1
|
Lanna MF, Resende LA, De Luca PM, Goes WM, Zaldívar MF, Costa AT, Dutra WO, Reis AB, Martins-Filho OA, Gollob KJ, de Moura SAL, Dias ES, Monteiro ÉM, Silveira-Lemos D, Giunchetti RC. Application of the Sponge Model Implants in the Study of Vaccine Memory in Mice Previously Immunized with LBSap. Vaccines (Basel) 2024; 12:1322. [PMID: 39771984 PMCID: PMC11680354 DOI: 10.3390/vaccines12121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Considering the large number of candidates in vaccine-testing studies against different pathogens and the amount of time spent in the preclinical and clinical trials, there is a pressing need to develop an improved in vivo system to quickly screen vaccine candidates. The model of a polyester-polyurethane sponge implant provides a rapid analysis of the specific stimulus-response, allowing the study of a compartmentalized microenvironment. The sponge implant's defined measurements were standardized as a compartment to assess the immune response triggered by the vaccinal antigen. The LBSap vaccine (composed of Leishmania braziliensis antigens associated with saponin adjuvant) was used in the sponge model to assess the antigen-specific immunological biomarker, including memory generation after initial contact with the antigen. METHODS Mice strains (Swiss, BALB/c, and C57BL/6) were previously immunized using LBSap vaccine, followed by an antigenic booster performed inside the sponge implant. The sponge implants were assessed after 72 h, and the immune response pattern was analyzed according to leukocyte immunophenotyping and cytokine production. RESULTS After LBSap vaccination, the innate immune response of the antigenic booster in the sponge implants demonstrated higher levels in the Ly+ neutrophils and CD11c+ dendritic cells with reduced numbers of F4/80+ macrophages. Moreover, the adaptive immune response in Swiss mice demonstrated a high CD3+CD4+ T-cell frequency, consisting of an effector memory component, in addition to a cytoxicity response (CD3+CD8+ T cells), displaying the central memory biomarker. The major cell surface biomarker in the BALB/c mice strain was related to CD3+CD4+ effector memory, while the increased CD3+CD8+ effector memory was highlighted in C57/BL6. The cytokine profile was more inflammatory in Swiss mice, with the highest levels of IL-6, TNF, IFN-g, and IL-17, while the same cytokine was observed in in C57BL/6 yet modulated by enhanced IL-10 levels. Similar to Swiss mice, BALB/c mice triggered an inflammatory environment after the antigenic booster in the sponge implant with the increased levels in the ILL-6, TNF, and IFN-g. CONCLUSIONS The findings emphasized the impact of genetic background on the populations engaged in immune responses, suggesting that this model can be utilized to enhance and track both innate and adaptive immune responses in vaccine candidates. Consequently, these results may inform the selection of the most suitable experimental model for biomolecule testing, taking into account how the unique characteristics of each mouse strain affect the immune response dynamics.
Collapse
Affiliation(s)
- Mariana Ferreira Lanna
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
- Immunopathology Laboratory, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Lucilene Aparecida Resende
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Paula Mello De Luca
- Instituto Oswaldo Cruz (IOC), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, RJ, Brazil
| | - Wanessa Moreira Goes
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - André Tetzl Costa
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Alexandre Barbosa Reis
- Immunopathology Laboratory, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil
| | - Kenneth Jhon Gollob
- Albert Einstein Israeli Institute of Education and Research, Albert Einstein Hospital, São Paulo 05652-900, SP, Brazil
| | - Sandra Aparecida Lima de Moura
- Biomaterials and Experimental Pathology Laboratory, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Edelberto Santos Dias
- Taxonomy of Phlebotomines/Epidemiology, Diagnosis and Control of Leishmaniasis Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil; (E.S.D.); (É.M.M.)
| | - Érika Michalsky Monteiro
- Taxonomy of Phlebotomines/Epidemiology, Diagnosis and Control of Leishmaniasis Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil; (E.S.D.); (É.M.M.)
| | - Denise Silveira-Lemos
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
- Department of Medicine, José Rosário Vellano University, Belo Horizonte Campus, Belo Horizonte 31270-020, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| |
Collapse
|
2
|
Scoyni F, Sitnikova V, Giudice L, Korhonen P, Trevisan DM, Hernandez de Sande A, Gomez-Budia M, Giniatullina R, Ugidos IF, Dhungana H, Pistono C, Korvenlaita N, Välimäki NN, Kangas SM, Hiltunen AE, Gribchenko E, Kaikkonen-Määttä MU, Koistinaho J, Ylä-Herttuala S, Hinttala R, Venø MT, Su J, Stoffel M, Schaefer A, Rajewsky N, Kjems J, LaPierre MP, Piwecka M, Jolkkonen J, Giniatullin R, Hansen TB, Malm T. ciRS-7 and miR-7 regulate ischemia-induced neuronal death via glutamatergic signaling. Cell Rep 2024; 43:113862. [PMID: 38446664 DOI: 10.1016/j.celrep.2024.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.
Collapse
Affiliation(s)
- Flavia Scoyni
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland.
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Davide M Trevisan
- Department of Biosciences and Nutrition, Karolinska Institute, 17177 Stockholm, Sweden
| | | | - Mireia Gomez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland
| | - Cristiana Pistono
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Nelli-Noora Välimäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | | | - Anniina E Hiltunen
- Medical Research Center Oulu and Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Emma Gribchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Minna U Kaikkonen-Määttä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland; Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, 90014 Oulu, Finland; Medical Research Center Oulu and Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Morten T Venø
- Omiics ApS, 8200 Aarhus, Denmark; Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Junyi Su
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Anne Schaefer
- Departments of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6504, USA; Max Planck Institute, Biology of Ageing, 50931 Cologne, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Thomas B Hansen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland.
| |
Collapse
|
3
|
Reid VJM, McLoughlin WKX, Pandya K, Stott H, Iškauskienė M, Šačkus A, Marti JA, Kurian D, Wishart TM, Lucatelli C, Peters D, Gray GA, Baker AH, Newby DE, Hadoke PWF, Tavares AAS, MacAskill MG. Assessment of the alpha 7 nicotinic acetylcholine receptor as an imaging marker of cardiac repair-associated processes using NS14490. EJNMMI Res 2024; 14:7. [PMID: 38206500 PMCID: PMC10784260 DOI: 10.1186/s13550-023-01058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cardiac repair and remodeling following myocardial infarction (MI) is a multifactorial process involving pro-reparative inflammation, angiogenesis and fibrosis. Noninvasive imaging using a radiotracer targeting these processes could be used to elucidate cardiac wound healing mechanisms. The alpha7 nicotinic acetylcholine receptor (ɑ7nAChR) stimulates pro-reparative macrophage activity and angiogenesis, making it a potential imaging biomarker in this context. We investigated this by assessing in vitro cellular expression of ɑ7nAChR, and by using a tritiated version of the PET radiotracer [18F]NS14490 in tissue autoradiography studies. RESULTS ɑ7nAChR expression in human monocyte-derived macrophages and vascular cells showed the highest relative expression was within macrophages, but only endothelial cells exhibited a proliferation and hypoxia-driven increase in expression. Using a mouse model of inflammatory angiogenesis following sponge implantation, specific binding of [3H]NS14490 increased from 3.6 ± 0.2 µCi/g at day 3 post-implantation to 4.9 ± 0.2 µCi/g at day 7 (n = 4, P < 0.01), followed by a reduction at days 14 and 21. This peak matched the onset of vessel formation, macrophage infiltration and sponge fibrovascular encapsulation. In a rat MI model, specific binding of [3H]NS14490 was low in sham and remote MI myocardium. Specific binding within the infarct increased from day 14 post-MI (33.8 ± 14.1 µCi/g, P ≤ 0.01 versus sham), peaking at day 28 (48.9 ± 5.1 µCi/g, P ≤ 0.0001 versus sham). Histological and proteomic profiling of ɑ7nAChR positive tissue revealed strong associations between ɑ7nAChR and extracellular matrix deposition, and rat cardiac fibroblasts expressed ɑ7nAChR protein under normoxic and hypoxic conditions. CONCLUSION ɑ7nAChR is highly expressed in human macrophages and showed proliferation and hypoxia-driven expression in human endothelial cells. While NS14490 imaging displays a pattern that coincides with vessel formation, macrophage infiltration and fibrovascular encapsulation in the sponge model, this is not the case in the MI model where the ɑ7nAChR imaging signal was strongly associated with extracellular matrix deposition which could be explained by ɑ7nAChR expression in fibroblasts. Overall, these findings support the involvement of ɑ7nAChR across several processes central to cardiac repair, with fibrosis most closely associated with ɑ7nAChR following MI.
Collapse
Affiliation(s)
- Victoria J M Reid
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | | | - Kalyani Pandya
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Holly Stott
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Monika Iškauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Judit A Marti
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Dominic Kurian
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Thomas M Wishart
- Proteomics and Metabolomics Facility, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Dan Peters
- DanPET AB, Malmo, Sweden
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gillian A Gray
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - David E Newby
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Patrick W F Hadoke
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK
| | - Mark G MacAskill
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Danso IK, Woo JH, Lee K. Pulmonary Toxicity of Polystyrene, Polypropylene, and Polyvinyl Chloride Microplastics in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227926. [PMID: 36432032 PMCID: PMC9694469 DOI: 10.3390/molecules27227926] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Globally, plastics are used in various products. Concerns regarding the human body's exposure to plastics and environmental pollution have increased with increased plastic use. Microplastics can be detected in the atmosphere, leading to potential human health risks through inhalation; however, the toxic effects of microplastic inhalation are poorly understood. In this study, we examined the pulmonary toxicity of polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) in C57BL/6, BALB/c, and ICR mice strains. Mice were intratracheally instilled with 5 mg/kg of PS, PP, or PVC daily for two weeks. PS stimulation increased inflammatory cells in the bronchoalveolar lavage fluid (BALF) of C57BL/6 and ICR mice. Histopathological analysis of PS-instilled C57BL/6 and PP-instilled ICR mice showed inflammatory cell infiltration. PS increased the NLR family pyrin domain containing 3 (NLRP3) inflammasome components in the lung tissue of C57BL/6 and ICR mice, while PS-instilled BALB/c mice remained unchanged. PS stimulation increased inflammatory cytokines, including IL-1β and IL-6, in BALF of C57BL/6 mice. PP-instilled ICR mice showed increased NLRP3, ASC, and Caspase-1 in the lung tissue compared to the control groups and increased IL-1β levels in BALF. These results could provide baseline data for understanding the pulmonary toxicity of microplastic inhalation.
Collapse
Affiliation(s)
- Isaac Kwabena Danso
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baekhak 1-gil, Jeongeup 56212, Jeollabuk-do, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jong-Hwan Woo
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baekhak 1-gil, Jeongeup 56212, Jeollabuk-do, Republic of Korea
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baekhak 1-gil, Jeongeup 56212, Jeollabuk-do, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea
- Correspondence: ; Tel.: +82-63-570-8740
| |
Collapse
|
5
|
Steele LA, Spiller KL, Cohen S, Rom S, Polyak B. Temporal Control over Macrophage Phenotype and the Host Response via Magnetically Actuated Scaffolds. ACS Biomater Sci Eng 2022; 8:3526-3541. [PMID: 35838679 DOI: 10.1021/acsbiomaterials.2c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic strain generated at the cell-material interface is critical for the engraftment of biomaterials. Mechanosensitive immune cells, macrophages regulate the host-material interaction immediately after implantation by priming the environment and remodeling ongoing regenerative processes. This study investigated the ability of mechanically active scaffolds to modulate macrophage function in vitro and in vivo. Remotely actuated magnetic scaffolds enhance the phenotype of murine classically activated (M1) macrophages, as shown by the increased expression of the M1 cell-surface marker CD86 and increased secretion of multiple M1 cytokines. When scaffolds were implanted subcutaneously into mice and treated with magnetic stimulation for 3 days beginning at either day 0 or day 5 post-implantation, the cellular infiltrate was enriched for host macrophages. Macrophage expression of the M1 marker CD86 was increased, with downstream effects on vascularization and the foreign body response. Such effects were not observed when the magnetic treatment was applied at later time points after implantation (days 12-15). These results advance our understanding of how remotely controlled mechanical cues, namely, cyclic strain, impact macrophage function and demonstrate the feasibility of using mechanically active nanomaterials to modulate the host response in vivo.
Collapse
Affiliation(s)
- Lindsay A Steele
- Department of Surgery, College of Medicine, Drexel University, 245 N. 15th Street, Philadelphia 19102, Pennsylvania, United States
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 712, Philadelphia 19104, Pennsylvania, United States
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva Blvd. 1, Bldg. 42, Room 328, Beer-Sheva 84105, Israel
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia 19140, Pennsylvania, United States.,Center for Substance Abuse Research, Temple University, 3500 N. Broad Street, Medical Education and Research Building, Room 842, Philadelphia 19140, Pennsylvania, United States
| | - Boris Polyak
- Department of Surgery, College of Medicine, Drexel University, 245 N. 15th Street, Philadelphia 19102, Pennsylvania, United States
| |
Collapse
|
6
|
Aarntzen EHJG, Noriega-Álvarez E, Artiko V, Dias AH, Gheysens O, Glaudemans AWJM, Lauri C, Treglia G, van den Wyngaert T, van Leeuwen FWB, Terry SYA. EANM recommendations based on systematic analysis of small animal radionuclide imaging in inflammatory musculoskeletal diseases. EJNMMI Res 2021; 11:85. [PMID: 34487263 PMCID: PMC8421483 DOI: 10.1186/s13550-021-00820-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022] Open
Abstract
Inflammatory musculoskeletal diseases represent a group of chronic and disabling conditions that evolve from a complex interplay between genetic and environmental factors that cause perturbations in innate and adaptive immune responses. Understanding the pathogenesis of inflammatory musculoskeletal diseases is, to a large extent, derived from preclinical and basic research experiments. In vivo molecular imaging enables us to study molecular targets and to measure biochemical processes non-invasively and longitudinally, providing information on disease processes and potential therapeutic strategies, e.g. efficacy of novel therapeutic interventions, which is of complementary value next to ex vivo (post mortem) histopathological analysis and molecular assays. Remarkably, the large body of preclinical imaging studies in inflammatory musculoskeletal disease is in contrast with the limited reports on molecular imaging in clinical practice and clinical guidelines. Therefore, in this EANM-endorsed position paper, we performed a systematic review of the preclinical studies in inflammatory musculoskeletal diseases that involve radionuclide imaging, with a detailed description of the animal models used. From these reflections, we provide recommendations on what future studies in this field should encompass to facilitate a greater impact of radionuclide imaging techniques on the translation to clinical settings.
Collapse
Affiliation(s)
- Erik H J G Aarntzen
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Medical Imaging, Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Edel Noriega-Álvarez
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine, General University Hospital of Ciudad Real, Ciudad Real, Spain
| | - Vera Artiko
- Inflammation and Infection Committee EANM, Vienna, Austria
- Center for Nuclear Medicine Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - André H Dias
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Olivier Gheysens
- Inflammation and Infection Committee EANM, Vienna, Austria
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Andor W J M Glaudemans
- Inflammation and Infection Committee EANM, Vienna, Austria.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen Medical Imaging Center, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Chiara Lauri
- Inflammation and Infection Committee EANM, Vienna, Austria
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Giorgio Treglia
- Inflammation and Infection Committee EANM, Vienna, Austria
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Tim van den Wyngaert
- Bone and Joint Committee EANM, Vienna, Austria
- Antwerp University Hospital Belgium, Edegem, Belgium
- Molecular Imaging Center Antwerp (MICA) - IPPON, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Fijs W B van Leeuwen
- Translational Molecular Imaging and Therapy Committee EANM, Vienna, Austria
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Samantha Y A Terry
- Inflammation and Infection Committee EANM, Vienna, Austria.
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
7
|
Franco MS, Silva CA, Leite EA, Silveira JN, Teixeira CS, Cardoso VN, Ferreira E, Cassali GD, Branco de Barros AL, Oliveira MC. Investigation of the antitumor activity and toxicity of cisplatin loaded pH-sensitive-pegylated liposomes in a triple negative breast cancer animal model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Slc1a3-2A-CreERT2 mice reveal unique features of Bergmann glia and augment a growing collection of Cre drivers and effectors in the 129S4 genetic background. Sci Rep 2021; 11:5412. [PMID: 33686166 PMCID: PMC7940647 DOI: 10.1038/s41598-021-84887-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic variation is a primary determinant of phenotypic diversity. In laboratory mice, genetic variation can be a serious experimental confounder, and thus minimized through inbreeding. However, generalizations of results obtained with inbred strains must be made with caution, especially when working with complex phenotypes and disease models. Here we compared behavioral characteristics of C57Bl/6—the strain most widely used in biomedical research—with those of 129S4. In contrast to 129S4, C57Bl/6 demonstrated high within-strain and intra-litter behavioral hyperactivity. Although high consistency would be advantageous, the majority of disease models and transgenic tools are in C57Bl/6. We recently established six Cre driver lines and two Cre effector lines in 129S4. To augment this collection, we genetically engineered a Cre line to study astrocytes in 129S4. It was validated with two Cre effector lines: calcium indicator gCaMP5g-tdTomato and RiboTag—a tool widely used to study cell type-specific translatomes. These reporters are in different genomic loci, and in both the Cre was functional and astrocyte-specific. We found that calcium signals lasted longer and had a higher amplitude in cortical compared to hippocampal astrocytes, genes linked to a single neurodegenerative disease have highly divergent expression patterns, and that ribosome proteins are non-uniformly expressed across brain regions and cell types.
Collapse
|
9
|
Viscardi AV, Reppert EJ, Kleinhenz MD, Wise P, Lin Z, Montgomery S, Daniell H, Curtis A, Martin M, Coetzee JF. Analgesic Comparison of Flunixin Meglumine or Meloxicam for Soft-Tissue Surgery in Sheep: A Pilot Study. Animals (Basel) 2021; 11:ani11020423. [PMID: 33562143 PMCID: PMC7914688 DOI: 10.3390/ani11020423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Pain management is lacking in U.S. commercial sheep production systems. This is, in part, due to the limited amount of scientific data evaluating sheep pain responses after analgesia treatment. Non-steroidal anti-inflammatory drugs (NSAIDs), such as meloxicam (MEL) and flunixin meglumine (FLU), are the most common drug class provided to livestock species to manage pain. Pain assessment tools, such as facial grimace scales, which use changes in facial expression to monitor pain, are also needed to improve pain management and sheep welfare. In this study, sheep undergoing a laparotomy (a surgical procedure where an incision is made into the abdominal cavity) were treated with either MEL or FLU to manage pain. A third group of ewes did not undergo surgery and served as study controls (CON). Behavior and physiologic outcome measures were collected pre-procedure and up to 48 h post-procedure. The results suggest that MEL and FLU were equally effective at providing post-operative analgesia; however, even with NSAID administration, acute pain and inflammation were still present in surgical sheep compared to non-surgical controls. The facial grimace scale results were not consistent with the other outcome measures taken in this study and it should not be used as a stand-alone pain assessment tool. Abstract The amount of scientific data evaluating sheep pain responses after analgesia treatment is limited. The aims of this study were to compare the efficacy of flunixin meglumine (FLU) and meloxicam (MEL) at relieving post-surgical pain in sheep and to evaluate the utility of the Sheep Grimace Scale (SGS). Thirty ewes were assigned to one of three treatment groups: oral MEL or intravenous FLU to manage pain associated with a laparotomy procedure, or a non-surgical control (CON) group. Behavior and physiologic outcome measures were collected pre-procedure and up to 48 h post-procedure. There were no significant differences in behavior, gait, degree of inflammation or pain around the surgical site when MEL and FLU sheep were compared, suggesting that both drugs provided similar levels of analgesia. Significant differences in behavior, gait, abdominal inflammation and pain were found when surgical sheep were compared to non-surgical controls. More work is needed to characterize the amount of pain relief provided by MEL and FLU. The SGS had moderate reliability between scorers; however, the results were inconsistent with the other study outcome measures. The SGS may have some utility as a pain assessment tool but should be used in conjunction with other pain measures.
Collapse
Affiliation(s)
- Abbie V. Viscardi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (P.W.); (Z.L.); (S.M.); (A.C.); (M.M.); (J.F.C.)
- Correspondence:
| | - Emily J. Reppert
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (E.J.R.); (M.D.K.)
| | - Michael D. Kleinhenz
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (E.J.R.); (M.D.K.)
| | - Payton Wise
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (P.W.); (Z.L.); (S.M.); (A.C.); (M.M.); (J.F.C.)
| | - Zhoumeng Lin
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (P.W.); (Z.L.); (S.M.); (A.C.); (M.M.); (J.F.C.)
- Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Shawnee Montgomery
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (P.W.); (Z.L.); (S.M.); (A.C.); (M.M.); (J.F.C.)
| | - Hayley Daniell
- Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Andrew Curtis
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (P.W.); (Z.L.); (S.M.); (A.C.); (M.M.); (J.F.C.)
| | - Miriam Martin
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (P.W.); (Z.L.); (S.M.); (A.C.); (M.M.); (J.F.C.)
| | - Johann F. Coetzee
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (P.W.); (Z.L.); (S.M.); (A.C.); (M.M.); (J.F.C.)
- Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
10
|
Lanna MF, Resende LA, Aguiar-Soares RDDO, de Miranda MB, de Mendonça LZ, Melo Júnior OADO, Mariano RMDS, Leite JC, Silveira P, Corrêa-Oliveira R, Dutra WO, Reis AB, Martins-Filho OA, de Moura SAL, Silveira-Lemos D, Giunchetti RC. Kinetics of Phenotypic and Functional Changes in Mouse Models of Sponge Implants: Rational Selection to Optimize Protocols for Specific Biomolecules Screening Purposes. Front Bioeng Biotechnol 2020; 8:538203. [PMID: 33344427 PMCID: PMC7738572 DOI: 10.3389/fbioe.2020.538203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
The sponge implant has been applied as an important in vivo model for the study of inflammatory processes as it induces the migration, proliferation, and accumulation of inflammatory cells, angiogenesis, and extracellular matrix deposition in its trabeculae. The characterization of immune events in sponge implants would be useful in identifying the immunological events that could support the selection of an appropriate experimental model (mouse strain) and time post-implant analysis in optimized protocols for novel applications of this model such as in biomolecules screening. Here, the changes in histological/morphometric, immunophenotypic and functional features of infiltrating leukocytes (LEU) were assessed in sponge implants for Swiss, BALB/c, and C57BL/6 mice. A gradual increase of fibrovascular stroma and a progressive decrease in LEU infiltration, mainly composed of polymorphonuclear cells with progressive shift toward mononuclear cells at late time-points were observed over time. Usually, Swiss mice presented a more prominent immune response with late mixed pattern (pro-inflammatory/anti-inflammatory: IL-2/IFN-γ/IL-4/IL-10/IL-17) of cytokine production. While BALB/c mice showed an early activation of the innate response with a controlled cytokine profile (low inflammatory potential), C57BL/6 mice presented a typical early pro-inflammatory (IL-6/TNF/IFN-γ) response with persistent neutrophilic involvement. A rational selection of the ideal time-point/mouse-lineage would avoid bias or tendentious results. Criteria such as low number of increased biomarkers, no recruitment of cytotoxic response, minor cytokine production, and lower biomarker connectivity (described as biomarker signature analysis and network analysis) guided the choice of the best time-point for each model (Day5/Swiss; Day7/BALB/c; Day6/C57BL/6) with wide application for screening purposes, such as identification of therapeutic biomolecules, selection of antigens/adjuvants, and follow-up of innate and adaptive immune response to vaccines candidates.
Collapse
Affiliation(s)
- Mariana Ferreira Lanna
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Pesquisas Clínicas, Programa de Pós-Graduação de Ciências Farmacêuticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Lucilene Aparecida Resende
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Pesquisas Clínicas, Programa de Pós-Graduação de Ciências Farmacêuticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Marina Barcelos de Miranda
- Laboratório de Biomateriais e Patologia Experimental, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ludmila Zanandreis de Mendonça
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Reysla Maria da Silveira Mariano
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jaqueline Costa Leite
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patricia Silveira
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Corrêa-Oliveira
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Pesquisas Clínicas, Programa de Pós-Graduação de Ciências Farmacêuticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sandra Aparecida Lima de Moura
- Laboratório de Biomateriais e Patologia Experimental, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Kanoke A, Akamatsu Y, Nishijima Y, To E, Lee CC, Li Y, Wang RK, Tominaga T, Liu J. The impact of native leptomeningeal collateralization on rapid blood flow recruitment following ischemic stroke. J Cereb Blood Flow Metab 2020; 40:2165-2178. [PMID: 32669022 PMCID: PMC7585920 DOI: 10.1177/0271678x20941265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The leptomeningeal collateral status is an independent predictor of stroke outcome. By means of optical coherent tomography angiography to compare two mouse strains with different extent of native leptomeningeal collateralization, we determined the spatiotemporal dynamics of collateral flow and downstream hemodynamics following ischemic stroke. A robust recruitment of leptomeningeal collateral flow was detected immediately after middle cerebral artery (MCA) occlusion in C57BL/6 mice, with continued expansion over the course of seven days. In contrast, little collateral recruitment was seen in Balb/C mice during- and one day after MCAO, which coincided with a greater infarct size and worse functional outcome compared to C57BL/6, despite a slight improvement of cortical perfusion seven days after MCAO. Both strains of mice experienced a reduction of blood flow in the penetrating arterioles (PA) by more than 90% 30-min after dMCAO, although the decrease of PA flow was greater and the recovery was less in the Balb/C mice. Further, Balb/C mice also displayed a prolonged greater heterogeneity of capillary transit time after dMCAO in the MCA territory compared to C57BL/6 mice. Our data suggest that the extent of native leptomeningeal collaterals affects downstream hemodynamics with a long lasting impact in the microvascular bed after cortical stroke.
Collapse
Affiliation(s)
- Atsushi Kanoke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.,SFVAMC, San Francisco, CA, USA.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Akamatsu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.,SFVAMC, San Francisco, CA, USA.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.,SFVAMC, San Francisco, CA, USA.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eric To
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.,SFVAMC, San Francisco, CA, USA
| | - Chih C Lee
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.,SFVAMC, San Francisco, CA, USA
| | - Yuandong Li
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jialing Liu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.,SFVAMC, San Francisco, CA, USA
| |
Collapse
|
12
|
Souza RAC, Ferreira BA, Moura FBRD, Costa Silva TD, Cavalcanti F, Franca EDF, Sousa RMFD, Febronio JDL, Lago JHG, Araújo FDA, de Oliveira A. Dehydrodieugenol B and hexane extract from Endlicheria paniculata regulate inflammation, angiogenesis, and collagen deposition induced by a murine sponge model. Fitoterapia 2020; 147:104767. [PMID: 33122131 DOI: 10.1016/j.fitote.2020.104767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022]
Abstract
The present study reports the evaluation of hexane extract from Endlicheria paniculata and its main metabolite dehydrodieugenol B in the inflammatory response induced by a murine implant sponge model. As a result, a reduction in the inflammatory markers (myeloperoxidase and N-acetyl-β-D-glucosaminidase) and number of mast cells were observed in comparison to the control group. All doses were also able to reduce angiogenic parameters evaluated in fibrovascular tissue. In implants treated with dehydrodieugenol B a reduction in total collagen deposition and types I and III collagen fibers were observed, while an increased in total collagen deposition and types I and III collagen fibers were observed in the treatment with hexane extract. Docking studies into cyclooxygenase-2 active site revealed that the dehydrodieugenol B had binding modes and energies comparable with celecoxib, diclofenac and ibuprofen. Therefore, dehydrodieugenol B was able to alter key components of chronic inflammation, resulting in a reduced inflammatory response and also presenting antifibrogenic and antiangiogenic effects. However, treatment with hexane extract resulted in a reduced inflammatory response with antiangiogenic effects, but caused fibrogenic effects.
Collapse
Affiliation(s)
| | - Bruno Antonio Ferreira
- Department of Physiological Sciences, Federal University of Uberlandia, 38400-902 Uberlandia, MG, Brazil
| | | | - Tiara da Costa Silva
- Institute of Chemistry, Federal University of Uberlandia, 38400-902 Uberlandia, MG, Brazil
| | - Felipe Cavalcanti
- Institute of Chemistry, Federal University of Uberlandia, 38400-902 Uberlandia, MG, Brazil
| | | | | | - Jenifer de Lima Febronio
- Center for Natural and Human Sciences, Federal University of ABC, 09210-180 Santo André, SP, Brazil
| | | | - Fernanda de Assis Araújo
- Department of Physiological Sciences, Federal University of Uberlandia, 38400-902 Uberlandia, MG, Brazil
| | - Alberto de Oliveira
- Institute of Chemistry, Federal University of Uberlandia, 38400-902 Uberlandia, MG, Brazil.
| |
Collapse
|
13
|
Santana RC, Rosa ADS, Mateus MHDS, Soares DC, Atella G, Guimarães AC, Siani AC, Ramos MFS, Saraiva EM, Pinto-da-Silva LH. In vitro leishmanicidal activity of monoterpenes present in two species of Protium (Burseraceae) on Leishmania amazonensis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112981. [PMID: 32442591 DOI: 10.1016/j.jep.2020.112981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leishmaniasis is a neglected disease that affects millions of people around the world. Parasite resistance and the toxicity to the current treatments lead to the search for new effective molecules. Plants are widely used in traditional and indigenous medicine to treat different diseases. The oleoresin of the genus Protium, which is rich in volatile compounds active against different microorganisms, is among these plants. AIM The aim of this study was to evaluate the leishmanicidal potential of Protium altsonii (PaEO) and P. hebetatum (PhEO) (Burseraceae) oleoresins, as well as of three representative monoterpenes in their constitution: α-pinene, p-cymene and 1,8-cineole. MATERIALS AND METHODS Protium altsonii (PaEO) and P. hebetatum (PhEO) oleoresins and three of their constituents were tested in vitro on promastigotes and amastigotes-infected macrophages in different concentrations. Their toxicity for macrophages was analyzed by XTT assay and phagocytic ability. It was evaluated the ability of the compounds to induce NO production on treated-macrophages using Griess reaction and the effect of them in lipid profile on treated-parasite through Thin Layer Chromatography. RESULTS Our data showed that both essential oils have toxic effect on promastigotes and amastigotes of L. amazonensis in vitro in a dose-dependent manner. PaEO IC50 were 14.8 μg/mL and 7.8 μg/mL and PhEO IC50s were 0.46 μg/mL and 30.5 μg/m for promastigotes and amastigotes, respectively. Toxicity to macrophages was not observed at 50 μg/mL with both EOs. The compounds 1,8- cineole, α-pinene, and p-cymene inhibited amastigotes survival in a dose-dependent manner with IC50s of 48.4 μg/mL, 37 μg/mL, 46 μg/mL, respectively. Macrophage viability was around 90% even at 200 μg/mL and the phagocytic capacity was not altered in the treated-macrophages to up 50 μg/mL. The compounds were not able to modulate the nitric oxide production either at rest or LPS-activated macrophages. In addition, treated promastigote revealed an important change in their lipid profile after 48 h at 50 μg/mL in the presence of the compounds. CONCLUSIONS The results indicate that oleoresins of Protium genus are potent against Leishmania and α-pinene, p-cymene and 1,8-cineole have anti-Leishmania properties that could be explored in synergistic assays in order to develop new drug candidates.
Collapse
Affiliation(s)
- Raissa Couto Santana
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Alice Dos Santos Rosa
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | | | - Deivid Costa Soares
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Georgia Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | - Monica Freiman S Ramos
- Faculdade de Farmácia, Departamento de Medicamentos, Universidade Federal do Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Lucia H Pinto-da-Silva
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil.
| |
Collapse
|
14
|
Enriquez J, Mims BMD, Trasti S, Furr KL, Grisham MB. Genomic, microbial and environmental standardization in animal experimentation limiting immunological discovery. BMC Immunol 2020; 21:50. [PMID: 32878597 PMCID: PMC7464063 DOI: 10.1186/s12865-020-00380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background The use of inbred mice housed under standardized environmental conditions has been critical in identifying immuno-pathological mechanisms in different infectious and inflammatory diseases as well as revealing new therapeutic targets for clinical trials. Unfortunately, only a small percentage of preclinical intervention studies using well-defined mouse models of disease have progressed to clinically-effective treatments in patients. The reasons for this lack of bench-to-bedside transition are not completely understood; however, emerging data suggest that genetic diversity and housing environment may greatly influence muring immunity and inflammation. Results Accumulating evidence suggests that certain immune responses and/or disease phenotypes observed in inbred mice may be quite different than those observed in their outbred counterparts. These differences have been thought to contribute to differing immune responses to foreign and/or auto-antigens in mice vs. humans. There is also a growing literature demonstrating that mice housed under specific pathogen free conditions possess an immature immune system that remarkably affects their ability to respond to pathogens and/or inflammation when compared with mice exposed to a more diverse spectrum of microorganisms. Furthermore, recent studies demonstrate that mice develop chronic cold stress when housed at standard animal care facility temperatures (i.e. 22–24 °C). These temperatures have been shown alter immune responses to foreign and auto-antigens when compared with mice housed at their thermo-neutral body temperature of 30–32 °C. Conclusions Exposure of genetically diverse mice to a spectrum of environmentally-relevant microorganisms at housing temperatures that approximate their thermo-neutral zone may improve the chances of identifying new and more potent therapeutics to treat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Josue Enriquez
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
| | - Brianyell Mc Daniel Mims
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
| | - Scott Trasti
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA.,Laboratory Animal Research Center, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Kathryn L Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
15
|
Lee JJ, Arpino JM, Yin H, Nong Z, Szpakowski A, Hashi AA, Chevalier J, O'Neil C, Pickering JG. Systematic Interrogation of Angiogenesis in the Ischemic Mouse Hind Limb: Vulnerabilities and Quality Assurance. Arterioscler Thromb Vasc Biol 2020; 40:2454-2467. [PMID: 32787524 PMCID: PMC7505144 DOI: 10.1161/atvbaha.120.315028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: There has been little success in translating preclinical studies of mouse hind limb ischemia into benefit for patients with peripheral artery disease. Using systematic strategies, we sought to define the injury and angiogenesis landscapes in mice subjected to hind limb ischemia and ascertain whether published studies to date have used an analysis strategy concordant with these data. Approach and Results: Maps of ischemic injury were generated from 22 different hind limb muscles and 33 muscle territories in 12-week-old C57BL/6 mice, based on loss or centralization of myofiber nuclei. Angiogenesis was similarly mapped based on CD (cluster of differentiation) 31–positive capillary content. Only 10 of 33 muscle territories displayed consistent muscle injury, with the distal anterior hind limb muscles most reliably injured. Angiogenesis was patchy and exclusively associated with zones of regenerated muscle (central nuclei). Angiogenesis was not observed in normal appearing muscle, necrotic muscle, or injury border zones. Systematic review of mouse hind limb angiogenesis studies identified 5147 unique publications, of which 509 met eligibility criteria for analysis. Only 7% of these analyzed manuscripts evaluated angiogenesis in distal anterior hind limb muscles and only 15% consistently examined for angiogenesis in zones of muscle regeneration. Conclusions: In 12-week C57BL/6 mice, angiogenesis postfemoral artery excision proceeds exclusively in zones of muscle regeneration. Only a minority of studies to date have analyzed angiogenesis in regions of demonstrably regenerating muscle or in high-likelihood territories. Quality assurance standards, informed by the atlas and mapping data herein, could augment data reliability and potentially help translate mouse hind limb ischemia studies to patient care.
Collapse
Affiliation(s)
- Jason J Lee
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medicine (J.J.L., A.A.H., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada
| | - John-Michael Arpino
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada
| | - Hao Yin
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - Zengxuan Nong
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - Alexis Szpakowski
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - Abdulaziz A Hashi
- Department of Medicine (J.J.L., A.A.H., J.G.P.), Western University, London, Ontario, Canada
| | - Jacqueline Chevalier
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada
| | - Caroline O'Neil
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute (J.J.L., J.-M.A., H.Y., Z.N., A.S., J.C., C.O., J.G.P.), Western University, London, Ontario, Canada.,Department of Medicine (J.J.L., A.A.H., J.G.P.), Western University, London, Ontario, Canada.,Department of Medical Biophysics (J.J.L., J.-M.A., J.C., J.G.P.), Western University, London, Ontario, Canada.,Department of Biochemistry (J.G.P.), Western University, London, Ontario, Canada
| |
Collapse
|
16
|
Comparative testis structure and function in three representative mice strains. Cell Tissue Res 2020; 382:391-404. [DOI: 10.1007/s00441-020-03239-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
|
17
|
Norden PR, Kume T. The Role of Lymphatic Vascular Function in Metabolic Disorders. Front Physiol 2020; 11:404. [PMID: 32477160 PMCID: PMC7232548 DOI: 10.3389/fphys.2020.00404] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its roles in the maintenance of interstitial fluid homeostasis and immunosurveillance, the lymphatic system has a critical role in regulating transport of dietary lipids to the blood circulation. Recent work within the past two decades has identified an important relationship between lymphatic dysfunction and patients with metabolic disorders, such as obesity and type 2 diabetes, in part characterized by abnormal lipid metabolism and transport. Utilization of several genetic mouse models, as well as non-genetic models of diet-induced obesity and metabolic syndrome, has demonstrated that abnormal lymphangiogenesis and poor collecting vessel function, characterized by impaired contractile ability and perturbed barrier integrity, underlie lymphatic dysfunction relating to obesity, diabetes, and metabolic syndrome. Despite the progress made by these models, the contribution of the lymphatic system to metabolic disorders remains understudied and new insights into molecular signaling mechanisms involved are continuously developing. Here, we review the current knowledge related to molecular mechanisms resulting in impaired lymphatic function within the context of obesity and diabetes. We discuss the role of inflammation, transcription factor signaling, vascular endothelial growth factor-mediated signaling, and nitric oxide signaling contributing to impaired lymphangiogenesis and perturbed lymphatic endothelial cell barrier integrity, valve function, and contractile ability in collecting vessels as well as their viability as therapeutic targets to correct lymphatic dysfunction and improve metabolic syndromes.
Collapse
Affiliation(s)
- Pieter R. Norden
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
18
|
The Proteolytic Fraction From Vasconcellea cundinamarcensis Latex Displays Anti-Inflammatory Effect in A Mouse Model of Acute TNBS-Induced Colitis. Sci Rep 2020; 10:3074. [PMID: 32080277 PMCID: PMC7033115 DOI: 10.1038/s41598-020-59895-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/03/2020] [Indexed: 11/08/2022] Open
Abstract
The proteolytic fraction (P1G10) from Vasconcellea cundinamarcensis, displays gastric protective and healing activities in different skin lesions in mice and human. In an excisional model, this fraction accelerates resolution of lesions and modulates inflammatory mediators. Based on these data, we assessed its anti-inflammatory activity in murine colitis model, induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) adopted by its physiopathological similarity with human colitis. Twenty four hours after colitis induction followed by three days of treatment, P1G10 at 0.3 and 3.0 mg/Kg induced 30% increase in body weight (p < 0.0001) and ~80% reduction in colon macroscopic damage score (p < 0.05) compared to the untreated TNBS-induced colitis group. Histological analyses showed that 0.3 mg/Kg P1G10 reduced the inflammatory profile and tissue damage (47%, p < 0.05) when it was proteolytically active. Compared to TNBS group, 0.3 mg/Kg P1G10 reduced MPO activity (80%, p < 0.01), MCP-1 (47%, p < 0.05) and TNF-α (50%, no significant) and increased IL-10 (330%, p < 0.001) levels in the supernatant of colonic tissue homogenate. P1G10 treatment also reduced COX-2 expression (60%, p < 0.05) and metalloprotease-2 activity (39%, p < 0.05) while increased globet cell density (140%, p < 0.01), that contributes to mucus layer protection in colonic tissue. Taken together, these findings suggest that low doses of active P1G10 promotes lesion resolution, at least in part by its anti-inflammatory activity, in TNBS-colitis model.
Collapse
|
19
|
Will JP, Hirani D, Thielen F, Klein F, Vohlen C, Dinger K, Dötsch J, Alejandre Alcázar MA. Strain-dependent effects on lung structure, matrix remodeling, and Stat3/Smad2 signaling in C57BL/6N and C57BL/6J mice after neonatal hyperoxia. Am J Physiol Regul Integr Comp Physiol 2019; 317:R169-R181. [PMID: 31067073 DOI: 10.1152/ajpregu.00286.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of preterm infants, characterized by lung growth arrest and matrix remodeling. Various animal models provide mechanistic insights in the pathogenesis of BPD. Since there is increasing evidence that genetic susceptibility modifies the response to lung injury, we investigated strain-dependent effects in hyperoxia (HYX)-induced lung injury of newborn mice. To this end, we exposed newborn C57BL/6N and C57BL/6J mice to 85% O2 (HYX) or normoxia (NOX; 21% O2) for 28 days, followed by lung excision for histological and molecular measurements. BL/6J-NOX mice exhibited a lower body and lung weight than BL/6N-NOX mice; hyperoxia reduced body weight in both strains and increased lung weight only in BL/6J-HYX mice. Quantitative histomorphometric analyses revealed reduced alveolar formation in lungs of both strains after HYX, but the effect was greater in BL/6J-HYX mice than BL/6N-HYX mice. Septal thickness was lower in BL/6J-NOX mice than BL/6N-NOX mice but increased in both strains after HYX. Elastic fiber density was significantly greater in BL/6J-HYX mice than BL/6N-HYX mice. Lungs of BL/6J-HYX mice were protected from changes in gene expression of fibrillin-1, fibrillin-2, fibulin-4, fibulin-5, and surfactant proteins seen in BL/6N-HYX mice. Finally, Stat3 was activated by HYX in both strains; in contrast, activation of Smad2 was markedly greater in lungs of BL/6N mice than BL/6J mice after HYX. In summary, we demonstrate strain-dependent differences in lung structure and matrix, alveolar epithelial cell markers, and Smad2 (transforming growth factor β) signaling in neonatal HYX-induced lung injury. Strain-dependent effects and genetic susceptibility need be taken into consideration for reproducibility and reliability of results in animal models.
Collapse
Affiliation(s)
- Johannes P Will
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Dharmesh Hirani
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Thielen
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Fabian Klein
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Christina Vohlen
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Katharina Dinger
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany
| | - Miguel A Alejandre Alcázar
- Department of Pediatrics, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne , Cologne , Germany.,Center of Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Dunbar JP, Sulpice R, Dugon MM. The kiss of (cell) death: can venom-induced immune response contribute to dermal necrosis following arthropod envenomations? Clin Toxicol (Phila) 2019; 57:677-685. [PMID: 30806093 DOI: 10.1080/15563650.2019.1578367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Snakes, insects, arachnids and myriapods have been linked to necrosis following envenomation. However, the pathways involved in arthropod venom-induced necrosis remain a highly controversial topic among toxinologists, clinicians and the public. On the one hand, clinicians report on alleged envenomations based on symptoms and the victims' information. On the other hand, toxinologists and zoologists argue that symptoms are incompatible with the known venom activity of target species. This review draws from the literature on arthropod envenomations, snakebite, and inflammatory processes to suggest that envenomation by a range of organisms might trigger an intense inflammatory cascade that ultimately lead to necrosis. If confirmed, these processes would have important implications for the treatment of venom-induced necrosis. Objectives: To describe two inflammatory pathways of regulated necrosis, tumour necrosis factor (necroptosis) and Neutrophil Extracellular Traps (NETosis); to discuss existing knowledge about snake venom and arachnid-induced necrosis demonstrating the involvement of tumour necrosis factor and neutrophils in the development of tissue necrosis following envenomation and to contribute to the understanding of venom-induced necrosis by arthropods and provide clinicians with an insight into little known inflammatory processes which may occur post envenomation. Methods: ISI Web of Science databases were searched using the terms "spider bite necrosis", "arthropod envenomation necrosis", "venom necrosis", "venom immune response", "loxoscelism", "arachnidism", "necroptosis venom", "necroptosis dermatitis", "tumour necrosis factor TNF venom", "scorpionism", "scolopendrism", "centipede necrosis", "NETosis venom", "NETosis necrosis". Searches produced 1737 non-duplicate citations of which 74 were considered relevant to this manuscript. Non-peer-reviewed sources or absence of voucher material identifying the organism were excluded. What is necrosis? Necrosis is the breakdown of cell membrane integrity followed by inflowing extracellular fluid, organelle swelling and the release of proteolytic enzymes into the cytosol. Necrosis was historically considered an unregulated process; however, recent studies demonstrate that necrosis can also be a programmed event resulting from a controlled immune response (necroptosis). Tumour necrosis factor and the necroptosis pathway: Tumour necrosis factor is a pro-inflammatory cytokine involved in regulating immune response, inflammation and cell death/survival. The pro-inflammatory cytokine TNF-α participates in the development of necrosis after envenomation by vipers. Treatment with TNF-α-antibodies may significantly reduce the manifestation of necrosis. Neutrophil Extracellular Traps and the NETosis pathway: The process by which neutrophils discharge a mesh of DNA strands in the extracellular matrix to entangle ("trap") pathogens, preventing them from disseminating. Neutrophil Extracellular Traps have been recently described as important in venom-induced necrosis. Trapped venom accumulates at the bite site, resulting in significant localized necrosis. Arthropod venom driving necrosis: Insects, myriapods and arachnids can induce necrosis following envenomation. So far, the processes involved have only been investigated in two arachnids: Loxosceles spp. (recluse spiders) and Hemiscorpius lepturus (scorpion). Loxosceles venom contains phospholipases D which hydrolyse sphingomyelin, resulting in lysis of muscle fibers. Subsequently liberated ceramides act as intermediaries that regulate TNF-α and recruit neutrophils. Experiments show that immune-deficient mice injected with Loxosceles venom experience less venom-induced inflammatory response and survive longer than control mice. Necrosis following Hemiscorpius lepturus stings correlates with elevated concentrations of TNF-α. These observations suggest that necrosis may be indirectly triggered or worsened by pathways of regulated necrosis in addition to necrotic venom compounds. Conclusions: Envenomation often induce an intense inflammatory cascade, which under certain circumstances may produce necrotic lesions independently from direct venom activity. This could explain the inconsistent and circumstantial occurrence of necrosis following envenomation by a range of organisms. Future research should focus on identifying pathways to regulated necrosis following envenomation and determining more efficient ways to manage inflammation. We suggest that clinicians should consider the victim's immune response as an integral part of the envenomation syndrome.
Collapse
Affiliation(s)
- John P Dunbar
- a Venom Systems and Proteomics Lab, School of Natural Sciences , Ryan Institute, National University of Ireland Galway , Galway , Ireland
| | - Ronan Sulpice
- b Plant Systems Biology Laboratory , Plant AgriBiosciences Research Centre, School of Natural Science, Ryan Institute, National University of Ireland Galway , Galway , Ireland
| | - Michel M Dugon
- a Venom Systems and Proteomics Lab, School of Natural Sciences , Ryan Institute, National University of Ireland Galway , Galway , Ireland
| |
Collapse
|
21
|
Stolf AM, Campos Cardoso C, Morais HD, Alves de Souza CE, Lomba LA, Brandt AP, Agnes JP, Collere FC, Galindo CM, Corso CR, Spercoski KM, Locatelli Dittrich R, Zampronio AR, Cadena SMSC, Acco A. Effects of silymarin on angiogenesis and oxidative stress in streptozotocin-induced diabetes in mice. Biomed Pharmacother 2018; 108:232-243. [DOI: 10.1016/j.biopha.2018.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
|
22
|
Ferreira BA, Deconte SR, de Moura FBR, Tomiosso TC, Clissa PB, Andrade SP, Araújo FDA. Inflammation, angiogenesis and fibrogenesis are differentially modulated by distinct domains of the snake venom metalloproteinase jararhagin. Int J Biol Macromol 2018; 119:1179-1187. [PMID: 30102981 DOI: 10.1016/j.ijbiomac.2018.08.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Jararhagin, a metalloprotease from Bothrops jararaca snake venom, is a toxin containing the metalloproteinase, disintegrin-like and cysteine-rich domains; it causes acute inflammation and damage to vascular tissue. However, the actions of these domains on key components of chronic inflammation have not been determined. Our aim was to investigate the effects of jararhagin (Jar), jararhagin-C (Jar-C) and o-phenantrolin-treated jararhagin (Jar-Phe), on inflammatory response, blood vessel formation and extracellular matrix deposition in the murine sponge model. The polyether-polyurethane sponge matrix was implanted into Balb/c mice and injected daily with Jar (400 ng), Jar-Phe (400 ng), Jar-C (200 ng) or saline (control). Nine days after implantation, the sponge discs were removed and processed. In the Jar-treated implants, some of inflammatory markers (N-acetyl-β-d-glucosaminidase activity, CCL2 and TNF-α) and TGF-β1 levels were higher compared with the control group. In the Jar-C group, the inflammatory markers myeloperoxidase activity and CXCL1 were higher compared with the control. In this group, VEGF levels and collagen deposition were also higher. Jar-Phe treatment was able to inhibit the activity and/or production of MPO, CXCL1, CCL2 and TGF-β. The differential effects of these proteins in modulating the main components of fibrovascular tissue may be exploited in the management fibroproliferative diseases.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Simone Ramos Deconte
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Francyelle Borges Rosa de Moura
- Departamento de Biologia Celular, Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Departamento de Biologia Celular, Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Silvia Passos Andrade
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda de Assis Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
23
|
Caporali A, Bäck M, Daemen MJ, Hoefer IE, Jones EA, Lutgens E, Matter CM, Bochaton-Piallat ML, Siekmann AF, Sluimer JC, Steffens S, Tuñón J, Vindis C, Wentzel JJ, Ylä-Herttuala S, Evans PC. Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology. Cardiovasc Res 2018; 114:1411-1421. [PMID: 30016405 PMCID: PMC6106103 DOI: 10.1093/cvr/cvy184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods.
Collapse
Affiliation(s)
- Andrea Caporali
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Magnus Bäck
- Division of Valvular and Coronary Disease, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and University Hospital Stockholm, Stockholm, Sweden
- INSERM U1116, University of Lorraine, Nancy University Hospital, Nancy, France
| | - Mat J Daemen
- Department of Pathology, Academic Medical Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Imo E Hoefer
- Laboratory of Experimental Cardiology and Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, Netherlands
| | | | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003–CiM), University of Muenster, Muenster, Germany
| | - Judith C Sluimer
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Steffens
- Ludwig-Maximilians-University, German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - José Tuñón
- IIS-Fundación Jiménez Díaz, Madrid, Spain
- Autónoma University, Madrid, Spain
| | - Cecile Vindis
- INSERM U1048/Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Jolanda J Wentzel
- Department of Cardiology, Biomechanics Laboratory, Erasmus MC, Rotterdam, The Netherlands
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, the INSIGNEO Institute for In Silico Medicine and the Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
24
|
Wolfe H, Minogue A, Rooney S, Lynch M. Infiltrating macrophages contribute to age-related neuroinflammation in C57/BL6 mice. Mech Ageing Dev 2018; 173:84-91. [DOI: 10.1016/j.mad.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
|
25
|
Tatara AM, Kontoyiannis DP, Mikos AG. Drug delivery and tissue engineering to promote wound healing in the immunocompromised host: Current challenges and future directions. Adv Drug Deliv Rev 2018; 129:319-329. [PMID: 29221962 PMCID: PMC5988908 DOI: 10.1016/j.addr.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/23/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
Abstract
As regenerative medicine matures as a field, more promising technologies are being translated from the benchtop to the clinic. However, many of these strategies are designed with otherwise healthy hosts in mind and validated in animal models without other co-morbidities. In reality, many of the patient populations benefiting from drug delivery and tissue engineering-based devices to enhance wound healing also have significant underlying immunodeficiency. Specifically, patients suffering from diabetes, malignancy, human immunodeficiency virus, post-organ transplantation, and other compromised states have significant pleotropic immune defects that affect wound healing. In this work, we review the role of different immune cells in the regenerative process, highlight the effect of several common immunocompromised states on wound healing, and discuss different drug delivery strategies for overcoming immunodeficiencies.
Collapse
Affiliation(s)
- Alexander M Tatara
- Medical Scientist Training Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, United States; Department of Bioengineering, Rice University, Houston, TX, United States.
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
26
|
Silverman HA, Stiegler A, Tsaava T, Newman J, Steinberg BE, Masi EB, Robbiati S, Bouton C, Huerta PT, Chavan SS, Tracey KJ. Standardization of methods to record Vagus nerve activity in mice. Bioelectron Med 2018; 4:3. [PMID: 32232079 PMCID: PMC7098227 DOI: 10.1186/s42234-018-0002-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
Background The vagus nerve plays an important role in the regulation of organ function, including reflex pathways that regulate immunity and inflammation. Recent studies using genetically modified mice have improved our understanding of molecular mechanisms in the neural control of immunity. However, mapping neural signals transmitted in the vagus nerve in mice has been limited by technical challenges. Here, we have standardized an experimental protocol to record compound action potentials transmitted in the vagus nerve. Methods The vagus nerve was isolated in Balb/c and B6.129S mice, and placed either on a hook or cuff electrode. The electrical signals from the vagus nerve were digitized using either a Neuralynx or Plexon data acquisition system. Changes in the vagus nerve activity in response to anesthesia, feeding and administration of bacterial endotoxin were analyzed. Results We have developed an electrophysiological recording system to record compound action potentials from the cervical vagus nerve in mice. Cuff electrodes significantly reduce background noise and increase the signal to noise ratio as compared to hook electrodes. Baseline vagus nerve activity varies in response to anesthesia depth and food intake. Analysis of vagus neurograms in different mouse strains (Balb/c and C57BL/6) reveal no significant differences in baseline activity. Importantly, vagus neurogramactivity in wild type and TLR4 receptor knock out mice exhibits receptor dependency of endotoxin mediated signals. Conclusions These methods for recording vagus neurogram in mice provide a useful tool to further delineate the role of vagus neural pathways in a standardized murine disease model.
Collapse
Affiliation(s)
- Harold A Silverman
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Hofstra Northwell Health School of Medicine, 350 Community Drive, Manhasset, NY 11030 USA
| | - Andrew Stiegler
- Circulatory Technologies, Inc., 350 Community Drive, Manhasset, NY 11030 USA
| | - Téa Tsaava
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Justin Newman
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Benjamin E Steinberg
- 4Department of Anesthesia, University of Toronto, 150 College Street, Toronto, ON M5S 3E2 Canada
| | - Emily Battinelli Masi
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Hofstra Northwell Health School of Medicine, 350 Community Drive, Manhasset, NY 11030 USA
| | - Sergio Robbiati
- 5Laboratory of Immune & Neural Networks, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Chad Bouton
- 6Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Patricio T Huerta
- 5Laboratory of Immune & Neural Networks, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Sangeeta S Chavan
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Hofstra Northwell Health School of Medicine, 350 Community Drive, Manhasset, NY 11030 USA.,6Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Kevin J Tracey
- 1Center for Biomedical Sciences, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA.,Hofstra Northwell Health School of Medicine, 350 Community Drive, Manhasset, NY 11030 USA.,6Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| |
Collapse
|
27
|
Wegner KA, Cadena MT, Trevena R, Turco AE, Gottschalk A, Halberg RB, Guo J, McMahon JA, McMahon AP, Vezina CM. An immunohistochemical identification key for cell types in adult mouse prostatic and urethral tissue sections. PLoS One 2017; 12:e0188413. [PMID: 29145476 PMCID: PMC5690684 DOI: 10.1371/journal.pone.0188413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Though many methods can be used to identify cell types contained in complex tissues, most require cell disaggregation and destroy information about where cells reside in relation to their microenvironment. Here, we describe a polytomous key for cell type identification in intact sections of adult mouse prostate and prostatic urethra. The key is organized as a decision tree and initiates with one round of immunostaining for nerve, epithelial, fibromuscular/hematolymphoid, or vascular associated cells. Cell identities are recursively eliminated by subsequent staining events until the remaining pool of potential cell types can be distinguished by direct comparison to other cells. We validated our identification key using wild type adult mouse prostate and urethra tissue sections and it currently resolves sixteen distinct cell populations which include three nerve fiber types as well as four epithelial, five fibromuscular/hematolymphoid, one nerve-associated, and three vascular-associated cell types. We demonstrate two uses of this novel identification methodology. We first used the identification key to characterize prostate stromal cell type changes in response to constitutive phosphatidylinositide-3-kinase activation in prostate epithelium. We then used the key to map cell lineages in a new reporter mouse strain driven by Wnt10aem1(cre/ERT2)Amc. The identification key facilitates rigorous and reproducible cell identification in prostate tissue sections and can be expanded to resolve additional cell types as new antibodies and other resources become available.
Collapse
Affiliation(s)
- Kyle A. Wegner
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark T. Cadena
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan Trevena
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne E. Turco
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adam Gottschalk
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Jill A. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Chad M. Vezina
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
28
|
Wang X, Liao YP, Telesca D, Chang CH, Xia T, Nel AE. The Genetic Heterogeneity among Different Mouse Strains Impacts the Lung Injury Potential of Multiwalled Carbon Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700776. [PMID: 28677920 PMCID: PMC5581261 DOI: 10.1002/smll.201700776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/15/2017] [Indexed: 05/27/2023]
Abstract
Genetic variation constitutes an important variable impacting the susceptibility to inhalable toxic substances and air pollutants, as reflected by epidemiological studies in humans and differences among animal strains. While multiwalled carbon nanotubes (MWCNTs) are capable of causing lung fibrosis in rodents, it is unclear to what extent the genetic variation in different mouse strains influence the outcome. Four inbred mouse strains, including C57Bl/6, Balb/c, NOD/ShiLtJ, and A/J, to test the pro-fibrogenic effects of a library of MWCNTs in vitro and in vivo are chosen. Ex vivo analysis of IL-1β production in bone marrow-derived macrophages (BMDMs) as molecular initiating event (MIE) is performed. The order of cytokine production (Balb/c > A/J > C57Bl/6 > NOD/ShiLtJ) in BMDMs is also duplicated during assessment of IL-1β production in the bronchoalveolar lavage fluid of the same mouse strains 40 h after oropharyngeal instillation of a representative MWCNT. Animal test after 21 d also confirms a similar hierarchy in TGF-β1 production and collagen deposition in the lung. Statistical analysis confirms a correlation between IL-1β production in BMDM and the lung fibrosis. All considered, these data demonstrate that genetic background indeed plays a major role in determining the pro-fibrogenic response to MWCNTs in the lung.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Yu-Pei Liao
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA 90095, United States
| | - Donatello Telesca
- Department of Biostatistics, University of California, Los Angeles, CA 90095, United States
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Tian Xia
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - André E. Nel
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
29
|
Khajavi M, Zhou Y, Birsner AE, Bazinet L, Rosa Di Sant A, Schiffer AJ, Rogers MS, Krishnaji ST, Hu B, Nguyen V, Zon L, D’Amato RJ. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice. PLoS Genet 2017; 13:e1006848. [PMID: 28617813 PMCID: PMC5491319 DOI: 10.1371/journal.pgen.1006848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/29/2017] [Accepted: 06/01/2017] [Indexed: 11/18/2022] Open
Abstract
Recent findings indicate that growth factor-driven angiogenesis is markedly influenced by genetic variation. This variation in angiogenic responsiveness may alter the susceptibility to a number of angiogenesis-dependent diseases. Here, we utilized the genetic diversity available in common inbred mouse strains to identify the loci and candidate genes responsible for differences in angiogenic response. The corneal micropocket neovascularization assay was performed on 42 different inbred mouse strains using basic fibroblast growth factor (bFGF) pellets. We performed a genome-wide association study utilizing efficient mixed-model association (EMMA) mapping using the induced vessel area from all strains. Our analysis yielded five loci with genome-wide significance on chromosomes 4, 8, 11, 15 and 16. We further refined the mapping on chromosome 4 within a haplotype block containing multiple candidate genes. These genes were evaluated by expression analysis in corneas of various inbred strains and in vitro functional assays in human microvascular endothelial cells (HMVECs). Of these, we found the expression of peptidyl arginine deiminase type II (Padi2), known to be involved in metabolic pathways, to have a strong correlation with a haplotype shared by multiple high angiogenic strains. In addition, inhibition of Padi2 demonstrated a dosage-dependent effect in HMVECs. To investigate its role in vivo, we knocked down Padi2 in transgenic kdrl:zsGreen zebrafish embryos using morpholinos. These embryos had disrupted vessel formation compared to control siblings. The impaired vascular pattern was partially rescued by human PADI2 mRNA, providing evidence for the specificity of the morphant phenotype. Taken together, our study is the first to indicate the potential role of Padi2 as an angiogenesis-regulating gene. The characterization of Padi2 and other genes in associated pathways may provide new understanding of angiogenesis regulation and novel targets for diagnosis and treatment of a wide variety of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Mehrdad Khajavi
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yi Zhou
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy E. Birsner
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lauren Bazinet
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda Rosa Di Sant
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alex J. Schiffer
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael S. Rogers
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Subrahmanian Tarakkad Krishnaji
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bella Hu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vy Nguyen
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leonard Zon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Robert J. D’Amato
- The Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. Biomed Pharmacother 2017; 86:715-724. [PMID: 28063402 DOI: 10.1016/j.biopha.2016.11.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
|
31
|
Abstract
Implanted biomaterials often fail because they elicit a foreign body response (FBR) and concomitant fibrotic encapsulation. To design clinically relevant interference approaches, it is crucial to first examine the FBR mechanisms. Here, we report the development and validation of infrared-excited nonlinear microscopy to resolve the three-dimensional (3D) organization and fate of 3D-electrospun scaffolds implanted deep into the skin of mice, and the following step-wise FBR process. We observed that immigrating myeloid cells (predominantly macrophages of the M1 type) engaged and became immobilized along the scaffold/tissue interface, before forming multinucleated giant cells. Both macrophages and giant cells locally produced vascular endothelial growth factor (VEGF), which initiated and maintained an immature neovessel network, followed by formation of a dense collagen capsule 2-4 weeks post-implantation. Elimination of the macrophage/giant-cell compartment by clodronate and/or neutralization of VEGF by VEGF Trap significantly diminished giant-cell accumulation, neovascularization and fibrosis. Our findings identify macrophages and giant cells as incendiaries of the fibrotic encapsulation of engrafted biomaterials via VEGF release and neovascularization, and therefore as targets for therapy.
Collapse
|
32
|
Jones CN, Hoang AN, Martel JM, Dimisko L, Mikkola A, Inoue Y, Kuriyama N, Yamada M, Hamza B, Kaneki M, Warren HS, Brown DE, Irimia D. Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets. J Leukoc Biol 2016; 100:241-7. [PMID: 26819316 DOI: 10.1189/jlb.5ta0715-310rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/04/2016] [Indexed: 01/04/2023] Open
Abstract
Animal models of human disease differ in innate immune responses to stress, pathogens, or injury. Precise neutrophil phenotype measurements could facilitate interspecies comparisons. However, such phenotype comparisons could not be performed accurately with the use of current assays, as they require the separation of neutrophils from blood using species-specific protocols, and they introduce distinct artifacts. Here, we report a microfluidic technology that enables robust characterization of neutrophil migratory phenotypes in a manner independent of the donor species and performed directly in a droplet of whole blood. The assay relies on the particular ability of neutrophils to deform actively during chemotaxis through microscale channels that block the advance of other blood cells. Neutrophil migration is measured directly in blood, in the presence of other blood cells and serum factors. Our measurements reveal important differences among migration counts, velocity, and directionality among neutrophils from 2 common mouse strains, rats, and humans.
Collapse
Affiliation(s)
- Caroline N Jones
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anh N Hoang
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph M Martel
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie Dimisko
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Mikkola
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yoshitaka Inoue
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina Yamada
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bashar Hamza
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - H Shaw Warren
- Department of Pediatrics and Medicine, Infectious Disease Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane E Brown
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
33
|
PLGA nanofibers improves the antitumoral effect of daunorubicin. Colloids Surf B Biointerfaces 2015; 136:248-55. [DOI: 10.1016/j.colsurfb.2015.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
|
34
|
Szczepanek K, Xu A, Hu Y, Thompson J, He J, Larner AC, Salloum FN, Chen Q, Lesnefsky EJ. Cardioprotective function of mitochondrial-targeted and transcriptionally inactive STAT3 against ischemia and reperfusion injury. Basic Res Cardiol 2015; 110:53. [DOI: 10.1007/s00395-015-0509-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/19/2015] [Indexed: 01/20/2023]
|
35
|
Gontijo SML, Guimarães PPG, Viana CTR, Denadai ÂML, Gomes ADM, Campos PP, Andrade SP, Sinisterra RD, Cortés ME. Erlotinib/hydroxypropyl-β-cyclodextrin inclusion complex: characterization and in vitro and in vivo evaluation. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0562-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
|
37
|
Rodrigues Viana CT, Ribeiro Castro P, Motta Marques S, Paz Lopes MT, Gonçalves R, Peixoto Campos P, Andrade SP. Differential Contribution of Acute and Chronic Inflammation to the Development of Murine Mammary 4T1 Tumors. PLoS One 2015; 10:e0130809. [PMID: 26158775 PMCID: PMC4497676 DOI: 10.1371/journal.pone.0130809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/25/2015] [Indexed: 01/08/2023] Open
Abstract
Based on the notion that inflammation favors tumorigenesis, our experiments comparatively assessed the influence of acute and chronic inflammation on the development of a murine mammary tumor (4T1). In addition, we characterized angiogenic and inflammatory markers in the tumor tissue and systemically. Subcutaneous implantation of polyether-polyurethane sponge discs in Balb/c mice was used to host 4T1 tumor cells (1x10(6)), which were inoculated intraimplant 24 h or 10 days post implantation. Flow cytometric analysis of enzyme-digested implants revealed that, after 24 hours, the population of leukocytes was primarily characterized by neutrophils (42.53% +/- 8.45) and monocytes (37.53% +/- 7.48), with some lymphocytes (16.27% +/- 4.0) and a few dendritic cells (1.82% +/- 0.36). At 10 days, macrophages were predominant (37.10% +/- 4.54), followed by lymphocytes (28.1% +/- 4.77), and monocytes (22.33% +/- 3.05), with some dendritic cells (13.60% +/- 0.55) and neutrophils (11.07% +/- 2.27). A mammary tumor grown in a chronic inflammatory environment was 2-fold when compared with one grown in acute inflammation and 5-fold when compared with tumor alone. The levels of pro-angiogenic cytokine (VEGF-Vascular Endothelial Growth Factor) were higher in implant-bearing tumor when 4T1 cells were grown in 10-day old implants as compared to the VEGF levels of the two other groups. Overall, the levels of the inflammatory markers evaluated (NAG -N-acetylglucosaminidase, TNF-α-Tumor Necrosis Factor-α) were higher in both groups of implant-bearing tumors and in serum from those animals when compared with the tumor alone levels. This inflammation-related difference in tumor growth may provide new insights into the contribution of different inflammatory cell populations to cancer progression.
Collapse
Affiliation(s)
- Celso Tarso Rodrigues Viana
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Suzane Motta Marques
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miriam Teresa Paz Lopes
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Gonçalves
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
38
|
Marques SM, Castro PR, Campos PP, Viana CTR, Parreiras PM, Ferreira MAN, Andrade SP. Genetic strain differences in the development of peritoneal fibroproliferative processes in mice. Wound Repair Regen 2015; 22:381-9. [PMID: 24844337 DOI: 10.1111/wrr.12177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
Fibroproliferative processes are regulated by a wide variety of tissue components and genetic factors. However, whether there are genetic differences in peritoneal fibroproliferative tissue formation, with consequent differences in response to drug treatment, is unclear. We characterize the influence of the genetic background on peritoneal fibroproliferative tissue induced by sponge implants in DBA/1, Swiss, C57BL/6, and BALB/c mouse strains. In addition, responses to dipyridamole in the implants were evaluated. Angiogenesis, assessed by intra-implant hemoglobin content, was highest in Swiss mice, whereas levels of vascular endothelial growth factor were highest in C57BL/6 mice. The levels of pro-inflammatory cytokines and of inflammatory enzymes (myeloperoxidase- and N-acetyl-β-D-glucosaminidase) were also strain-related. The pro-fibrogenic markers transforming growth factor beta-1 and collagen were lowest in implants placed in DBA/1 mice, whereas those in C57BL/6 mice had the highest levels. Differential sensitivity to dipyridamole was also observed, with this compound being pro-angiogenic in implants placed in DBA/1 mice but antiangiogenic in implants placed in Swiss. An overall anti-inflammatory response was observed in the inbred strains. Antifibrogenic effects were observed only in implants placed in C57BL/6 mice. These important strain-related differences in the development of peritoneal fibrosis and in response to dipyridamole must be considered in the design and analysis of studies on fibrogenesis in mice.
Collapse
Affiliation(s)
- Suzane M Marques
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Ribeiro MF, Oliveira FL, Monteiro-Machado M, Cardoso PF, Guilarducci-Ferraz VVC, Melo PA, Souza CMV, Calil-Elias S. Pattern of inflammatory response to Loxosceles intermedia venom in distinct mouse strains: a key element to understand skin lesions and dermonecrosis by poisoning. Toxicon 2015; 96:10-23. [PMID: 25600642 DOI: 10.1016/j.toxicon.2015.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 12/14/2022]
Abstract
Envenomation caused by spiders Loxosceles induce intense dermonecrosis at the bite site and systemic disease. In this work we described the hyaluronidase and collagenase activities in vitro of the Loxosceles intermedia venom, but no phospholipase A2 activity. In vivo, we evaluated the effect of L. intermedia venom used different strain of mice, C57BL/6, BALB/c and Swiss. All mice developed paw edema after venom injection, persistent for 24 h in BALB/c and C57BL/6 mice. Histopathological analysis of the skin after venom injection revealed vascular congestion in Swiss mice and an inflammatory reaction in BALB/c and C57BL/6 mice. The mobilization of inflammatory cells from bone marrow, spleen and blood was investigated. Typical innate immune response with mobilization of myeloid cells and cytotoxic CD8 T lymphocytes was observed in C57BL/6 mice. In contrast, typical acquired/humoral immune response was observed in BALB/c mice, with preferential involvement of conventional B lymphocytes and CD4 T helper cells. The skin inflammation associated to mobilization of inflammatory cells indicated that mice models are strongly recommended to investigate specific cell types involved with immune response to the envenomation and mechanisms to inhibit skin lesions.
Collapse
Affiliation(s)
- M F Ribeiro
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - F L Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - M Monteiro-Machado
- Programa de Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | - V V C Guilarducci-Ferraz
- Departamento de Farmácia e Administração Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - P A Melo
- Programa de Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | - S Calil-Elias
- Programa de Pós-graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
40
|
Cassini-Vieira P, Deconte SR, Tomiosso TC, Campos PP, Montenegro CDF, Selistre-de-Araújo HS, Barcelos LS, Andrade SP, Araújo FDA. DisBa-01 inhibits angiogenesis, inflammation and fibrogenesis of sponge-induced-fibrovascular tissue in mice. Toxicon 2014; 92:81-9. [DOI: 10.1016/j.toxicon.2014.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022]
|
41
|
Guedes-da-Silva FH, Shrestha D, Salles BC, Figueiredo VP, Lopes LR, Dias L, Barcelos LDS, Moura S, de Andrade SP, Talvani A. Trypanosoma cruzi antigens induce inflammatory angiogenesis in a mouse subcutaneous sponge model. Microvasc Res 2014; 97:130-6. [PMID: 25446369 DOI: 10.1016/j.mvr.2014.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023]
Abstract
Acute inflammation and angiogenesis are persistent features of several pathological conditions induced by biological agents leading to the resolution of local and systemic events. Glycoproteins derived from the protozoan Trypanosoma cruzi are suggested to mediate angiogenesis induced by inflammatory cells with still undescribed mechanisms. In this study, we investigated the effects of total antigen from trypomastigote forms of T. cruzi (Y strain), inoculated in sponges 24h after implantation in mice, on angiogenesis, inflammatory cell pattern and endogenous production of inflammatory and angiogenic mediators on days 1, 4, 7 and 14 post-implant. There was an increase in hemoglobin content and in the number of blood vessels associated with T. cruzi antigen stimuli on the 14th day, assessed by the hemoglobin of the implants and by morphometric analysis. However, these antigens were not able to increase type I collagen content on the 14th day. Parasite antigens also induced high production of vascular endothelial growth factor (VEGF) and inflammatory mediators TNF-alpha, CCL2 and CCL5 on the 7th day in sponges when compared to the unstimulated group. Neutrophils and macrophages were determined by measuring myeloperoxidase (MPO) and N-acetyl-β-d-glucosaminidase (NAG) enzyme activities, respectively. Only NAG was increased after stimulation with antigens, starting from day 4 and peaking at day 7. Together, these data showed that antigens from the Y strain of T. cruzi are able to promote inflammatory neovascularization probably induced by macrophage-induced angiogenic mediators in T. cruzi antigen-stimulated sponges in Swiss mice.
Collapse
Affiliation(s)
| | - Deena Shrestha
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Beatriz Cristina Salles
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Vivian Paulino Figueiredo
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Laís Roquete Lopes
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Luiza Dias
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Sandra Moura
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Silvia Passos de Andrade
- Departamento de Fisiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andre Talvani
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
42
|
Castro PR, Marques SM, Viana CT, Campos PP, Ferreira MA, Barcelos LS, Andrade SP. Deletion of the chemokine receptor CCR2 attenuates foreign body reaction to implants in mice. Microvasc Res 2014; 95:37-45. [DOI: 10.1016/j.mvr.2014.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/08/2023]
|
43
|
Mesnard L, Cathelin D, Vandermeersch S, Rafat C, Luque Y, Sohier J, Nochy D, Garcon L, Callard P, Jouanneau C, Verpont MC, Tharaux PL, Hertig A, Rondeau E. Genetic Background–Dependent Thrombotic Microangiopathy Is Related to Vascular Endothelial Growth Factor Receptor 2 Signaling during Anti-Glomerular Basement Membrane Glomerulonephritis in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2438-49. [DOI: 10.1016/j.ajpath.2014.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/26/2014] [Accepted: 05/27/2014] [Indexed: 11/16/2022]
|
44
|
Knod JL, Crawford K, Dusing M, Frischer JS. Mouse strain influences angiogenic response to dextran sodium sulfate–induced colitis. J Surg Res 2014; 190:47-54. [DOI: 10.1016/j.jss.2014.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/21/2014] [Accepted: 04/03/2014] [Indexed: 12/14/2022]
|
45
|
Norrby K. Metronomic chemotherapy and anti-angiogenesis: can upgraded pre-clinical assays improve clinical trials aimed at controlling tumor growth? APMIS 2013; 122:565-79. [PMID: 24164171 PMCID: PMC4282375 DOI: 10.1111/apm.12201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/06/2013] [Indexed: 12/21/2022]
Abstract
Metronomic chemotherapy, which is continuously administered systemically at close to non-toxic doses, targets the endothelial cells (ECs) that are proliferating during tumor angiogenesis. This leads to harmful effects of an even greatly increased number contiguous tumor cells. Although pre-clinical studies of angiogenesis-related EC features in vitro and of the anti-angiogenic and anti-tumor effects in vivo of metronomic chemotherapy have provided valuable insights, clinical trials with this type of therapy have been less successful in inhibiting tumor growth. One possible reason for the apparent disconnect between the pre-clinical and clinical outcomes is that most of the currently used experimental angiogenesis assays and tumor models are incapable of yielding data that can be translated readily into the clinical setting. Many of the assays used suffer from unintentional artifactual effects, e.g., oxidative stress in vitro, and inflammation in vivo, which reduces the sensitivity and discriminatory power of the assays. Co-treatment with an antioxidant or the inclusion of antioxidants in the vehicle often significantly affects the angiogenesis-modulating outcome of metronomic mono-chemotherapy in vivo. This ‘metronomic chemotherapy vehicle factor’ merits further study, as do the observations of antagonistic effects following metronomic treatment with a combination of standard chemotherapeutic drugs in vivo.
Collapse
Affiliation(s)
- Klas Norrby
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Lotfi S, Patel AS, Mattock K, Egginton S, Smith A, Modarai B. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis 2013. [DOI: 10.1016/j.atherosclerosis.2012.10.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Brown DE, Libby SJ, Moreland SM, McCoy MW, Brabb T, Stepanek A, Fang FC, Detweiler CS. Salmonella enterica causes more severe inflammatory disease in C57/BL6 Nramp1G169 mice than Sv129S6 mice. Vet Pathol 2013; 50:867-76. [PMID: 23446432 DOI: 10.1177/0300985813478213] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) causes systemic inflammatory disease in mice by colonizing cells of the mononuclear leukocyte lineage. Mouse strains resistant to S. Typhimurium, including Sv129S6, have an intact Nramp1 (Slc11a1) allele and survive acute infection, whereas C57/BL6 mice, homozygous for a mutant Nramp1 allele, Nramp1(G169D) , develop lethal infections. Restoration of Nramp1 (C57/BL6 Nramp1(G169) ) reestablishes resistance to S. Typhimurium; mice survive at least 3 to 4 weeks postinfection. Since many transgenic mouse strains are on a C57/BL6 genetic background, C57/BL6 Nramp1(G169) mice provide a model to examine host genetic determinants of resistance to infection. To further evaluate host immune response to S. Typhimurium, we performed comparative analyses of Sv129S6 and C57/BL6 Nramp1(G169) mice 3 weeks following oral S. Typhimurium infection. C57/BL6 Nramp1(G169) mice developed more severe inflammatory disease with splenic bacterial counts 1000-fold higher than Sv129S6 mice and relatively greater splenomegaly and blood neutrophil and monocyte counts. Infected C57/BL6 Nramp1(G169) mice developed higher proinflammatory serum cytokine and chemokine responses (interferon-γ, tumor necrosis factor-α, interleukin [IL]-1β, and IL-2 and monocyte chemotactic protein-1 and chemokine [C-X-C motif] ligand 1, respectively) and marked decreases in anti-inflammatory serum cytokine concentrations (IL-10, IL-4) compared with Sv129S6 mice postinfection. Splenic dendritic cells and macrophages in infected compared with control mice increased to a greater extent in C57/BL6 Nramp1(G169) mice than in Sv129S6 mice. Overall, data show that despite the Nramp1 gene present in both strains, C57/BL6 Nramp1(G169) mice develop more severe, Th1-skewed, acute inflammatory responses to S. Typhimurium infection compared with Sv129S6 mice. Both strains are suitable model systems for studying inflammation in the context of adaptive immunity.
Collapse
Affiliation(s)
- D E Brown
- Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Viana CTR, Campos PP, Carvalho LA, Cenedezi JM, Lavall L, Lopes MTP, Ferreira MAND, Andrade SP. Distinct types of tumors exhibit differential grade of inflammation and angiogenesis in mice. Microvasc Res 2012; 86:44-51. [PMID: 23253264 DOI: 10.1016/j.mvr.2012.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/12/2012] [Accepted: 12/06/2012] [Indexed: 11/30/2022]
Abstract
Inflammation, angiogenesis and cytokine production are common features of almost, if not all tumors. However, the extent of these processes induced by different types of tumors has not been evaluated. We investigated the growth pattern of the experimental metastatic tumors, B16F10 melanoma, CT26.WT colon and 4T1 mammary cells inoculated in the flank of syngeneic mice and determined the degree of inflammation, angiogenesis, and production level of pro-inflammatory and pro-angiogenic cytokines within the tumors. In addition, we have analyzed vascular changes in the interface between the tumors and the adjacent cutaneous tissue and levels of relevant pro-inflammatory and pro-angiogenic cytokines systemically. The weight of tumors 15 days post-inoculation of 10(6) cells was markedly different. Melanomas were 2 and 10-fold heavier than colon and mammary tumors, respectively. Locally, CT26.WT tumor cells induced more vessels in cutaneous tissue adjacent to the tumors but systemically, the plasma levels of VEGF were higher (approximately 2-fold) in 4T1 tumor-bearing mice compared with the other two tumors. Mammary tumors presented the most prominent inflammatory content as assessed by a range of markers (inflammatory enzymes and cytokines). The vascular index, as determined by the intra-tumor amount of hemoglobin and number of vessels in hot spot areas, was also higher (approximately 2-fold) in melanomas compared with the other two tumors. These findings showing that distinct tumor types determine differential grade of inflammation, angiogenesis and host interaction in mice may provide new insights to tailor differential therapeutic approach based on the status of tumor biomarkers.
Collapse
Affiliation(s)
- C T R Viana
- Department of Physiology and Biophysics, Institute of Biological Sciences/Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Pampulha, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sampaio FP, Castro PR, Marques SM, Campos PP, Ferreira MAND, Andrade SP. Genetic background determines inflammatory angiogenesis response to dipyridamole in mice. Exp Biol Med (Maywood) 2012; 237:1084-92. [DOI: 10.1258/ebm.2012.012066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation and angiogenesis, key components of fibrovascular tissue growth, exhibit considerable variability among species and strains. We investigated whether the response of inbred and outbred mice strains to dipyridamole (DP) on these processes would present similar variability. The effects of the drug on blood vessel formation, inflammatory cell recruitment, collagen deposition and cytokine production were determined on the fibroproliferative tissue induced by sponge implants in Swiss and Balb/c mice. Angiogenesis as assessed by hemoglobin (Hb) and vascular endothelial growth factor (VEGF) concentrations differed between the strains. Swiss implants had the highest Hb content but the lowest VEGF concentrations. Systemic DP treatment exerted an antiangiogenic effect on Balb/c implants but an proangiogenic effect on Swiss implants. The inflammatory enzyme activities myeloperoxidase (six-fold higher in Balb/c implants) and N-acetyl- β-d-glucosaminidase were reduced by the treatment in Balb/c implants only. Nitrite concentrations were also higher in Balb/c implants by 40% after DP treatment. Tumor necrosis factor-alpha levels were similar in the implants of both strains and were not reduced by DP. Transforming growth factor β-1 levels and collagen deposition also varied between the strains. The inbred strain had similar levels of the cytokine but implants of Swiss mice presented more collagen. DP treatment reduced collagen deposition in Balb/c implants only. Our data showing the influence of the genetic background on marked heterogeneity of inflammatory angiogenesis components and differential sensitivity to DP may provide some answers to clinical evidence for resistance to angiogenic therapy.
Collapse
Affiliation(s)
| | | | | | - Paula Peixoto Campos
- General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627-Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte/MG, Brazil
| | - Mônica Alves Neves Diniz Ferreira
- General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627-Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte/MG, Brazil
| | | |
Collapse
|
50
|
Barclay GR, Tura O, Samuel K, Hadoke PW, Mills NL, Newby DE, Turner ML. Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res Ther 2012; 3:23. [PMID: 22759659 PMCID: PMC3580461 DOI: 10.1186/scrt114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/03/2012] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Endothelial progenitor cells (EPC) capable of initiating or augmenting vascular growth were recently identified within the small population of CD34-expressing cells that circulate in human peripheral blood and which are considered hematopoietic progenitor cells (HPC). Soon thereafter human HPC began to be used in clinical trials as putative sources of EPC for therapeutic vascular regeneration, especially in myocardial and critical limb ischemias. However, unlike HPC where hematopoietic efficacy is related quantitatively to CD34+ cell numbers implanted, there has been no consensus on how to measure EPC or how to assess cellular graft potency for vascular regeneration. We employed an animal model of spontaneous neovascularization to simultaneously determine whether human cells incorporate into new vessels and to quantify the effect of different putative angiogenic cells on vascularization in terms of number of vessels generated. We systematically compared competence for therapeutic angiogenesis in different sources of human cells with putative angiogenic potential, to begin to provide some rationale for optimising cell procurement for this therapy. METHODS Human cells employed were mononuclear cells from normal peripheral blood and HPC-rich cell sources (umbilical cord blood, mobilized peripheral blood, bone marrow), CD34+ enriched or depleted subsets of these, and outgrowth cell populations from these. An established sponge implant angiogenesis model was adapted to determine the effects of different human cells on vascularization of implants in immunodeficient mice. Angiogenesis was quantified by vessel density and species of origin by immunohistochemistry. RESULTS CD34+ cells from mobilized peripheral blood or umbilical cord blood HPC were the only cells to promote new vessel growth, but did not incorporate into vessels. Only endothelial outgrowth cells (EOC) incorporated into vessels, but these did not promote vessel growth. CONCLUSIONS These studies indicate that, since EPC are very rare, any benefit seen in clinical trials of HPC in therapeutic vascular regeneration is predominantly mediated by indirect proangiogenic effects rather than through direct incorporation of any rare EPC contained within these sources. It should be possible to produce autologous EOC for therapeutic use, and evaluate the effect of EPC distinct from, or in synergy with, the proangiogenic effects of HPC therapies.
Collapse
|