1
|
Kamada H, Nakamura M, Ota H, Higuchi S, Takase K. Blood flow analysis with computational fluid dynamics and 4D-flow MRI for vascular diseases. J Cardiol 2022; 80:386-396. [PMID: 35718672 DOI: 10.1016/j.jjcc.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 10/31/2022]
Abstract
Both computational fluid dynamics (CFD) and time-resolved, three-dimensional, phase-contrast, magnetic resonance imaging (4D-flow MRI) enable visualization of time-varying blood flow structures and quantification of blood flow in vascular diseases. However, they are totally different. CFD is a method to calculate blood flow by solving the governing equations of fluid mechanics, so the obtained flow field is somewhat virtual. On the other hand, 4D-flow MRI measures blood flow in vivo, thus the flow is real. Recently, with the development and enhancement of computers, medical imaging techniques, and related software, blood flow analysis has become more accessible to clinicians and its usefulness in vascular diseases has been demonstrated. In this review, we have outlined the methods and characteristics of CFD and 4D-flow MRI, respectively. We have discussed the differences in the characteristics between both methods; reviewed the milestones achieved by blood flow analysis in various vascular diseases; and discussed the usefulness, challenges, and limitations of blood flow analysis. We have discussed the difficulties and limitations of current blood flow analysis. We have also discussed our views on future directions.
Collapse
Affiliation(s)
- Hiroki Kamada
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan.
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Ota
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Satoshi Higuchi
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
2
|
Takeishi N, Shigematsu T, Enosaki R, Ishida S, Ii S, Wada S. Development of a mesoscopic framework spanning nanoscale protofibril dynamics to macro-scale fibrin clot formation. J R Soc Interface 2021; 18:20210554. [PMID: 34753310 PMCID: PMC8580471 DOI: 10.1098/rsif.2021.0554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Thrombi form a micro-scale fibrin network consisting of an interlinked structure of nanoscale protofibrils, resulting in haemostasis. It is theorized that the mechanical effect of the fibrin clot is caused by the polymeric protofibrils between crosslinks, or to their dynamics on a nanoscale order. Despite a number of studies, however, it is still unknown, how the nanoscale protofibril dynamics affect the formation of the macro-scale fibrin clot and thus its mechanical properties. A mesoscopic framework would be useful to tackle this multi-scale problem, but it has not yet been established. We thus propose a minimal mesoscopic model for protofibrils based on Brownian dynamics, and performed numerical simulations of protofibril aggregation. We also performed stretch tests of polymeric protofibrils to quantify the elasticity of fibrin clots. Our model results successfully captured the conformational properties of aggregated protofibrils, e.g., strain-hardening response. Furthermore, the results suggest that the bending stiffness of individual protofibrils increases to resist extension.
Collapse
Affiliation(s)
- Naoki Takeishi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama Toyonaka, Osaka 560-8531, Japan
| | - Taiki Shigematsu
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama Toyonaka, Osaka 560-8531, Japan
| | - Ryogo Enosaki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama Toyonaka, Osaka 560-8531, Japan
| | - Shunichi Ishida
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Satoshi Ii
- Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa Hachioji, Tokyo 192-0397, Japan
| | - Shigeo Wada
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
3
|
Ye T, Shi H, Phan-Thien N, Lim CT. The key events of thrombus formation: platelet adhesion and aggregation. Biomech Model Mechanobiol 2019; 19:943-955. [PMID: 31754949 DOI: 10.1007/s10237-019-01262-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
Abstract
Thrombus formation is a complex, dynamic and multistep process, involving biochemical reactions, mechanical stimulation, hemodynamics, and so on. In this study, we concentrate on its two crucial steps: (i) platelets adhered to a vessel wall, or simply platelet adhesion, and (ii) platelets clumping and arrested to the adherent platelets, named platelet aggregation. We report the first direct simulation of three modes of platelet adhesion, detachment, rolling adhesion and firm adhesion, as well as the formation, disintegration, arrestment and consolidation of platelet plugs. The results show that the bond dissociation in the detachment mode is mainly attributed to a high probability of rupturing bonds, such that any existing bond can be quickly ruptured and all bonds would be completely broken. In the rolling adhesion, however, it is mainly attributed to the strong traction from the shear flow or erythrocytes, causing that the bonds are ruptured at the trailing edge of the platelet. The erythrocytes play an important role in platelet activities, such as the formation, disintegration, arrestment and consolidation of platelet plugs. They exert an aggregate force on platelets, a repulsion at a near distance but an attraction at a far distance to the platelets. This aggregate force can promote platelets to form a plug and/or bring along a part of a platelet plug causing its disintegration. It also greatly influences the arrestment and consolidation of platelet plugs, together with the adhesive force from the thrombus.
Collapse
Affiliation(s)
- Ting Ye
- School of Mathematics, Jilin University, Qianjin Ave. 2699, Changchun, 130012, China.
| | - Huixin Shi
- School of Mathematics, Jilin University, Qianjin Ave. 2699, Changchun, 130012, China
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chwee Teck Lim
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
4
|
Novel Stenotic Microchannels to Study Thrombus Formation in Shear Gradients: Influence of Shear Forces and Human Platelet-Related Factors. Int J Mol Sci 2019; 20:ijms20122967. [PMID: 31216638 PMCID: PMC6627598 DOI: 10.3390/ijms20122967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 01/14/2023] Open
Abstract
Thrombus formation in hemostasis or thrombotic disease is initiated by the rapid adhesion, activation, and aggregation of circulating platelets in flowing blood. At arterial or pathological shear rates, for example due to vascular stenosis or circulatory support devices, platelets may be exposed to highly pulsatile blood flow, while even under constant flow platelets are exposed to pulsation due to thrombus growth or changes in vessel geometry. The aim of this study is to investigate platelet thrombus formation dynamics within flow conditions consisting of either constant or variable shear. Human platelets in anticoagulated whole blood were exposed ex vivo to collagen type I-coated microchannels subjected to constant shear in straight channels or variable shear gradients using different stenosis geometries (50%, 70%, and 90% by area). Base wall shears between 1800 and 6600 s−1, and peak wall shears of 3700 to 29,000 s−1 within stenoses were investigated, representing arterial-pathological shear conditions. Computational flow-field simulations and stenosis platelet thrombi total volume, average volume, and surface coverage were analysed. Interestingly, shear gradients dramatically changed platelet thrombi formation compared to constant base shear alone. Such shear gradients extended the range of shear at which thrombi were formed, that is, platelets became hyperthrombotic within shear gradients. Furthermore, individual healthy donors displayed quantifiable differences in extent/formation of thrombi within shear gradients, with implications for future development and testing of antiplatelet agents. In conclusion, here, we demonstrate a specific contribution of blood flow shear gradients to thrombus formation, and provide a novel platform for platelet functional testing under shear conditions.
Collapse
|
5
|
Przygodzki T, Wolska N, Talar M, Polak D, Gapinska M, Watala C. Comparison of different microscopy approaches to quantification of inhibitory effect on thrombus formation under flow conditions by the example of adenosine receptor agonist HE-NECA. J Pharmacol Toxicol Methods 2018; 94:94-104. [PMID: 30031827 DOI: 10.1016/j.vascn.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Thrombus formation in vitro in flow conditions and its visualization and quantification with the use of microscopy are widely utilized to evaluate activity of compounds with a potential antithrombotic activity. Visualization and quantification of thrombi can be performed with the use of wide-field or confocal microscopy. Acquiring reliable numerical data from wide-field microscopy images of objects which have a complex three-dimensional structure is strongly influenced by the methods used for image analysis. This can be a possible source of inaccuracy in assessment of antithrombotic activity of a tested substance. We aimed to verify how different approaches to the quantification of wide-field images can affect the evaluation of an antiplatelet effect of a tested substance. METHODS We compared three algorithms of image analysis to evaluate an effect of 2-hexynyl-5'-ethylcarboxamidoadenosine (HE-NECA), a compound of a moderate antiplatelet activity on thrombus formation, and of abciximab - a potent antiplatelet compound. Also, we studied how the results obtained in a wide-field imaging correspond to those obtained by means of confocal imaging. RESULTS Three algorithms for analysis of wide-field images showed antiplatelet effect of HE-NECA or abciximab. Absolute values of thrombus area and outcomes of the evaluation of inhibition efficacy of HE-NECA were significantly different between the algorithms. Analysis of volumes and heights of thrombi obtained by confocal imaging confirmed inhibitory effect of HE-NECA, but the evaluated levels of inhibition were significantly different from that obtained by wide-field imaging. DISCUSSION We conclude that wide-field imaging provides reliable qualitative data on an inhibitory effect on thrombus formation, despite differences which can emerge from various approaches to image analysis. However, quantitative evaluation and comparison of the efficacy of inhibitors on the basis of total area occupied by thrombi obtained by wide-field microscopy should be made with caution. To obtain a reliable quantitative assessment of the effect of a tested compound on thrombus structure the use of confocal microscopy is inevitable.
Collapse
Affiliation(s)
- Tomasz Przygodzki
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland.
| | - Nina Wolska
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland
| | - Marcin Talar
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland
| | - Dawid Polak
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland
| | - Magdalena Gapinska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland
| |
Collapse
|
6
|
Hosseinzadegan H, Tafti DK. Modeling thrombus formation and growth. Biotechnol Bioeng 2017; 114:2154-2172. [DOI: 10.1002/bit.26343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/03/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Hamid Hosseinzadegan
- Mechanical Engineering DepartmentVirginia Polytechnic Institute and State University, 213E Goodwin Hall ‐ 0238, 635 Prices Fork RoadBlacksburgVirginia24061
| | - Danesh K. Tafti
- Mechanical Engineering DepartmentVirginia Polytechnic Institute and State University, 213E Goodwin Hall ‐ 0238, 635 Prices Fork RoadBlacksburgVirginia24061
| |
Collapse
|
7
|
Kamada H, Imai Y, Nakamura M, Ishikawa T, Yamaguchi T. Shear-induced platelet aggregation and distribution of thrombogenesis at stenotic vessels. Microcirculation 2017; 24. [PMID: 28109051 DOI: 10.1111/micc.12355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE SIPA, which is mediated by vWF, is a key mechanism in arterial thrombosis under an abnormally high shear rate of blood flow. We investigated the influence of SIPA on thrombogenesis, focusing on alterations in blood flow at stenotic vessels. METHODS We carried out a computer simulation of thrombogenesis in stenotic vessels at three different injury positions (ie, upstream, apex, and downstream of the stenosis) to evaluate the effect of SIPA. RESULTS The results demonstrated that thrombus volume increased downstream of the stenosis. In particular, growth was enhanced significantly as blood flow velocity and severity of stenosis increased. The influence of SIPA was induced by continuous exposure to high shear rate; thus, SIPA had a greater effect from the apex to downstream of the stenosis along the vessel wall. The asymmetry of the impact of SIPA contributed to the distribution of the thrombus. Furthermore, we found that the degree of SIPA was prolonged in a stenotic vessel with a distal injury, whereas it was moderate with thrombus growth in a nonstenosed vessel. This occurred because platelets and vWF that underwent a high shear rate around the apex were transported to the region downstream of the stenosis. CONCLUSIONS These results suggest that thrombus formation downstream of the stenosis is easily affected by SIPA and hemodynamics.
Collapse
Affiliation(s)
- Hiroki Kamada
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Yohsuke Imai
- School of Engineering, Tohoku University, Sendai, Japan
| | - Masanori Nakamura
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takuji Ishikawa
- Department of Finemechanics, Tohoku University, Sendai, Japan
| | - Takami Yamaguchi
- Department of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Abstract
Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.
Collapse
Affiliation(s)
- Aaron L. Fogelson
- Departments of Mathematics and Bioengineering, University of Utah, Salt Lake City, Utah 84112
| | - Keith B. Neeves
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401
| |
Collapse
|
9
|
Omori T, Imai Y, Kikuchi K, Ishikawa T, Yamaguchi T. Hemodynamics in the microcirculation and in microfluidics. Ann Biomed Eng 2014; 43:238-57. [PMID: 25398331 DOI: 10.1007/s10439-014-1180-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Hemodynamics in microcirculation is important for hemorheology and several types of circulatory disease. Although hemodynamics research has a long history, the field continues to expand due to recent advancements in numerical and experimental techniques at the micro-and nano-scales. In this paper, we review recent computational and experimental studies of blood flow in microcirculation and microfluidics. We first focus on the computational studies of red blood cell (RBC) dynamics, from the single cellular level to mesoscopic multiple cellular flows, followed by a review of recent computational adhesion models for white blood cells, platelets, and malaria-infected RBCs, in which the cell adhesion to the vascular wall is essential for cellular function. Recent developments in optical microscopy have enabled the observation of flowing blood cells in microfluidics. Experimental particle image velocimetry and particle tracking velocimetry techniques are described in this article. Advancements in micro total analysis system technologies have facilitated flowing cell separation with microfluidic devices, which can be used for biomedical applications, such as a diagnostic tool for breast cancer or large intestinal tumors. In this paper, cell-separation techniques are reviewed for microfluidic devices, emphasizing recent advances and the potential of this fast-evolving research field in the near future.
Collapse
Affiliation(s)
- Toshihiro Omori
- Department of Bioengineering and Robotics, Tohoku University, Aoba 6-6-01, Sendai, Miyagi, Japan,
| | | | | | | | | |
Collapse
|
10
|
Bodnár T, Fasano A, Sequeira A. Mathematical Models for Blood Coagulation. FLUID-STRUCTURE INTERACTION AND BIOMEDICAL APPLICATIONS 2014. [DOI: 10.1007/978-3-0348-0822-4_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|