new era and suggests the feeling of making a fresh start although many scientists are probably seeking reorientation. Much of research was industry driven, so that especially in the aftermath of the recent financial meltdown in the last 2 years we have witnessed a biotech asset yard sale. Despite any monetary shortcomings, from a technological point of view there have been great leaps that are yet to find their way to the patient. RegMed is definitely bound to play a major role in our life because it embodies one of the primordial dreams of mankind, such as: everlasting youth, flying, remote communication and setting foot on the moon. The Journal of Cellular and Molecular Medicine has been at the frontier of these developments in TE and RegMed from its beginning and reflects recent scientific advances in both fields. Therefore this review tries to look at RegMed through the keyhole of history which might just be like looking ‘back to the future’.
Collapse
Affiliation(s)
- E Polykandriotis
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University of Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
44
|
Zdolsek JM, Morrison WA, Dingle AM, Palmer JA, Penington AJ, Mitchell GM. An “off the shelf” vascular allograft supports angiogenic growth in three-dimensional tissue engineering. J Vasc Surg 2011; 53:435-44. [DOI: 10.1016/j.jvs.2010.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 06/25/2010] [Accepted: 08/08/2010] [Indexed: 02/05/2023]
|
45
|
|
46
|
Arkudas A, Beier JP, Pryymachuk G, Hoereth T, Bleiziffer O, Polykandriotis E, Hess A, Gulle H, Horch RE, Kneser U. Automatic Quantitative Micro-Computed Tomography Evaluation of Angiogenesis in an Axially Vascularized Tissue-Engineered Bone Construct. Tissue Eng Part C Methods 2010; 16:1503-14. [DOI: 10.1089/ten.tec.2010.0016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Andreas Arkudas
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Justus Patrick Beier
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Galyna Pryymachuk
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Tobias Hoereth
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Oliver Bleiziffer
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Elias Polykandriotis
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Andreas Hess
- Institute of Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| |
Collapse
|
47
|
[The development of plastic surgery: retrospective view of 80 years of "Der Chirurg" (The Surgeon)]. Chirurg 2010; 80:1132-9. [PMID: 19882333 DOI: 10.1007/s00104-009-1778-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The often groundbreaking developments of new methods in Plastic Surgery have been published in the journal "Der Chirurg" (The Surgeon) ever since its foundation in 1928, when it was established as a journal dealing with all aspects of surgery and containing many innovations and developments. Historically this is also reflected in the establishment of Plastic Surgery initially as a subspecialty and later on as a specialty within the German Society for Surgery. The interdisciplinary character of modern reconstructive and oncological concepts, not only with other specialties but also within various surgical specialties, raises further challenges and leads to new developments in reconstruction, which will definitely induce an increasing amount of knowledge to the advantage of our patients. Scientific and clinical advances over the last 80 years give rise to the hope that similar success will be attained for reconstruction of traumatic and oncological defects and malformations or disfigurations in the future. Consolidated findings from regenerative medicine and tissue engineering will enrich the daily practice of surgical reconstruction.
Collapse
|
48
|
Beier JP, Horch RE, Hess A, Arkudas A, Heinrich J, Loew J, Gulle H, Polykandriotis E, Bleiziffer O, Kneser U. Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med 2010; 4:216-23. [DOI: 10.1002/term.229] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther 2010; 10:409-20. [PMID: 20132061 PMCID: PMC4580374 DOI: 10.1517/14712590903563352] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. AREAS COVERED IN THIS REVIEW We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. WHAT THE READER WILL GAIN The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. TAKE HOME MESSAGE It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.
Collapse
Affiliation(s)
- Richard P Visconti
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Kasyanov
- Riga Stradins University, Department of Anatomy and Anthropology, Riga, Latvia
| | - Carmine Gentile
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Jing Zhang
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Roger R Markwald
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Vladimir Mironov
- Medical University of South Carolina, Bioprinting Research Center, Department of Regenerative Medicine and Cell Biology, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
50
|
Arkudas A, Pryymachuk G, Hoereth T, Beier JP, Polykandriotis E, Bleiziffer O, Horch RE, Kneser U. Dose-finding study of fibrin gel-immobilized vascular endothelial growth factor 165 and basic fibroblast growth factor in the arteriovenous loop rat model. Tissue Eng Part A 2009; 15:2501-11. [PMID: 19292678 DOI: 10.1089/ten.tea.2008.0477] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The angiogenic effects of different concentrations of vascular endothelial growth factor (VEGF) 165 and basic fibroblast growth factor (bFGF) immobilized in a fibrin-based drug-delivery system were quantitatively assessed in the arteriovenous (AV) loop model. An AV loop was created in the medial thigh of 60 rats. The loop was placed in a Teflon isolation chamber and embedded in 500 microL of fibrin gel loaded with VEGF and bFGF in four different concentrations (no growth factor, 100 ng/mL of VEGF, 25 ng/mL of VEGF and bFGF, 100 ng/mL pf VEGF and bFGF). The explantation intervals were 1, 2, and 4 weeks after the initial operation for all groups. Specimens were investigated using (micro-CT) and histological and morphometrical techniques. After 2 weeks, the cross-section area and construct weight were significantly lower with the use of 100 ng/mL of VEGF and bFGF. Micro-CT and histology showed significantly greater vascular density and number of vessels of the constructs at 2 and 4 weeks when 100 ng/mL of VEGF165 and bFGF were applied than in the growth factor-free specimens. The angioinductive effects were dose-dependent, with best results when using 100 ng/mL of VEGF165 and bFGF. The greater tissue formation was accompanied by faster resorption of the fibrin matrix.
Collapse
Affiliation(s)
- Andreas Arkudas
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|